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Abstract. In the present paper, using a Picard type method of approximation, we in-
vestigate the global existence of mild solutions for a class of Ito type stochastic differential
equations whose coefficients satisfy conditions more general than the Lipschitz and linear
growth ones.

Keywords: mild solution, Picard approximations

MSC 2000 : 60H15

1. Introduction

Let us consider a stochastic differential equation of Ito type

(1)

{
dX(t) =

(
AX(t) + F (t, X(t))

)
dt+B(t, X(t)) dW (t),

X(0) = ξ.

We will assume that a probability space (Ω,F , P ) together with a complete right
continuous filtration Ft, t � 0 are given. We denote by PT the predictable σ-fields

on ΩT = [0, T ]× Ω.
Let U and H be two separable Hilbert spaces and W a Wiener process on U with

the covariance operator Q, positive, linear and bounded on U with TrQ < ∞. Let
U0 = Q1/2(U) with the induced norm ‖u‖0 = ‖Q−1/2u‖. Denote by L02 the separable

Hilbert space of all Hilbert-Schmidt operators from U0 to H equipped with the norm

‖D‖L02
=

( ∞∑

j=1

‖DQ1/2ej‖2
)1/2

, D ∈ L02
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where {ej} is a complete orthonormal basis on U . The spacesH and L02 are equipped

with Borel σ-fields B(H) and B(L02). Moreover, ξ is an H-valued random variable,
F0-measurable.
We fix T > 0 and impose the following conditions on the coefficients A, F and B

of the equation (1):

(i) A is the infinitesimal generator of a strongly continuous semigroup S(t), t � 0
in H .

(ii) The mapping F : [0, T ]×Ω×H → H , (t, ω, x)→ F (t, ω, x) is measurable from
(ΩT ×H,PT × B(H)) into (H,B(H)).

(iii) The mapping B : [0, T ]×Ω×H → L02, (t, ω, x)→ B(t, ω, x) is measurable from

(ΩT ×H,PT × B(H)) into (L02,B(L02)).
A mapping X : [0, T ]×Ω→ H which is measurable from (ΩT ,PT ) into (H,B(H))

is said to be a mild solution of (1), if for arbitrary t ∈ [0, T ] we have

P

(∫ t

0
(‖S(t− s)F (s, X(s))‖+ ‖S(t− s)B(s, X(s))‖2L02) ds < +∞

)
= 1

and

X(t) = S(t)ξ +
∫ t

0
S(t− s)F (s, X(s)) ds+

∫ t

0
S(t− s)B(s, X(s)) dW (s) P -a.s.

Existence and uniqueness theorems for solutions of the equation (1) under Lip-

schitz conditions on the coefficients were studied by A. Ichikawa at the beginning
of the eighties (see [8]). Since then much more general results have been estab-

lished, most of them concerning equations with a non-Lipschitz drift satisfying some
dissipativity type conditions (see [5], Chapter 7, [6], Chapter 5, and the reference

therein). Many general theorems on existence of mild solutions of (1) were obtained
by R. Manthey and his coworkers (see e.g. [10]), and I. Gyöngy, E. Pardoux et al.

(see e.g. [2]). A remarkable early attempt at proving the existence of mild solutions
to a stochastic semilinear heat equations with an additive (but cylindrical) Wiener

process using Picard approximations under Yamada type assumptions upon the drift
may be found in a paper of R. Manthey (see [9]). Recently Eddahbi and Erraoui

have proved in [7] the existence and uniqueness result for a quasi-linear parabolic
stochastic differential equations with non-Lipschitz coefficients.

For ordinary stochastic differential equations there are some articles which have

dealt with existence and uniqueness of solution under non-Lipschitz coefficients. Re-
sults on the convergence of the Picard approximations under assumptions closely

related to those used in our article may be found in a paper by T. Yamada (see [16])
and in a paper by T. Taniguchi (see [14]).
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In [3] the first author extended the results of Taniguchi [14] to the infinite dimen-

sional case using the technique of measure of noncompactness. In this paper we show
that similar results can be obtained without using measures of noncompactness.
The following proposition ([5], Proposition 7.3) is an important estimation con-

cerning stochastic convolution.

Proposition 1.1. Let p > 2, T > 0 and let Φ be an L02-valued, predictable

process such that E
(∫ T

0 ‖Φ(s)‖
p
L02
ds) < +∞. Then there exists a constant CT such

that

E

(
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
S(t− s)Φ(s) dW (s)

∥∥∥∥
p)

� CT E

(∫ T

0
‖Φ(s)‖p

L02
ds

)
.

Moreover, WΦ
A (t) =

∫ t

0 S(t− s)Φ(s) dW (s) has a continuous modification.

Remark 1.1. (i) If A generates a contraction semigroup, then Proposition 1.1 is
true for p � 2 (see [15]).
(ii) A generalization of Proposition 1.1 to evolution systems can be found in [12].

2. Existence and uniqueness of solutions

Let us fix a real number p, p > 2 and denote by BT the space of all H-valued
predictable processes X(t, ω) defined on [0, T ]×Ω which are continuous in t for a.e.

fixed ω ∈ Ω and satisfy

‖X(·, ·)‖BT

def
=

{
E

(
sup
0�t�T

‖X(t, ω)‖p
)}1/p

< ∞.

The space BT is a Banach space (see [1] for p = 2, the case p > 2 has a similar
proof).

In the following we shall impose Taniguchi conditions on F and B (see [14]), which
are:

(a1) The functions F (t, ω, x) and B(t, ω, x) are continuous in x for each fixed (t, ω) ∈
ΩT and there exists a function H : [0, T ]×[0,∞)→ [0,∞), (t, u)→ H(t, u) such

that
E(‖F (t, X)‖p) + E(‖B(t, X)‖p

L02
) � H(t, E(‖X‖)p)

for all t ∈ [0, T ] and all X ∈ Lp(Ω,F , H).
(a2) H(t, u) is locally integrable in t for each fixed u ∈ [0,∞), it is continuous and

nondecreasing in u for each fixed t ∈ [0, T ] and for all α > 0, u0 � 0 the integral
equation u(t) = u0 + α

∫ t

0 H(s, u(s)) has a global solution on [0, T ].
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(a3) There exists a function K : [0, T ]× [0,∞) → [0,∞) which is locally integrable
in t for each fixed u ∈ [0,∞) and continuous, monotone nondecreasing in u for
each fixed t ∈ [0, T ]. Moreover, K(t, 0) ≡ 0 and

E(‖F (t, X)− F (t, Y )‖p) + E(‖B(t, X)−B(t, Y )‖p
L02
) � K(t, E(‖X − Y ‖p))

for all t ∈ [0, T ] and X, Y ∈ Lp(Ω,F , H).

(a4) If a nonnegative, continuous function z satisfies

{
z(t) � α

∫ t

0 K(s, z(s)) ds, t ∈ [0, T ]
z(0) = 0

for some α > 0, then z(t) = 0 for all t ∈ [0, T ].

Remark 2.1. (i) The inequality from (a3) is satisfied if the function K is concave

with respect to u for each fixed t � 0 and

‖F (t, x)− F (t, y)‖p + ‖B(t, x)−B(t, y)‖p
L02

� K(t, ‖x− y‖p)

for all x, y ∈ H and t � 0. This follows immediately from Jensen’s inequality.
(ii) The function K(t, u) = λ(t)α(u), t � 0, u � 0, where λ(t) � 0 is locally

integrable and α : R+ → R+ is a continuous, monotone nondecreasing and concave
function with α(0) = 0, α(u) > 0 for u > 0 and

∫
0+ 1/α(u) du = ∞, is an example

for (a3) (see [14]).

In the following we shall consider Picard type approximations to (1):





X0(t) = S(t)ξ,

Xn+1(t) = S(t)ξ +
∫ t

0 S(t− s)F (s, Xn(s)) ds

+
∫ t

0 S(t− s)B(s, Xn(s)) dW (s), t ∈ [0, T ], n � 0.

The main result of this paper is

Theorem 2.1. Under the conditions (a1) through (a4), assume that

ξ ∈ Lp(Ω,F0, P ).

Then the sequence {Xn}n�0 converges in BT to the unique solution of (1) in BT .

For the proof of theorem we shall state some lemmas.
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Lemma 2.1. Under the conditions (a1) through (a3) the operator G : BT → BT ,

GX(t) = S(t)ξ +
∫ t

0
S(t− s)F (s, X(s)) ds+

∫ t

0
S(t− s)B(s, X(s)) dW (s),

t ∈ [0, T ] is well defined and continuous.

�����. If X ∈ BT then E(‖X(s)‖p) � E
(
sup
0�t�T

‖X(s)‖p
)
= ‖X‖p

BT
. We have

E
(
sup
0�t�T

‖GX(t)‖p
)

� 3pE
(
sup

t∈[0,T ]
‖S(t)ξ‖p

)

+ 3pE

(
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
S(t− s)F (s, X(s)) ds

∥∥∥∥
p)

+ 3pE

(
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
S(t− s)B(s, X(s)) dW (s)

∥∥∥∥
p)

� 3pMpE(‖ξ‖p) + 3pMpT p−1
∫ T

0
E(‖F (s, X(s))‖p) ds

+ 3pCT

∫ T

0
E(‖B(s, X(s))‖p

L02
) ds

� 3pMpE(‖ξ‖p) + C′T

∫ T

0
H(s, ‖X‖p

BT
) ds < ∞.

We have denotedM = sup
t∈[0,T ]

‖S(t)‖L(H), C′T = 3
pMpT p−1+3pCT and applied the

Hölder inequality for the first integral and Proposition 1.1 for the second integral.

The continuity of the operator G follows easily. In fact, for X, X1, . . . in BT we

have

‖GX −GXn‖p
BT
= E

(
sup

t∈[0,T ]
‖GX(t)−GXn(t)‖p

)

� 2pMpT p−1
∫ T

0
E

(
‖F (s, X(s))− F (s, Xn(s))‖p

)
ds

+ 2pCT

∫ T

0
E

(
‖B(s, X(s))−B(s, Xn(s))‖p

L02

)
ds

� C′T

∫ T

0
K

(
s, E(‖X(s)−Xn(s)‖p)

)
ds

� C′T

∫ T

0
K(s, ‖X −Xn‖p

BT
) ds

from which we get ‖GX −GXn‖p
BT

→ 0 as ‖X −Xn‖BT → 0. �
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Lemma 2.2. Under the condition (a1) through (a3), there exists C′T > 0 such

that, if X and Y are in BT , then

‖GX −GY ‖p
Bt

� C′T

∫ t

0
K(s, ‖X − Y ‖p

Bs
) ds

for each t ∈ [0, T ].

�����. The proof is contained in the proof of Lemma 2.1. �

Lemma 2.3. Under the conditions (a1) and (a2) the sequence {Xn}n�0 is
bounded in the space BT .

�����. For n � 0 we have, by the same argument as in Lemma 2.1,

(2) ‖Xn+1‖p
Bt

� k1 + k2

∫ t

0
H(s, ‖Xn‖p

Bs
) ds

where k1, k2 are positive constants independent of n. Let u(t), t ∈ [0, T ], be a global
solution of the equation

u(t) = u0 + k2

∫ t

0
H(s, u(s)) ds, t ∈ [0, T ]

with an initial condition u0 > max(k1, MpE(‖ξ‖p)). We shall prove by mathematical
induction that

(3) ‖Xn(t)‖p
Bt

� u(t) for t ∈ [0, T ].

For n = 0 the inequality (3) holds by the definition of u. Let us suppose that

‖Xn(t)‖p
Bt

� u(t) for t ∈ [0, T ].

Then by (2) we obtain that

u(t)− ‖Xn+1‖p
Bt

� k2

∫ t

0

(
H(s, u(s))−H(s, ‖Xn‖p

Bs
)
)
ds � 0.

The inequalities follow from the assumption of the mathematical induction and (a2).
�
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Lemma 2.4. Under the conditions (a1) through (a4) the sequence {Xn}n�0 is a
Cauchy sequence in BT and the limit is a mild solution for equation (1).

�����. Let

rn(t) = sup
m�n
(‖Xm −Xn‖p

Bt
), t ∈ [0, T ], n � 0.

The functions rn, n � 0, are well defined, uniformly bounded (by Lemma 2.3) and,
evidently, monotone nondecreasing. Since {rn(t)}n�0 is a monotone nonincreasing
sequence for each t ∈ [0, T ], there exists a monotone nondecreasing function r such
that

(4) lim
n→∞

rn(t) = r(t).

By an argument similar to that in Lemma 2.2, we find

‖Xm −Xn‖p
Bt

� k

∫ t

0
K(s, ‖Xm−1 −Xn−1‖p

Bs
) ds

for some positive constant k, from which it follows that

r(t) � rn(t) � k

∫ t

0
K(s, rn−1(s)) ds.

Taking into account (4) and the Lebesgue convergence theorem, we obtain

(5) r(t) � k

∫ t

0
K(s, r(s)) ds.

Now it follows from (a4) that r ≡ 0 provided r is continuous. The case of a non-
negative, monotone nondecreasing function r which satisfies (5) is the object of

Lemma 2.2 in [3]. But ‖Xm −Xn‖p
BT

� rn(T ) and rn(T )
n→∞−→ r(T ) = 0. Therefore

‖Xm −Xn‖BT

n,m→∞−→ 0. The last part of the lemma is a consequence of continuity

of the operator G. �

Lemma 2.5. Equation (1) has at most one solution in BT .

�����. If X, Y ∈ BT were two fixed points of G, then we would have

E
(
sup
0�s�t

‖X(s)− Y (s)‖p
)

� 2pMptp−1E

(∫ t

0
‖F (s, X(s))− F (s, Y (s))‖p ds

)

+ 2pCT E

(∫ t

0
‖B(s, X(s))−B(s, Y (s))‖p

L02
ds

)

� (2pMptp−1 + 2pCT )
∫ t

0
K(s, E(‖X(s)− Y (s)‖p)) ds.
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Therefore

‖X − ‖p
Bt

� (2pMpT p−1 + 2pCT )
∫ t

0
K(s, ‖X − Y ‖p

Bt
) ds.

Condition (a4) yields that ‖X − Y ‖p
BT

≡ 0, that is X ≡ Y . �

Remark 2.2. To obtain the existence of mild solutions to equation (1) under the
conditions (a1) through (a4), the assumption E(|ξ|p) < ∞ can be omitted. Indeed,
it can be shown that if ξ and η are two initial conditions satisfying E(|ξ|p) < ∞,
E(|η|p) < ∞ and X, Y ∈ BT are the corresponding solutions of equation (1) then

IΓX = IΓY P -a.s.

where Γ = {ω ∈ Ω: ξ(ω) = η(ω)}. The argument is the same as in [5], Theorem 7.4.
Now if E(|ξ|p) =∞ then we define, for n = 1, 2, . . .,

ξn =

{
ξ, if |ξ| � n,

0, if |ξ| > n

and denote by Xn ∈ BT the corresponding solution of (1). By the previous argument
we have

Xn(t) = Xn+1(t) on {ω ∈ Ω: |ξ| � n}.
Therefore the process

X(t) = lim
n→∞

Xn(t)

is P -a.s. well defined and satisfies equation (1).

The following corollary is an immediate consequence of our Theorem 2.1 and
Remark 2.1.

Corollary 2.1. For the stochastic differential equation (1), suppose that the
following conditions are satisfied:

(i) ‖F (t, x)− F (t, y)‖p + ‖B(t, x)−B(t, y)‖p
L02

� λ(t)α(‖X − Y ‖p),
(ii) E(‖F (t, 0)‖), E(‖B(t, 0)‖L02

) ∈ Lp
loc([0,∞), R+) for all t ∈ [0,∞) and x, y ∈ H ,

where λ(t) � 0 is locally integrable and α : R+ → R+ is a continuous, monotone

nondecreasing and concave function with α(0) = 0 and
∫
0+ 1/α(u) du =∞.

Let E(‖ξ‖p) < ∞. Then on any finite interval [0, T ] the equation (1) has a unique
solution which can be found by Picard approximations given in Theorem 2.1.

Remark 2.2. (i) If λ(t) ≡ L (L > 0) and α(u) = u, u � 0 then condition (a3)
implies a global Lipschitz condition.
(ii) Another example: α(u) = u ln(1/u) for 0 < u < u0 (u0 sufficiently small),

α(0) = 0 and α(u) = (au + b) for u � u0, where au + b is the tangent line of the
function u ln(1/u) at the point u0.
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