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Abstract. Second centralizers of partial transformations on a finite set are determined. In
particular, it is shown that the second centralizer of any partial transformation « consists
of partial transformations that are locally powers of a.
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1. INTRODUCTION

The semigroup PT,, of partial transformations on the set X = {1,...,n} consists
of the functions whose domain and range are included in X, with composition as the
semigroup operation. For a € PT,,, the sets

Cla)={y€ PT,: aoy=voa} and
C*(a) ={B € PT,,: vyof = o~ for each v € C(a)}

are subsemigroups of PT,,, called the (first) centralizer of a and the second centralizer
of a, respectively. Note that C2%(a) C C(a).

The purpose of this paper is to determine the second centralizers in PT,,. The
second centralizers in the semigroup 7T, of full transformations on the set X are
described in [7].

Obviously, every power a! (t > 0) of a« € PT, is an element of C?(a). If « is
not a nilpotent, then {a: t > 0} is a proper subset of C?(«) since the zero (empty)
transformation is in C?(a) \ {a’: ¢ > 0}. Thus, in general, C?(«) does not consist
of just the powers of a. We show, however, that the elements of C?(a) are locally
powers of a.
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More specifically, every a € PT,, induces a partition {N, A;,..., A, } of the set
X ={1,...,n}. (41,...,A,, correspond to the weakly connected components con-
taining a cycle in the digraph representation of «; N corresponds to the subgraph of
the digraph representation obtained by removing all such components.)

Suppose that 3 € C?(a). We show that 3 restricted to N is equal to o restricted
to N for some t > 0. Similarly, 5 restricted to 4; (i = 1,...,m) is either 0 or is equal
to a'’ restricted to A; for some ¢; > 0. These necessary conditions are not sufficient
for 3 to be in C?(a). In addition, the exponents t,t1,...,t, must be related in
a certain way. We prove that the “local powers” requirement together with these
relations completely determine C? ().

2. FIRST CENTRALIZERS

This section introduces the terminology used throughout the paper and describes
the first centralizers of partial transformations. Centralizers in PT,, have been stud-
ied in [3], [4], [5] and [6].

Let o € PT,,. The domain and range of o will be denoted by dom « and ran «,
respectively. If 8 € PT, is such that xa = z3 whenever x € dom aNdom (3, we define
the join a8 of  and (3 as the partial transformation with dom(af) = dom aUdom
that coincides with & on dom v and with 8 on dom 8. Note that the join af (which,
if defined, is simply the union of o and () is distinct from the product (composition)
aof.

For k > 1, let 41,149,...,1; be distinct elements of X such that i1 = iz, isa =
i3y ..., tg—1 = ix. Then « restricted to the set {i1,...,ix—1} is called a chain in «
of length k (or a k-chain in «) and denoted (iyis...47x]. (Note that if & = 1, then
(1] is the zero transformation.) If, in addition, iy = i1 then « restricted to the set
{i1,42,...,1} is called a circuit in « of length k (or a k-circuit in a) and denoted
(i1ia .. .1ik).

Let 7 = (i1...4x) be a chain in . The set {i1,...,4x} is called the span of n and
denoted span7. If i1 ¢ ran« and i ¢ dom «, we say that 7 is a mazimal chain in «.
Note that (i1] is a maximal chain in « if and only if i1 ¢ dom«a Urana.

If n=(i1...49,x,] is a chain in o and ¢ = (zg...xk—1) is a circuit in « (u, k > 1)
such that i; ¢ rana and {i1,..., %y, @} N {x0,...,2k—1} = {z,}, we say that 7 is a
cilium attached to g at x,.. To distinguish cilia from maximal chains, we will use the
right angle “)” for the former and the right bracket “]” for the latter. If n,...,ns
are the cilia in « attached to g, then the join A =1 ...nsp0is called a cell in . Note
that an isolated circuit (with no cilia) also forms a cell.

Every partial transformation o € PT,, is a join

(].) 771~-~77k)\1~-~)\m
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of its maximal chains 7, ..., 7, and its cells Ay, ..., \,. Join (1) is called the chain-
cell decomposition of a.

If G is the digraph representation of «, then the maximal chains in a correspond
to the simple maximal paths in G, and the cells in a correspond to the weakly
connected components of G containing a cycle. For example, the transformation

/123 45 6 78 9 1011 12 13 14 15 16
““ 23 - 56 — 6 9 10 11 13 10 11 13 15 —

) epP T16
has the digraph representation

14

12

Q
[ ]

1 4 8 9 10 11 15 16

and the chain-cell decomposition

a=(123](45 6](7 6] (16] (8 9 10 11)(12 10 11)(14 13)(11 13)(15).
m 2 Tr A1 \A;d

If « is a full transformation on X, then there are no maximal chains in « and so
a = A1...)\ny is a join of its cells. (For applications of the digraph representation of
full transformations on X, see [2] and [1, 6.2].) If « is a permutation on X, then «
is a join of its circuits.

Let o,y € PT,,. Suppose that n = (i1 ...4,] is a chain in o and o = (zg ... xk—1)
is a circuit in . If dom~ Nspann # (), we say that v meets 1. Similarly, if
dom~y Ndom g # (), we say that v meets 0. If £ = (j1 ... Ju] is a chain in « such that
1Y = J1,- -+, 0y = Ju, We say that v maps n onto &.

The first centralizers in PT,, are characterized in [4, Theorem 4] (also see [5, 58.8]).

Theorem 1. Let o,y € PT,,. Then v € C(«) if and only if for every maximal
chain n = (i1...1,] In «, every circuit o = (zg...xk—1) In «, and every cilium
&= (j1...jox,) in v attached to p, the following conditions are satisfied:

(1) Ifv meets n, then there is a maximal chain 7 = (ki ... ky] in « such that vy maps
an initial segment (i1 . ..14,] of n (p < u) onto a terminal segment (ky—pt1 - - - K]
of T and vy does not meet (ip41 . ..%,);

(2) Ifv meets g, then there is a circuit § = (yo - . . Yym—1) in o such that m divides k,
v maps the points xg, 21, ...,Tr_1 of dom o to ys,ysa, ..., ysa* "1, and v maps

875



the points j1, ja, . .., ju, Zr of spané to z, za, ..., za" "1, za¥, where z is on 6 or
some cilium attached to ¢;

(3) If~v does not meet g but it meets &, then there is a maximal chain T = (ky . . . k]
in o such that v maps an initial segment (j1 ... jp] of € (p < v) onto a terminal
segment (ky—_p+1...ky] of T and v does not meet (jp+1 - - . jul-

3. SECOND CENTRALIZERS

Let o € PT,, and let A be a cell in a. We define the radius of A\, written r()),
as the largest integer u such that (i1 ...4,2) is a cilium in A\. If A has no cilia, we
define r(A\) to be 0. Let n;...7m; be the join of all maximal chains in « and let
N = spanm U...Uspann,. We define the diameter of N, written d(N), as the
largest integer u such that (i ...7,] is a maximal chain in «. If N = () (that is, if
a has no maximal chains), we define d(N) to be 0.

For example, for o = (1 2] (3] (6 7 4)(8 4)(4 5) (10 9)(9) (11 12), we have N =
e aad ——

1 12 A2 As

A

(1,2,3}, d(N) = 2, r(\) = 2, r(Az) = 1, and r(A3) = 0.

Let N = {0,1,2,...} denote the set of nonnegative integers. We introduce an
element —oo ¢ N and agree that for every a € N, —oco < a, and that for every
B € PT,, f~°° = 0, where 0 is the zero (empty) transformation. For 8 € PT,, and
a subset A of X, 8 |A will denote the restriction of 3 to A. Finally, the length of a
circuit ¢ will be denoted by #(p).

The following theorem determines the second centralizers of partial transforma-
tions.

Theorem 2. Let o, € PT,, let « =n1...Mx\1 ...\, be the chain-cell decom-
position of o, let N = spann; U...Uspanng, and let g; be the circuit in the cell ;.
Then 3 € C?(«) if and only if there aret € N and t1,...,t, € NU{—oc0} such that
for alli,j € {1,...,m}:

(1) BIN = o |N;
(2) B|dom\; = o''| dom A;;
(3) If either t < min{d(N),r(\;)} or 0 < ¢; < min{d(N),r(\;)}, then t; = ¢t;
(4) If £(p;) divides £(p;), then:
a) Ift,; > 0 and t; > 0, then t; = t; (mod £(g;));
b) If either t; or t; is less than min{r(X;),7(\;)}, then t; =t;.

Note that (4b) and the convention —co < a for every a € N imply that if ¢(g;)
divides ¢(p;), then ¢t; = —0o0 <= t; = —oo. To illustrate Theorem 2, we consider
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the following transformations in PT}s:

a=mMAy = (1 2 3](6 7 4)(4 5)(12 8)(8 9 10 11),
ﬁl = (6 2)(7 3],

2 3],

>( (7 5)(5)(12 8)(8 9 10 11),

o
B
—

N
N

N

(5)(8 )( )(10)(11)(12),
5)(12 10)(8 11 10 9),
(4

5)(12 8)(8 9 10 11).

5)
1 3]( 7 4)(
1 3](6 5)(7
By Theorem 1, each f; is in C(a). Note that N = {1,2,3}, d(N) = 3, £(01) = 2,
£(02) =4, r(A\1) = 2, and r(A2) = 1. We apply Theorem 2 to each ;.
(1) 1 ¢ C?(«) since By restricted to dom A is not equal to any power of « restricted
to dom Aq.
) ﬁ2|N = allN, 52| dom )\ = a_‘)o’ dom A, and ﬁg’ dom A\ = oz_°°| dom Mo, but
B2 ¢ C%(a) since 1 < min{d(N),r(\1)} and 1 # —oo.
) 53|N = a3|N, ﬂg,’dom)\l = a2|dom)\1, and ﬁg|dom)\2 = alldom)\g, but
B3 ¢ C%(a) since 2 # 1 (mod £(01)).
4) Bs|N = o!|N, Bs|domA; = a'|dom Ay, and B4|dom Ay = a~>°| dom Az, but
B4 ¢ C?(a) since —oco < min{r(A\1),r(A\2)} and 1 # —oo.
5) ﬂ5|N = oz?”N, ﬂ5|dom)\1 = a2’domx\1, ﬁ5’d0m/\2 = a0|dom)\2, and 2 =0
(mod £(p1)), but 85 ¢ C?(a) since 0 < min{r(A1),r(A2)} and 2 # 0.
6) ﬂ6|N = ozZIN, 56|d0m)\1 = alldomx\l, ﬁg’domx\g = a3|dom)\2, and 3 =1
(mod £(p1)), but B ¢ C?%(a) since 1 < min{d(N),r(A1)} and 1 # 3.
7) ﬁ7|N = a2|N, ﬁ7| dom\; = a3| dom Aq, ﬂ7’dom)\2 = a1|dom)\2, and (3) and
(4) of Theorem 2 are satisfied, so 87 € C?(a).
The remainder of the paper will be devoted to proving Theorem 2. It is convenient

=(
=(6
(1
= (
(
(

to lay out the proof of the “only if” part of the theorem as a series of lemmas.

The following two lemmas show that for « € PT,, and 8 € C?(«), 3 restricted to N
is equal to some power of « restricted to N. (In other words, such a (3 satisfies (1)
of Theorem 2.)

Lemma 3. Let o, 3 € PT,, be such that 3 € C?(«), and let n = (i1 ...i,] be a
maximal chain in «. Then there ist € {0, ..., u} such that ﬁ’ spann = at’ spanr.

Proof. If domB3Nspann = 0, then ﬁ| spann = a“| span7. Otherwise, by
Theorem 1, i; € dom § and one of the following two cases holds.
Case 1. i1 =1, for some p € {1,...,u}.
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Then ﬁ’ spann = ap’1| spann by Theorem 1.

Case 2. There is a maximal chain & = (j1...Jj, in « such that for some p €
{1,...,v}, dp & {t1,...,3,} and i1 8 = jp.

We will construct v € C(a) such that i1 ¢ dom~y and j, € dom~. Set dom~y =
{z € doma: za? = j, for some ¢ > 0}. Define the values of  so that for every
maximal chain g = (m1...mgJp ... Ju] (d > 0) in o whose span contains j,, v maps
the initial segment (m; ...mgj,| of u onto a terminal segment of . By Theorem 1
and the construction of v, we have v € C(a), i1 ¢ dom~ (since j, & {i1,...,0}),
and j, € dom~y. Thus i1(8 o) = j,7 is defined and i1 (o ) is undefined. It follows
that v ¢ C(), which is a contradiction. O

Recall that for a circuit o, £(0) denotes the length of p. Similarly, for a chain 7,
£(n) will denote the length of 7.

Lemma 4. Let a,3 € PT,, be such that 8 € C?(«), and let n = (i1 ...i,) and
&= (j1...Jo) be maximal chains in . Suppose thatt € {0,...,u} andw € {0,...,v}
are integers such that (3 | spann = at|

*| span .

spann and ﬂ|span§ = aw| spané. Ift > w,
then ﬂ|span§ =«

Proof. Supposet > w. Proceeding by induction on £(n) 4+ £(§), we assume that
the lemma is true for all maximal chains 7’ and ¢’ in o with £(n")+£(¢") > £(n) +£(€).
We consider three cases.

Case 1. w=0.

Then i,3 = i,a' is undefined (since t > w = 0) and j13 = j1a® = j;. Define
v € PT, by: dom~y = {j1} and ji1v = i,. By Theorem 1, v € C(a). Since
J1(B o) = jivy = iy and ji1(y o B) = i,f is undefined, v ¢ C(8), which is a
contradiction.

Case 2. w=v.

Then ﬁ’ spané = 0| spané = «

Case 8. 1< w<w.

Then j18 = jw+1. Let m = min{u,v}. Since w < v and w <t < u, w—+1 < m.

*| span¢ (since t > w).

Let 7 = (k1...kpjm ---Ju] (b = 0) be a longest maximal chain in o whose span
contains j,,. We consider two cases.

Case 8.1. b<u-—1.

Then we can construct v € C'(«) that maps the initial segment (ji . .. j.] of £ onto
a terminal segment of 7. Set dom~y = {z € doma: za? = j,, for some ¢ > 0}. Let
w=(my...mgjm...Jy] (d > 0) be any maximal chain in oz whose span contains j,y,.
Since (7) > ¢(p) and b < u— 1, we have u —d > u—b > 1 and so u > d + 1.
Thus we can define + so that it maps (my ... mgJm] onto a terminal segment of 7. In
particular, v maps the initial segment (j1 ... Jm] of £ onto a terminal segment of 7,

say (ip ...y
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By Theorem 1 and the construction of v, we have v € C(a), j1v = i, and
Jwily = dryw. Since i.8 = i,.a!, either 4,3 is undefined or i,3 = 4,.;. Thus
J1(B0oY) = jw+17Y = irtw and either ji(yof) = i,0 is undefined or j1(yo 3) = i,0 =
ir+t. In either case, since t > w, it follows that v ¢ C((), which is a contradiction.

Case 3.2. b > u.

Then {(7) =b+v—m+1Z2u+v—m+1>2m+v—m+1=0v+1> ¢
and /(1) =b+v—m+1Z2ut+v—-m+1Z2u+m-m+1=u+1>{(n). By
Lemma 3, ﬂ’ spanT = ap’ span T for some p € {0,...,¢(7)}. Suppose p > w. Then,
by the inductive hypothesis applied to 7 and &, 3 ’ spanf = ozp| span&. It follows
that j18 = j1aP # jwy1 = j1, which is a contradiction. Thus p < w. Then ¢t > p
and so, by the inductive hypothesis applied to n and 7, ﬁ’ spanT = at| span 7. Note
that, since £(7) > £(n) and ¢ € {0,...,4(n)}, we also have ¢t € {0,...,4(7)}. Now
repeat the argument used in the case p > w above (with p replaced by t) to obtain
a contradiction. This concludes the proof. O

The next three lemmas show that for o € PT,, and 8 € C?(a), 3 restricted to
the domain of a cell \; is equal to some power (possibly —oo) of « restricted to that
domain. (In other words, such a [ satisfies (2) of Theorem 2.)

Lemma 5. Let o, 3 € PT,, be such that 3 € C?(a), and let o = (z¢...Tk_1)
be a circuit in «. If dom 3 N dom g # (), then there is t € {0,...,k — 1} such that
ﬁ’domg: o' | dom o.

Proof. By Theorem 1, xyp € dom 3 and one of the following two cases holds.

Case 1. x9f8 = x; for some ¢t € {0,..., k—1}.

Then ﬁ’ dom p = at’ dom ¢ by Theorem 1.

Case 2. There is a circuit § = (yo...Ym—1) in « such that § # o, m divides k,
and zof =y, for some p € {0,...,m —1}.

Let A be the cell in « that has § as the circuit. Define v € PT),, by domy = dom A
and yvy = y for every y € dom A. By Theorem 1 and the construction of ~, we have
v € C(a), zo & dom~y, and y,y = yp. Since zo(Boy) = ypy = yp and zo(y o §) is
undefined, v ¢ C(8), which is a contradiction. O

Lemma 6. Let , 3 € PT,, be such that 8 € C*(«a), and let n = (i1 . ..i,0) be a
cilium in « attached to a circuit ¢ = (xq ...wk—1). If dom S Nspann # O, then there
ist €{0,...,u+k — 1} such that ﬁ| spanmn = at’ spanr.

Proof. Let A be the cell in o that has p as the circuit. By Theorem 1 and
Lemma 5, ¢; € dom 8 and one of the following four cases holds.

Case 1. i1 =i, for some p € {1,...,u}.

Then ﬁ’ spann = ap’1| spann by Theorem 1.
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Case 2. 13 = x, for some p € {0,...,k —1}.

Then ﬂ’ spann = a“+p| spann by Theorem 1.

Case 8. There is a cilium £ = (j; ... jyxs) in A such that for some p € {1,...,v},
1108 = jp and jp & {i1,. .., 0u}-

We consider two cases.

Case 3.1. s#0, i.e., 7 and £ meet o at different points.

We will construct v € C(«) such that i1y = ¢; and j,y # jp. Set dom~y = dom A.
Let u = (m1...mgxs) be any cilium in A attached to ¢ at zs and let 2, € domp

be such that zpa® = x,. Define v so that it maps the points my,ma,...,my, xs

a1t zpa? = x,. If y € dom\ is not in the span of

of spanpu to xp,xpa, ..., xh
any cilium attached to ¢ at zg, define yy = y. By Theorem 1 and the construction
of v, we have v € C(«a), i1y = i1 (since 1 is not attached to ¢ at x5), and jp,v # jp
(since ¢ is attached to ¢ at x5 and so j,y € domg). Since i1(8 o) = jpy # jp and
i1(yoB) =18 = jp, v ¢ C(B), which is a contradiction.

Case 3.2. s =0, i.e., n and ¢ are attached to p at the same point.

Since both 7 and £ meet ¢ at o and j, ¢ {1,...,u}, we have n = (i1...942...),
E=Ur--Jp---Jrz-..) (¢=1,r 2 p),and {i1,...,ig} N{j1,-..,7r} = 0. (Note that
z may be equal to zp.) Let 7 = (k1...kpjrz...) (b = 0) be a longest cilium in A
whose span contains j,. If j, € spanT, we may assume that { = 7. We consider
three cases.

Case 8.2.1. 7 # & (which implies j, ¢ spanT).

We will construct v € C'(«) such that i1y =41 and jp7y # jp. Set dom~y = dom A.
Let u = (my ...mqzo) be any cilium in A\ whose span contains j,. Since £(7) > £(u),
we can define v so that it maps p onto a terminal segment of 7. If y € dom A is not in
the span of any cilium in A whose span contains j,., define yy = y. By Theorem 1 and
the construction of v, we have v € C(«), i1y = i1 (since j, ¢ spann), and j,vy # jp
(since j,y € spanT and j, ¢ span ), which leads to a contradiction as in Case 3.1.

Case 3.2.2. T =¢ and £(n) = £(§).

Again, we will construct v € C(«) such that i1y = 41 and jpy # j,- Let pu =
(mq ... mgqxo) be any cilium in A whose span contains j,. Since £(n) > £(§) = £(u),
we can define 7 so that it maps p onto a terminal segment of . If y € dom A is not in
the span of any cilium in A whose span contains j,, define yy = y. By Theorem 1 and
the construction of v, we have v € C(«), i1y = i1 (since j, ¢ spann), and j,vy # jp
(since j,y € spann and j, ¢ spann), which leads to a contradiction as in Case 3.1.

Case 3.2.3. T =¢ and 4(n) < £(§).

We will construct v € C(«) such that ji1y = i1 and j, ¢ ran~y. Set dom~y = dom A.
Let a € {0,...,k — 1} be such that a = v — u (mod k). Let u = (mq...mgxo) be
any cilium in A whose span contains j, and let ¢ = v —d + 1. Since £(§) > ¢(u),
c > 1. If ¢ < u, define v so that it maps the points mi, ma, ..., mg, zo of dom u to
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Peyiey ... ica® 1 i.0¢. Note that i.a® = z,. If ¢ > u, select ;, € dom p so that
zha® = z, and define ~ so that it maps the points mi,ma, ..., mg,zo of dom u to
Th, Thoy, ..., wpa® 1 zpat = z,. Notethatif u=¢ thenc=v—d+1=v—v+1=1
and j1v = myy =i, =141. If y € dom A is not in the span of any cilium whose span
contains j,., we define yy = ya®.

By Theorem 1 and the construction of v, we have v € C(a), j17 = i1, and
Jp ¢ ran~y. (Indeed, let y € domA. If y is in the span of a cilium whose span
contains j,, then yv is in the set {i1,...,%,} Udomp. Thus yy # j, since j, is not
in that set. If y is not in the span of any such cilium, then yy = ya® # j, since
otherwise we would have ya®t" P = j,., which cannot happen if y is not in the span
of a cilium whose span contains j,. Hence j, ¢ ran~.) Since ran(3o~) C ranv,
Jp ¢ ran(Bo~y). Since j1(yo f) =018 = jp, jp € ran(yo G). It follows that v ¢ C(3),
which is a contradiction.

Case 4. There is a maximal chain £ = (j1 ... j,] in « such that i; 8 = j, for some
pe{l,...,v}.

Define v € PT,, by: dom+ is the union of spans of all maximal chains in «, and
yy = y for all y € dom~y. By Theorem 1 and the construction of 7, we have y € C(«),
Jp € dom~y, and i1 ¢ dom~y. Since i1(5 o) = jpy is defined and i1(y o ) = (i17)6
is undefined, v ¢ C(), which is a contradiction. O

Lemma 7. Let o, € PT, be such that 3 € C?(a), and let n = (i1 ...i,Z0)
and £ = (j1...Juxs) be cilia in « attached to a circuit ¢ = (xq...xk—1) such that
ﬁ’domg:oﬂdomg for somee € {0,...,k—1}. Suppose thatt € {0,...,u+k—1}
‘|

andw € {0,...,v+k—1} are integers such that ﬁ’ spann = «'|spann and ﬂ| span§ =

aw’ spanf. Ift > w, then ﬂ’ span = ozt’ span¢.

Proof. Supposet > w and let A be the cell in « that has g as the circuit.
Proceeding by induction on £(n) + ¢(£), we assume that the lemma is true for all
cilia n’ and & in A with £(n’) + £(&") > £(n) + £(§).

Since zpa! = rpa® and zsa® = x50, we have t = e (mod k) and w = e (mod k).
Thus ¢ = w (mod k) and so, since ¢ > w, t = w + lk for some I > 1. We consider
three cases.

Case 1. w=0.

Then i,08 = iya!® = z4_1 and 718 = j1a° = ji1. We will construct v € C(a)
such that ji17 = i,. Set dom~y = dom\. Select ¢ € {0,...,k — 1} so that ¢ =
v — 1 (mod k) and define v so that it maps the points j1, ja,. .., j», Zs of spané to
Ty T = T0, .., 140" i,a = x4. Let a € {0,...,k — 1} be such that a = ¢ — s
(mod k). For any cilium = (mq ... mgx.) in A with p # &, select 25, € dom p so that
zpa® = x,, . and define v so that it maps the points my,ma, ..., mg, . of spanu

Oédfl d

to xp, TRy ..., Tp ,xha® = x44.. By Theorem 1 and the construction of v, we
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have v € C(«) and j1y = 4. Since j1(Bov) = j1v =iy and j1(y 0 f) = iy = Tg_1,
v ¢ C (), which is a contradiction.

Case 2. w > .

Then for each p € {1,...,v}, jp0 = jpa® = x4 for some ¢ € {0,...,k —1}. Thus
jpat = jpavth = (j,a®)al* = z,0l* = 2, = j,B. Similarly, ;0! = x4 and so
ﬂ’ spané = ozt’ spané.

Case 3. 1< w<w.

Then j18 = j1a* = juwt1- Let m = min{u,v}. Since w < v and w =t — lk <
utk—-1-lk=u—(l-1Dk—-1<u,w+1<m. Let 7= (ki...kpJm-..JuTs)
(b > 0) be a longest cilium in A whose span contains j,,,. We consider two cases.

Case 8.1. b<u-—1.

Then we can construct v € C(«) that maps the initial segment (ji...Jm] of €
onto a terminal segment of (i ...4,]. Set dom~y = dom A. Select ¢ € {0,...,k —1}
such that ¢ = v — m (mod k). Let u = (m1...Majm ... jJoxs) (d = 0) be any
cilium in A whose span contains jp,. Since £(7) > ¢(p) and b < u — 1, we have
w >b+1 2> d+ 1. Thus we can define v so that it maps the initial segment
(mq ... mgjm] of p onto a terminal segment of (i; ...4,] and the remaining points of
SpPan L, Jm+1, Jm+2s - - -5 Jvs Tss 10 T, ToQ, . .., Tl
lar, v maps the initial segment (ji ... j,] of £ onto a terminal segment of (i .. .1%,],

v—m—1 v—m
)

ToQ = x4. In particu-
say (ir...1y). Let p = (mq ... mgx.) be any cilium in A whose span does not contain
Jm- Let a € {0,...,k—1} be such that a = ¢—s (mod k). Select x5, € dom p so that
zhat = Zetq and define vy so that it maps the points mi,ms, ..., mg, x. of span p to

Oédfl d

Thy ThQ, ..., Th y ThQ™ = Tetaq-

By Theorem 1 and the construction of v, we have v € C(a), j1v = i, and
Juwt1Y = drtw. Since ji(B07) = jut1y = irtw and ji(yo f) = irf = ira’ # irjuw
(since t > w), v & C(f), which is a contradiction.

Case 3.2. b > u.

Then {(T) =b+v—m+2Z2u+v—m+22m+v—m+2=v+2>/{¢) and
r)y=b+tv—m+2Z2ut+v—m+22u+m—m+2=u+2>{(n). By Lemma 6,
ﬂ’ spanT = ap’ span T for some p € {0,...,4(7) + k —2}. Suppose p > w. Then, by
the inductive hypothesis applied to 7 and &, (3 | spané = a”’ span. It follows that
J18 = j1aP # jwi1 = j15, which is a contradiction. Thus p < w. Then ¢t > p and so,
by the inductive hypothesis applied to n and 7, 3 ’ spanT = at’ spanT. Note that,
since ¢(7) > £(n) and t € {0,...,¢(n) +k—2}, we also have t € {0,...,4(7)+k—2}.
Now repeat the argument used in the case p > w above (with p replaced by t) to
obtain a contradiction. This concludes the proof. O

Lemmas 3-7 imply that if @ € PT), and 8 € C?*(«), then 3 satisfies (1) and (2)

of Theorem 2, that is, 8| N = o!|N and 8| dom ); = a'i|dom A; for some ¢ € N and

882



t; e NU{—o0} (i =1,...,m). The next two lemmas show that the exponents ¢ and
t; satisty (3) of Theorem 2.

Lemma 8. Let a,3 € PT, be such that 8 € C%*(a), let n = (i1...i.] be a
maximal chain in «, let 9 = (xg...xk—1) be a circuit in «, and let € = (j1 ... juTo)
be a longest cilium attached to ¢. Suppose that t is a nonnegative integer such that
ﬁ’ spann = at’ spann. Ift < min{u,v}, then dom 3 N span¢ # ().

Proof. Lett < min{u,v}. Suppose, by way of contradiction, that dom 3 N
spané = (. Let m = min{u,v}. We will construct v € C'(«) that maps the initial
segment (j1...Jm] of & onto a terminal segment of 7. Let A be the cell in « that
has ¢ as the circuit. Set dom~vy = {z € dom\: za? = j,, for some ¢ > 0}. Let
w=(mi...majm-..Juxo) (d = 0) be a cilium in A\ whose span contains j,,. Since
() < (), d+1 < m < u. Thus we can define 7 so that it maps the initial segment
(mq...mgjm] of u onto a terminal segment of 7. In particular, v maps the initial
segment (1 ...Jm] of & onto a terminal segment of 1, say (i, .. .14,].

By Theorem 1 and the construction of 7, we have v € C(«) and j1v = 4,. Since
J1(B o 7) is undefined (since j; ¢ dom ) and ji(vy o 3) = i, = i,a’ = 4,14 (since
t <m), v ¢ C(B), which is a contradiction. Thus dom 3 N span& # §. O

Lemma 9. Let a,3 € PT, be such that 3 € C%*(a), let n = (i1...i.] be a
maximal chain in «, let o = (g ...xp—1) be a circuit in «, and let £ = (j1 ... juZo)
be a longest cilium attached to ¢. Suppose that t and w are nonnegative integers
d “|span¢. If either t or w is less

such that ﬁ| spann = o'|spann and ﬁ| span = «

than min{u, v}, then t = w.

Proof. Let m = min{u,v}. Let A be the cell in « that has g as the circuit.
As in the proof of Lemma 8, we can construct v € C'(«) such that dom~vy = {z €
dom\: za? = j,, for some ¢ > 0} and v maps the initial segment (j;...jm] of £
onto a terminal segment of 7, say (i, . ..4,]. Then ji(Bo7) = (jia¥)y and j1(yo ) =
i3 =1i,a'. Since v € C(B), (ra™¥)y = iral.

Suppose t < m. Then i,a! is defined and i,.a® = i,.14. Thus w must be less than m
(otherwise jia® would not be in dom~) and so (j1a™)y = jwt+1y = @rtw. Hence
iptt = Ippq and so t = w.

Suppose w < m. Then (jia®)y is defined and (j1a")y = juw+1Y = trpw. Thus t
must be less than m (otherwise i,.a' would be undefined) and so i,.a’ = i,;. Hence
Iptt = lppq and so t = w. O

We already proved (Lemmas 5-7) that if « € PT,, and 8 € C%(a), then 3 sat-
isfies (2) of Theorem 2, that is, ﬁ| dom \; = a'i|dom \; for some t; € N U {—o0}
(i = 1,...,m). The next three lemmas show that the exponents ¢; satisfy (4) of

Theorem 2.
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Lemma 10. Let o, 3 € PT,, be such that 3 € C%(a), and let ¢ = (zg...Tx_1)
and§ = (Yo . . - Ym—1) be circuits in a such that k divides m. Then dom 3Ndom o = 0}
if and only if dom 3N dom 6 = ().

Proof. We will construct v € C(«) such that yoy = zo. Let A be the cell in «
that has 0 as the circuit. Set dom~y = dom A. Define v so that it maps the points

Y0, Y1y - - s Ym—1 of dom d to mo, zoay, ..., xoa™ 1. Let £ = (j1...juyp) be any cilium
in « attached to 6. Select xj € dom g so that zpa” = xga? and define « so that it
maps the points j1, ja, . . ., ju, Yp of spané to zp, Tpa, ..., zpa’ t zpa’.

By Theorem 1 and the construction of -, we have v € C'(«) and yoy = 9. Suppose
dom 3 Ndomp =0 and dom S Ndomd # (. Then yy € dom 3 and yo3 € dom§ (by
Lemma 5). Thus yo(8 o 7) is defined and yo(y o 8) = xof is undefined. Suppose
dom fNdomd = () and dom S Ndom g # §). Then 2y € dom 3 (by Theorem 1). Thus
yo(B o) is undefined and yo(vo 8) = o[ is defined. In either case, v ¢ C((), which
is a contradiction. The result follows. O

Lemma 11. Let o, 3 € PT,, be such that 3 € C%(a), and let ¢ = (zg...Tx_1)
and 6 = (yo...Ym—1) be circuits in « such that k divides m. Suppose that t and w
are nonnegative integers such that ﬁ| dom g = ozt| dom ¢ and ﬂ’ domd = aw’ dom 4.
Then w =t (mod k).

Proof. Lett €{0,1,...,k—1} and w’ € {0,1,...,m — 1} be such that t' =¢
(mod k) and w' = w (mod m). Note that w' = w (mod k) (since k divides m),
2o = xy, and Yo = Y. As in the proof of Lemma 10, we can construct v € C(«)
that maps 4o, Y1, - Ym—1 t0 To, X0, ...,zoa™ L. Note that ¥,y = ., where
w’ €{0,1,...,k—1} and w” = w' (mod k). On the other hand, y,y = yo(Bo7) =
Yo(yo B) =z = xy. Hence t/ =w” andsot =t = w” =w' = w (mod k). O

Lemma 12. Let o, 3 € PT,, be such that 3 € C*(a), let o = (x¢...71_1) and
0 = (Yo...yi—1) be circuits in « such that k divides I, let n = (i1 ...1,x0) be a
cilium attached to o, and let £ = (j1...Juyo) be a longest cilium attached to §.
t

|

Suppose that t and w are nonnegative integers such that (3 ’ spann = | spann and

B|spané = o |span€. If either t < min{u,v} or w < min{u,v}, then w =t.
Proof. Let m = min{u,v}. We will construct v € C(«) that maps the initial
segment (j1 ...Jm] of £ onto a terminal segment of (i1 ...4,]. Set dom~y = dom A,
where ) is the cell in « that has ¢ as the circuit. Let ¢ € {0,...,k — 1} be such that
g=v—m (mod k).
Let p = (my...Majm - - JoYo) (d = 0) be any cilium in A whose span contains jy,.
Since £(§) = £(u), m —1 > d and so u > m > d + 1. Thus we can define v so that

it maps the initial segment (mj ...mgjm] of p onto a terminal segment of (iy ... 1,]
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and the remaining points of Span ft, jm41, jm42, - - - » Jus Yo, t0 To, ToQ, . . ., Tea® ™1,

v—m

Too = z4. In particular, v maps the initial segment (j; . .. jm] of € onto a terminal

segment of (i1 ...4y), say (ir...4y,]. Let p = (m1...mgqys) be any cilium in A whose

span does not contain j,,. Select a € {0,...,k— 1} such that a = ¢+ s (mod k) and

@ = x,. Define v so that it maps the points m1, ma, ..., mq,

d—1

zj € dom g such that z,«
ys of span u to the points xp, Tha, . .., Tha , xhad = Zq.

By Theorem 1 and the construction of v, v € C(«) and it maps (j1 ... jm] onto
(iy...94). (Note that this implies u —r = m — 1 and so r + m — 1 = w.) Then
J1(B o) = (jia¥)y and ji(y o B) = i, = ira’. Since v € C(f), (j1a"¥)y = iya’.

Suppose t < m. Then 7+t <r+m — 1 = u and so i,a’ = i, 4. Thus w must be
less than m (otherwise, by the construction of v, (jia™)y would be in dom ¢ and so
it could not be equal to i,4+) and so (j1a™)Y = w417V = frtw- Hence ipir = iriw
and so t = w.

Suppose w < m. Then (j1a“)y = juw+1y = Grtw. Thus ¢ must be less than m
(otherwise i,.a' would be in dom g and so it could not be equal to i,4,) and so
ira! =i, Hence i,y = 4,4, and so t = w. O

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. Suppose that 3 € C?(a). Suppose that k > 1, that is,
a has at least one maximal chain. Let ¢ € {1,...,k}. By Lemma 3, ﬁ’ spann; =
a™i|spanm; for some w; € {0,...,€(n;)}. Let t = max{w;,...,w;}. By Lemma 4,
ﬁ’ spanmn; = at| span; for each ¢ € {1,...,k}. Since N = spann; U ... U spanny,
ﬁ’N = o!|N. If k = 0, that is, N = (), then ﬁ’N = a®|N. Thus, in any case, there

is an integer ¢ that satisfies condition (1).

Let ¢ € {1,...,m}. By Lemma 5, ﬂ’domgi = aw’domgi for some w €
{0,...,0(0;) — 1} U{—0c0}. If \; = g, that is, if p; is an isolated circuit, take ¢; = w.
Suppose that A\; # o;, that is, A; has at least one cilium. Let 71, ...,m, be the cilia
in ;. Suppose w = —oo, that is, dom 8 N dom g; = (). Then dom S N dommn, = 0
for each p € {1,...,b} (by Lemma 6), and so ﬂ’ dom \; = . Thus if w = —oo,
take t; = w. Suppose w # —oo. Then, by Lemma 6, for each p € {1,...,b},
there is w, € {0,...,¢(n,) + £(0;) — 2} such that §3|spann, = a“»|spann,. Let
t; = max{wi,..., wp}. By Lemma 7, 3| spann, = afi

spann, foreachp € {1,...,b}.
Let y be the point at which 7; meets g;. Then ya* = yB = ya'i, which implies
t; = w (mod ¢(p;)). Let x € dom ;. If x € span, for some p € {1,...,b}, then
zf = zali. If x € dom g;, then z8 = za® = zati (since t; = w (mod #(g;))). Since
dom \; = spanm; U ... Uspann, Udom g;, ﬂ’ dom \; = oi|dom \;. Thus for each
i € {1,...,m}, there is t; € N U {—oo} that satisfies condition (2). Moreover, it
follows from Lemma 8 and Lemma 9 that for each ¢ € {1,...,m}, ¢t and ¢; satisfy

condition (3), and it follows from Lemma 10, Lemma 11, and Lemma 12 that for all
i, € {1,...,m}, t; and t; satisfy condition (4).

885



Conversely, suppose that there are ¢t € N and ¢1,...,%, € NU {—o0} such that
conditions (1)—(4) are satisfied for all ¢,5 € {1,...,m}. Let v € C(a). We need to
prove that S o~y =0 3. Let x € X and consider four cases.

Case 1. z € N and z € dom(y o ).

Then x € dom~ and 27y € dom 3. Since 2y € N (by Theorem 1), v € dom o
(by (1)). Thus x € dom(y o a!) and so, since v commutes with of, z € dom(al o).
Thus, since | N = of|N, z € dom(Bo7) and z(Bo7) = (z8)y = (za')y = z(aloy) =
z(yoa') = (z7)a’ = (27)8 = x(y ).

Case 2. z € N and z € dom(8 o).

By an argument similar to that used in Case 1, z € dom(y o ) and z(fo7y) =
z(y 0 B).

Case 8. x € dom \; for some j € {1,...,m} and = € dom(y o ).

Then = € dom~ and zv € dom 3. By Theorem 1, one of the following two cases
holds.

Case 3.1. z7y € dom )\; for some ¢ € {1,...,m}.

Then, by Theorem 1, £(p;) divides ¢(p;) and dom \; C dom+~. Since ﬁ| dom \; =
dom \; (by (2)) and xy € dom 3, ¢; cannot be —oo. Thus t; # —oo by (4b). It
follows that z € dom(a!i o) and so, since ﬁ’ dom\; = ati ’ dom \;, z € dom(G o).

ati

Since 2y € dom\;, z(yo ) = (z7)8 = (zy)a’ € dom ;. Since x € dom \;,
(B o) = (xB)y = (zat)y € dom\;. Thus xv, z(y o 3), and z(8 o v) are all in
dom \;. Let 9; = (zo...%a—1), let 0j = (yo...yp—1), and consider two cases.

Case 8.1.1. x(yo () € dom p;.

We claim that z(3 o ) is also in dom g;. Suppose, by way of contradiction, that
z(B o) ¢ domp;. Then = ¢ dom g; since otherwise z3 = za' would be in dom p;
and so z(f o) = ()7 would be in dom g; (by Theorem 1). Thus there is a cilium
& = (m1...myy,) in A\; such that x = m, for some p € {1,...,v}. We observed
in the foregoing argument that m,3 = zf3 cannot be in domp;. It follows that
p+t; <vand myf = mpali = Mypyg;. Since p+1t; < v, t; < v —p < v. Since
Mptt,7 = (mpB)y = mp(Bo7) = z(Bov) ¢ domg;, it follows by Theorem 1 that
there is a cilium n = (k; ... ky2s) in A; such that for some ¢ € {1,...,u}, myy = kq,
q+t; < u, and myiy;y = kgye,. Since ¢ +t; < u, t; < u—q < u. Hence
t; < min{u,v} < min{r(\;),r(A\;)} and so ¢; = t; by (4b). But then z(yo 3) =
(mp)B = kqf8 = kqa'i = kqa's = kqqy, ¢ dom p;, which is a contradiction.

Thus both z(yo ) and (o) are in dom g; and so z(yo ) = x, and z(Fo7y) = x4
for some p,q € {0,...,a —1}. By (4a), t; = t; (mod a) and so there is an integer
[ > 0 such that either ¢; = t; + [k or t; = t; + lk. In the former case, we have:

lk) lk)

2, = a(y0 f) = (27)B = (@7)a" = a(yoa" 0 a™) =z(a¥ 0yoa

= @a")(y0 ) = @B)(y 0 a) = (@(F 0o’ = wyal* =
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And in the latter case, we have:
2= (B 07) = (@B)y = (a't)y = a(a¥ o) = a(y 0 a') = a(y 0 at o a'k)
= ((zy)a’)a’™ = ((27)B)a* = (z(y 0 B))a’™ = zpa'™ = zp.

Thus z(yo ) =xp =xg = x(B07).

Case 3.1.2. x(yo ) ¢ dom p;.

Then z ¢ domp; since otherwise zy would be in domg; (by Theorem 1) and
so z(yo ) = ()3 = (zy)at’ would also be in dom g;. Thus there is a cilium
& = (m1...myy,) in A\; such that x = m, for some p € {1,...,v}. We observed
in the foregoing argument that a7y cannot be in dom g;. It follows that there is a
cilium n = (k1 ...kyxs) in A; such that 2y = m,y = k, for some ¢ € {1,...,u}.
Since kqalt = k8 = (mpy)B = my(y o B) ¢ dom g;, we must have ¢ + ¢; < u and
myp(y o B) = kgat = kgit,. Since ¢ +t; < u, t; < u— ¢ < u. Since (by Theorem 1)
either m,y = k,, or m,7y € dom g;, the fact that m,y = k; coupled with Theorem 1
implies that u —¢ < v —p. Thus t; <u—¢q < v —p < v. Hence t; < min{u,v} and
so t; = t; by (4b). Thus

z(Boy) = (zB)y = (wa )y = z(a 0 y) = x(y 0 a") = (zy)a" = (z7)a"
= (27)B = 2(y 0 B).

Case 3.2. xy € N.

Then, by Theorem 1, there is a cilium § = (m; ...myy,) in A\; and a maximal chain
n; = (k1 ...k,] in o such that for some p € {1,...,v}, £ = m, and ¥ maps an initial
segment (my...myp...] of (my...m,] onto a terminal segment of ;. Let m,y = kq
(g € {1,...,u}). Since kg = mpy = xy € domf and B|N = of|N, k; € doma’,
which implies ¢ + ¢ < u and k,8 = ko' = kg4¢. Since v maps an initial segment
of (m1...m,] onto a terminal segment of (k1 ... k], mpy = kg and ¢ + ¢t < u imply
that p +¢ < v and mp4, € dom~y. Thus ¢ < min{u,v} < min{d(N),r(A;)} and so
t =t; (by (3)). Hence z € domp3 (since t; =t > 0 and B|dom \; = a'|dom ;)
and 08 = m,0 = mpat = mya’ = myy, € dom~y. Thus z € dom(S3 o) and, since
~ commutes with at, z(8ov) = (z8)y = (zali )y = (zat)y = z(atoy) = x(yoal) =
(@7)al = (z7)B = z(y 0 B).

Case 4. x € dom \; for some j € {1,...,m} and = € dom(B o ~).

Then = € domf and y = 283 € dom~. Since, by (2), ﬁ’ dom \; = atf’dom A,
t; > 0 and y € dom A;. By Theorem 1, one of the following two cases holds.

Case 4.1. yy € dom \; for some i € {1,...,m}.

Then, by Theorem 1, £(p;) divides £(p;), dom \; C dom~y, and z7y € dom A;. Since
t; # —o0, t; # —oo by (4b). Thus, since ﬁ’ dom )\; = ati| dom )\;, dom \; C dom }§3.
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Hence z € dom A\; C dom+ and zy € dom A; C dom 3, which implies z € dom(yo3).
It follows by Case 3 that z(8 o) = z(y o 3).

Case 4.2. yvy € N.

Then, by Theorem 1, y ¢ dom g;. Thus, since y = x3 = zals, there is a cilium
& = (m1...myuy,) in \; such that for some p € {1,...,v}, y =m,, p—t; > 1, and
T = myp_y,. Since yy € N, it follows by Theorem 1 that there is a maximal chain
n; = (k1 ...ky] in o such that v maps an initial segment (my...mp ¢, ...my...] of
(mq ... my] onto a terminal segment of n;. Let mpy = ky (¢ € {1,...,u}). Then,
since v maps an initial segment of (mj ...m,] onto a terminal segment of 7;, ¢ —
tj > 1 and my_¢;v = kq—t,. Since ¢ —t; > 1 and p —t; > 1, t; < min{q,p} <
min{u, v} < min{d(N),r(\;)}. Thus, by (3), t; =t and so k;_¢;, = k;—+ € dom 3
(since ky—¢a' = k; and dom 3|N = doma!|N). Hence z = m,_;, € dom~ and
xy = Mmyp_y;7 = kq—t; € dom 3, which implies # € dom(vy o 3). It follows by Case 3
that z(Bov) = z(yo f).

This concludes the proof. O
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