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Abstract. Generalized Petersen graphs are certain graphs consisting of one quadratic
factor. For these graphs some numerical invariants concerning the domination are studied,
namely the domatic number d(G), the total domatic number dt(G) and the k-ply domatic
number dk(G) for k = 2 and k = 3. Some exact values and some inequalities are stated.

Keywords: domatic number, total domatic number, k-ply domatic number, generalized
Petersen graph

MSC 2000 : 05C69, 05C38

In this paper we will study three numerical invariants of graphs which concern
the domination, namely the domatic number d(G), total domatic number dt(G) and

k-ply domatic number dk(G) of a graph G. We will investigate them for generalized
Petersen graphs. The vertex set of a graph G will be denoted by V (G). For a vertex

v ∈ V (G) the symbol NG[v] denotes the closed neighbourhood of v in G, i.e. the set
consisting of v and of all vertices adjacent to v in G.

A subset D of V (G) is called dominating (or total dominating) in G, if for each

x ∈ V (G) \ D (or for each x ∈ V (G) respectively) there exists a vertex y ∈ D

adjacent to x. The set D is called k-ply dominating for a positive integer k, if for

each x ∈ V (G)\D there exist k distinct vertices y1, . . . , yk ofD which are all adjacent
to x.

A domatic (or total domatic, or k-ply domatic) partition of G is a partition
of V (G), all of whose classes are dominating (or total dominating, or k-ply dom-

inating respectively) sets in G. The maximum number of classes of a domatic (or
total domatic, of k-ply domatic) partition of G is the domatic (or total domatic,

or k-ply domatic respectively) number of G. The domatic number of G is denoted
by d(G), the total domatic number by dt(G), the k-ply domatic number by dk(G).
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In this paper we will consider dk(G) for k = 2 and k = 3 and we will speak about

the doubly domatic number and the triply domatic number.

The domatic number was introduced by E. J. Cockayne and S.T. Hedetniemi in [2],

the total domatic number by the same authors and R.M. Dawes in [3], the k-ply
domatic number by the author of this paper in [6].

Sometimes it is convenient to speak about the domatic colouring. The domatic
number of G can be alternatively defined as the maximum number of colours by

which the vertices of G can be coloured in such a way that each vertex is adjacent to
vertices of all colours different from its own. Evidently this definition is equivalent

to that written above. Similarly by means of colourings, also dt(G) and dk(G) may
be defined.

As was mentioned, the number dk(G) will be used only for the concrete values

k = 2 and k = 3. Thus in the sequel the symbol k will be used in another sense.

In the whole paper the symbols n, k will denote relatively prime positive integers

such that k < n, n � 3. The generalized Petersen graph GP(n, k) is defined as
follows. Let Cn, C′

n be two disjoint circuits of length n. Let the vertices of Cn be

u1, . . . , un and edges uiui+1 for i = 1, . . . , n− 1 and unui. Let the vertices of C′
n be

v1, . . . , vn and edges vivi+k for i = 1, . . . , n, the sum i + k being taken modulo n.

The graph GP(n, k) is obtained from the union of Cn and C′
n by adding the edges

uivi for i = 1, . . . , n.

The graph GP(5, 2) is the well-known Petersen graph. The generalized Petersen

graphs were studied e.g. in [1], [4], [5].

For integers n, k fulfilling the above stated conditions we define the numbers

f(n, k), g(n, k). They are positive integers such that f(n, k) � n−1, g(n, k) � n−1,
kf(n, k) ≡ 1 (mod n), kg(n, k) ≡ −1 (mod n). It is easy to see that

f(n, k) + g(n, k) = n,

GP(n, k) ∼= GP(n, n− k) ∼= GP(n, f(n, k)) ∼= GP(n, g(n, k)).

Theorem 1. Let GP(n, k) be a generalized Petersen graph. Then

d(GP(n, k)) = 4

if and only if n ≡ 0 (mod 4).

�����. According to [2], d(G) � δ(G)+1, where δ(G) is the minimum degree of
a vertex in G. Every graph GP(n, k) is regular of degree 3, therefore d(GP(n, k)) � 4.
Suppose that n ≡ 0 (mod 4). We construct a domatic colouring c such that c :
V (GP(n, k)) → {1, 2, 3, 4}. For i = 1, . . . , n we define c by c(ui) ≡ i (mod 4),
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c(vi) ≡ i+ 2 (mod 4)) The reader may verify himself that c is a domatic colouring

of GP(n, k) by four colours and therefore d(GP(n, k)) = 4.

On the other hand, suppose that d(GP(n, k)) = 4. Let D = {D1, D2, D3, D4} be a
domatic partition of GP(n, k). Evidently for any i ∈ {1, 2, 3, 4} no two vertices of Di

are adjacent and each vertex not belonging to Di is adjacent to exactly one vertex
of Di. We will say that x dominates y, if either y = x, or y is adjacent to x. Let

a = |D1 ∩ V (Cn)|, b = |D1 ∩ V (C′
n)|. Each vertex of D1 ∩ V (Cn) dominates three

vertices of Cn and one vertex of C′
n, while each vertex of D1 ∩ V (C′

n) dominates

three vertices of C′
n and one vertex of Cn. Therefore 3a+ b = n, a+ 3b = n. These

two equations imply a = b = n/4 and therefore n ≡ 0 (mod 4). �

Remark. Let n ≡ 0 (mod 3), let GP(n, k) be a generalized Petersen graph.

Since it is easy to construct a domatic colouring of GP(n, k) by three colours, we
have d(GP(n, k)) � 3.

Theorem 2. Let GP(n, k) be a generalized Petersen graph. If n �≡ 0 (mod 3)
and either k ≡ f(n, k) ≡ 0 (mod 3), or k ≡ f(n, k) ≡ n (mod 3), then the inequality

d(GP(n, k)) � 3 holds.

�����. First let n ≡ 1 (mod 3), k ≡ 1 (mod 3), f(n, k) ≡ 1 (mod 3). Consider
the Hamiltonian path P in GP(n, k) having subsequent vertices u1, u2, . . . , un, vn,

vn+k, . . . , vn−k, where the subscripts are taken modulo n. We colour its vertices
subsequently by 1, 2, 3, 1, 2, 3, . . . The last vertex v(n−1)k = vn−k is coloured by 2 and

is adjacent to v(n−2)k coloured by 1 and to un−1 coloured by 3. The first vertex u1
is coloured by 1 and is adjacent to un coloured by 2 and to v1 coloured by 3. For

any other vertex it is evident that it is adjacent to vertices of all colours different
from its own. Therefore the described colouring is a domatic colouring of GP(n, k)

by three colours.

Now let n ≡ 2 (mod 3), k ≡ 0 (mod 3), f(n, k) ≡ 0 (mod 3). We construct the
domatic colouring of GP(n, k) in the same way. The last vertex vn−k is coloured by 1
and is adjacent to vn coloured by 3 and to un−k coloured by 2. The first vertex u1
is coloured by 1 and is adjacent to un coloured by 2 and to v1 coloured by 3. Again

the described colouring is domatic.

If n ≡ 1 (mod 3), k ≡ 0 (mod 3), f(n, k) ≡ 0 (mod 3), then n − k ≡ 1 (mod 3),
f(n, n − k) = g(n, k) = n − f(n, k) ≡ 1 (mod 3) and GP(n, n − k) ∼= GP(n, k);
therefore the assertion also holds. Similarly if n ≡ 2 (mod 3), k ≡ 2 (mod 3),
f(n, k) ≡ 2 (mod 3), then n − k ≡ 0 (mod 3), f(n, n − k) ≡ 0 (mod 3) and the
assertion holds. �

The following theorem concerns the graphs GP(n, 1), i.e., graphs of n-side prisms.

13



Theorem 3. For any integer n � 3 the inequality d(GP(n, 1)) � 3 holds.
�����. If n ≡ 0 (mod 3), the assertion follows from Remark. If n ≡ 1 (mod 3),

then it follows from Theorem 2, because f(n, 1) = 1. If n ≡ 2 (mod 3), we define
the colouring of vertices of GP(n, 1) as follows. If t � n− 2, then c(ut) ≡ t (mod 3),

c(vt) ≡ 1− t (mod 3). Then we put c(un−1) = 2, c(un) = 1, c(vn−1) = 2, c(vn) = 2.
The colouring by 3 colours obtained is this way is domatic and d(GP(n, 1)) � 3. �
Example. The domatic number of the original Petersen graph GP(5, 2) is 2.

�����. The domatic number of a graph without isolated vertices is always at

least 2. Suppose that there exists a domatic partition D = {D1, D2, D3} of GP(5, 2)
with three classes. As the graph has ten vertices and no dominating set with less

than three vertices, at least two classes of D must consist of three vertices. Without
loss of generality let |D1| = 3. It is easy to verify that then there exists a vertex v

such that D1 is its open neighbourhood. Without loss of generality suppose v ∈ D2.
Then v /∈ D3 and v is adjacent to no vertex of D3, therefore D3 is not dominating
in GP(5, 2), which is a contradiction. Therefore d(GP(5, 2)) = 2. �
Now we shall study total domatic numbers. According to [3] we have dt(G) � δ(G).

As GP(n, k) is regular of degree 3, we have always dt(GP(n, k)) � 3.

Theorem 4. Let GP(n, k) be a generalized Petersen graph. Then

dt(GP(n, k)) = 3

if and only if n ≡ 0 (mod 3).
�����. Suppose that d(GP(n, k)) = 3 and let {D1, D2, D3} be the correspond-

ing total domatic partition. Evidently no vertex is adjacent to exactly one vertex

of any class of this partition. Let u, v be two adjacent vertices from D1. Then
M(u, v) = NG[u]∪NG[v] has six elements. The setsM(u, v) for different pairs {u, v}
of adjacent vertices from D1 must be disjoint and therefore they form a partition
of V (GP(n, k)). This implies that the number 2n of vertices of GP(n, k) is divisible

by 6 and therefore n ≡ 0 (mod 3).
Now suppose that n ≡ 0 (mod 3). For each vertex x of GP(n, k) we determine its

colour c(x) ∈ {1, 2, 3} in such a way that c(ui) = c(vi) ≡ i (mod 3) for i = 1, . . . , n.
As k is relatively prime with n, it is also non-divisible by 3 and the colouring thus

defined is total domatic. This implies d(GP(n, k)) = 3. �

Theorem 5. Let GP(n, k) be a generalized Petersen graph. Then the inequality
dt(GP(n, k)) � 2 holds.
�����. The partition {V (Cn), V (C′

n)} is evidently a total domatic partition
of GP(n, k). �
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At the end we turn to k-ply domatic numbers for k = 2 and k = 3. In [6] the

inequality dk(G) � �δ(G)/k	+ 1 is found, where again δ(G) is the minimum degree
of a vertex in G. This implies d2(GP(n, k)) � 2, d3(GP(n, k)) � 2, dm(GP(n, k)) = 1
for m � 4. We prove two theorems.

Theorem 6. Let GP(n, k) be a generalized Petersen graph. Then

d3(GP(n, k)) = 2

if and only if n is even.

Remark. As n, k must be relatively prime, in this case k is odd.

�����. If and only if n is even, the graph GP(n, k) contains no circuit of odd

length and thus it is a bipartite graph. Its bipartition classes are classes of a triply
domatic partition and the assertion holds. On the other hand, if {D1, D2} is a triply
domatic partition of GP(n, k), then each edge joins a vertex of D1 with a vertex
of D2, the graph is bipartite and n is even, because otherwise the graph GP(n, k)

would contain circuits Cn, C′
n of odd lengths. Thus the assertion is proved. �

Theorem 7. Let GP(n, k) be a generalized Petersen graph. Then

d2(GP(n, k)) = 2.

�����. If n is even, then by Theorem 7 there exists a triply domatic parti-
tion of GP(n, k) with two classes. This partition is also doubly domatic and thus

d2(GP(n, k)) = 2. Suppose that n is odd. As GP(n, k) ∼= GP(n, n − k), we may
suppose that k � (n − 1)/2. We put c(ui) = 1 for i odd and c(ui) = 2 for i even.

Further, c(v1) = c(vn) = 2. The circuit C′
n consists of two paths, both with the end

vertices v1, vn. One of them has an odd length and the other has an even length; let

the former be R1 and the latter R2. The vertices of R2 can be coloured alternately
by 1 and 2, starting in v1 of colour 2 and ending in vn of colour 2. If R1 contains

the edge vnvk, then it contains also the edge vkv2k. We put c(vk) = c(v2k) = 1
and colour the vertices of the rest of R1 alternately by 1 and 2, starting in v2k of

colour 1 and ending in v1 of colour 2. If R1 does not contain vnvk, it contains the
edge vn−kvn. We put c(vn−k) = 2 and colour the vertices of the rest of R1 alternately

by 1 and 2, starting in v1 of colour 2 and ending in vn−k of colour 2. Now suppose
that k is odd. If R1 contains the edge vnvk, we put c(vk) = 2 and colour the vertices

of the rest of R1 alternately by 1 and 2, starting in vk of colour 2 and ending in v1 of
colour 2. If R1 does not contain vnvk, then it contains the edge vn−kvk and the edge
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vn−2kvn−k. We put c(vn−k) = c(vn−2k) = 1 and colour the vertices of the rest of R1
alternately by 1 and 2, starting in v1 of colour 2 and ending in vn−2k of colour 1.
In all the cases we obtain a doubly domatic colouring of GP(n, k), which proves the
assertion. �
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