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Abstract. Let X be a quasicomplete locally convex Hausdorff space. Let T be a locally
compact Hausdorff space and let C0(T ) = {f : T → � , f is continuous and vanishes at
infinity} be endowed with the supremum norm. Starting with the Borel extension theorem
for X-valued σ-additive Baire measures on T , an alternative proof is given to obtain all
the characterizations given in [13] for a continuous linear map u : C0(T )→ X to be weakly
compact.

MSC 2000 : 47B38, 46G10, 28B05

1. Introduction

Let T be a locally compact Hausdorff space and let C0(T ) be the Banach space of

all complex valued continuous functions vanishing at infinity in T , endowed with the
supremum norm. Then its dual M(T ) is the Banach space of all bounded complex

Radon measures µ on T with the norm given by ‖µ‖ = var(µ, B(T ))(T ). Let X be
a locally convex Hausdorff space (briefly, an lcHs) which is quasicomplete and let
u : C0(T )→ X be a continuous linear map. When X is complete and T is compact,

Grothendieck gave in Theorem 6 of [6] some necessary and sufficient conditions for u

to be weakly compact. As observed in [14], Grothendieck’s techniques, contrary to

Supported by the project C-845-97-05-B of the C.D.C.H.T. of the Universidad de los
Andes, Merida, Venezuela.
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Remark 2 on p. 161 of [6], are not powerful enough to extend his characterizations

when T is a non σ-compact locally compact Hausdorff space.

In [13], using the Baire and σ-Borel characterizations of weakly compact subsets
of M(T ) as given in [12], we obtained 35 characterizations for the continuous linear

map u : C0(T )→ X to be weakly compact, where X is a quasicomplete lcHs. These
include the characterizations mentioned in Remark 2 on p. 161 of Grothendieck [6]

and in Theorem 9.4.10 of [5], whose proof as given in [5] is incorrect without the
hypothesis of σ-compactness of T (see [14]). In [13] we also obtained a theorem on

regular Borel and σ-Borel extensions of X-valued σ-additive Baire measures on T

(briefly, the Borel extension theorem) and Theorem 5.3 of Thomas [16] (dispensing

with the technique of reduction to the metrizable compact case) as a consequence of
these characterizations.

The Riesz representation theorem was used in [9], [10] to obtain the regular Borel
and σ-Borel extensions of a complex Baire measure on T . The paper [13] can be

considered to be its analogue for X-valued Baire measures on T with the Riesz rep-
resentation theorem being replaced by the Bartle-Dunford-Schwartz representation

of weakly compact operators, since the Borel extension theorem for such Baire mea-
sures was deduced there from the characterizations of weakly compact operators on

C0(T ).

On the other hand, the regular σ-Borel extension of positive Baire measures on T

was used in Halmos [7] to derive the Riesz representation theorem for positive linear
forms on C0(T ). In this context the following question arises: Is it possible to obtain

all the characterizations given in [13] for a continuous linear map u : C0(T )→ X to
be weakly compact, starting with the Borel extension theorem for X-valued Baire

measures on T ? Recently, in our joint work with Dobrakov ([4]), combining the
Borel extension theorem with the first part of Theorem 1 of [13] and Lemma 1 and

Theorem 2 of [6], we answered the question in the affirmative when c0 �⊂ X and X

is a quasicomplete lcHs (namely, Theorem 5.3 of [16]). In the present paper, we also
answer the question in the affirmative for arbitrary quasicomplete lcHs X and for

this, along with the Borel extension theorem, we use the quoted results of [13] and
[6], Lemmas 1–7 of Section 2 below and Theorem 1 of [11]. Thus the present paper

can be considered to be the vector analogue of the treatment of Halmos [7].

98



2. Preliminaries

In this section we fix the notation and terminology. For the convenience of the

reader we also give some definitions and results from literature.

In the sequel T will denote a locally compact Hausdorff space and C0(T ) the
Banach space of all complex valued continuous functions vanishing at infinity in T ,

endowed with the supremum norm ‖f‖T = supt∈T |f(t)|.
Let K (K0) be the family of all compacts (compact Gδs) in T . B0(T ), Bc(T )

and B(T ) are the σ-rings generated by K0, K and the class of all open sets in T ,

respectively. The members of B0(T ) (Bc(T ), B(T )) are called Baire sets (σ-Borel
sets, Borel sets, respectively) of T . Since a subset E of T belongs to Bc(T ) if and

only if E is a σ-bounded Borel set, the members of Bc(T ) are called σ-Borel sets.
M(T ) is the Banach space of all bounded complex Radon measures on T with

their domain restricted to B(T ). Thus each µ ∈ M(T ) is a Borel regular (bounded)
complex measure on B(T ) and has the norm given by ‖µ‖ = var(µ, B(T ))(T ). For

µ ∈ M(T ), |µ|(E) = var(µ, B(T ))(E), E ∈ B(T ).

We recall the following result from [12, Lemma 1].

Proposition 1. For µ ∈ M(T ),

|µ|
∣∣
B0(T )

(·) = var(µ
∣∣
B0(T )

, B0(T ))(·)

and

|µ|
∣∣
Bc(T )

(·) = var(µ
∣∣
Bc(T )

, Bc(T ))(·).

A vector measure is an additive set function defined on a ring of sets with values

in an lcHs. In the sequel X will denote an lcHs with a topology τ . Let Γ be the set
of all τ -continuous seminorms on X . The dual of X is denoted by X∗.

The strong topology β(X∗, X) of X∗ is the locally convex topology induced by the

seminorms {pB : B bounded in X}, where pB(x∗) = supx∈B |x∗(x)|. X∗∗ denotes
the dual of (X∗, β(X∗, X)) and is endowed with the locally convex topology τe of
uniform convergence in equicontinuous subsets of X∗. Note that (X∗, β(X∗, X)) and

(X∗∗, τe) are lcHs.

It is well known that the canonical injection J : X → X∗∗ given by 〈Jx, x∗〉 =
〈x, x∗〉 for all x ∈ X and x∗ ∈ X∗, is linear. Identifying X with JX ⊂ X∗∗ one has

τe

∣∣
JX
= τe

∣∣
X
= τ .

Definition 1. A linear map u : C0(T )→ X is called a weakly compact operator
on C0(T ) if {uf : ‖f‖T � 1} is relatively weakly compact in X .
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The following result (Corollary 9.3.2 of [5], which is essentially a consequence of

Lemma 1 of [6]) plays a key role in Section 4.

Proposition 2. Let E and F be lcHs with F quasicomplete. If u : E → F is

linear and continuous, then the following conditions are equivalent.

(i) u maps bounded subsets of E into relatively weakly compact subsets of F .

(ii) u∗(A) is relatively σ(E∗, E∗∗)-compact for each equicontinuous subset A of F ∗.

(iii) u∗∗(E∗∗) ⊂ F .

The following result is due to Theorem 2 of [6], which is the same as Theorem 4.22.1
of [5].

Proposition 3. Let A be a bounded set in M(T ). Then the following assertions
are equivalent.

(i) A is relatively weakly compact.

(ii) For each disjoint sequence (Un)∞1 of open sets in T ,

lim
n
sup
µ∈A

|µ(Un)| = 0.

(iii) For (Un) as in (ii), limn supµ∈A |µ|(Un) = 0.

(iv) Let ε > 0.

(a) For each compact K in T , there exists an open set U in T such that K ⊂ U

and supµ∈A |µ|(U \K) < ε; and

(b) there exists a compact C such that supµ∈A |µ|(T \ C) < ε.

For each τ -continuous seminorm p on X , let p(x) = ‖x‖p, x ∈ X , and let

Xp = (X, ‖·‖p) be the associated seminormed space. The completion of the quo-
tient normed space Xp/p−1(0) is denoted by X̃p. Let Πp : Xp → Xp/p−1(0) ⊂ X̃p

be the canonical quotient map.

Let S be a σ-ring of subsets of a non empty set Ω. Given a vector measure
m : S → X, for each τ -continuous seminorm p on X , let mp : S → X̃p be given by

mp(E) = (Πp ◦m)(E) for E ∈ S . Then mp is a Banach space valued vector measure
on S . We define the p-semivariation ‖m‖p of m by

‖m‖p(E) = ‖mp‖(E) for E ∈ S

and

‖m‖p(Ω) = ‖mp‖(Ω) = sup
E∈S

‖mp‖(E)
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where ‖mp‖ is the semivariation of the vector measuremp and is given by ‖mp‖(E) =
sup{|x∗ ◦m

∣∣(E) : x∗ ∈ X̃∗
p , ‖x∗‖ � 1} (see p. 2 of [1]).

An X-valued vector measurem on a σ-ring S of subsets of Ω is said to be bounded

if {m(E) : E ∈ S } is bounded in X and equivalently, if ‖m‖p(Ω) < ∞ for each
τ -continuous seminorm p on X . When m is σ-additive, then mp is a Banach space

valued σ-additive vector measure on the σ-ring S and hence by Corollary I.1.19
of [1], ‖m‖p(Ω) = ‖mp‖(Ω) � 4 supE∈S ‖m(E)‖p < ∞.
For the theory of integration of bounded S -measurable scalar functions with re-

spect to a bounded quasicomplete lcHs-valued vector measure on the σ-ring S , the

reader is referred to [11] or [13]. We need the following results from Lemma 6 of [11]
and Proposition 7 of [13].

Proposition 4. Let X be a quasicomplete lcHs and let S be a σ-ring of subsets

of Ω. Then:
(i) If f is a bounded S -measurable scalar function and m is an X-valued bounded

vector measure on S , then f is m-integrable and

x∗
(∫

Ω
f dm

)
=

∫

Ω
fd(x∗ ◦m)

for each x∗ ∈ X∗.

(ii) (Lebesgue bounded convergence theorem) If m is an X-valued σ-additive vector

measure onS and (fn) is a bounded sequence ofS -measurable scalar functions
with limn fn(w) = f(w) for each w ∈ Ω, then f is m-integrable and

∫

E

f dm = limn

∫

E

fn dm

for each E ∈ S .

The following result follows from the first part of Theorem 1 of [13], and is anal-

ogous to Theorem VI.2.1 of [1] for lcHs-valued continuous linear maps on C0(T ). It
plays a key role in Sections 3 and 4.

Proposition 5. Let X be an lcHs. Let u : C0(T ) → X be a continuous linear

map. Then there exists a unique X∗∗-valued vector measure m on B(T ) possessing

the following properties:

(i) x∗ ◦ m ∈ M(T ) for each x∗ ∈ X∗ and consequently, m : B(T ) → X∗∗ is σ-

additive in the σ(X∗∗, X∗)-topology.

(ii) The mapping x∗ → x∗ ◦m of X∗ into M(T ) is weak*-weak* continuous. More-
over, u∗x∗ = x∗ ◦m, x∗ ∈ X∗.
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(iii) x∗uf =
∫

T
f d(x∗ ◦m) for each f ∈ C0(T ) and x∗ ∈ X∗.

(iv) {m(E) : E ∈ B(T )} is τe-bounded in X∗∗.

(v) m(E) = u∗∗(χE) for E ∈ B(T ).

Definition 2. Let u : C0(T )→ X be a continuous linear map. Then the vector

measure m as given in Proposition 5 is called the representing measure of u.

Definition 3. A σ-additive vector measure m : B0(T ) → X (B(T ) → X ,

Bc(T )→ X) is called an X-valued Baire (Borel, σ-Borel) measure on T .

Definition 4. Let S be a σ-ring of sets in T with S ⊃ K orK0. Letm : S →
X be a vector measure. Then m is said to be S -regular (S -outer regular, S -inner

regular) in E ∈ S if, given a p in Γ and ε > 0, there exist a compact K ∈ S

and an open set U ∈ S with K ⊂ E ⊂ U (an open set U ∈ S with E ⊂ U , a

compact K ∈ S with K ⊂ E) such that ‖m‖p(U \ K) < ε (‖m‖p(U \ E) < ε,
‖m‖p(E \ K) < ε, respectively). Even though T does not belong to S one can

define S -inner regularity of m in T as follows. Given p ∈ Γ and ε > 0, there exists a
compact K ∈ S such that ‖m‖p(B) < ε for all B ∈ S with B ⊂ T \K. The vector

measure m is said to be S -regular (S -outer regular, S -inner regular) if it is so in
each E ∈ S . When S = B(T ) (B0(T ), Bc(T )), we use the term Borel (Baire,

σ-Borel) regularity or outer regularity or inner regularity.

Remark 1. In the above definition one can replace Γ by any other family of
continuous seminorms on X which induces the topology τ .

The following proposition on regular Borel and σ-Borel extensions of an X-valued

Baire measure on T is well known and plays a key role in Section 4. It was first
proved in [3], [8] for Banach space valued Baire measures on T and extended to
group valued measures in [15]. For a simple and direct proof of the proposition

see [4]. Note that a highly technical operator theoretic proof is given in [13] as
mentioned in the introduction.

Proposition 6. Let m be an X-valued Baire measure on T and let X be a

quasicomplete lcHs. Then m is Baire regular in T . Moreover, there exists a unique

X-valued Borel (σ-Borel) regular σ-additive extension m̂ (m̂c) of m onB(T ) (Bc(T ),
respectively). Moreover, m̂

∣∣
Bc(T )

= m̂c.
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3. Some lemmas

Throughout this section X denotes a quasicomplete lcHs with the topology τ . Let

u : C0(T ) → X be a continuous linear map with the representing measure m. Let
m0 = m

∣∣
B0(T )

and mc = m
∣∣
Bc(T )

.

Let E = {A ⊂ X∗ : A equicontinuous}, and let pA(x) = supx∗∈A |x∗(x)| and
pA(x∗∗) = supx∗∈A |x∗∗(x∗)| for A ∈ E , x ∈ X and x∗∗ ∈ X∗∗. Then the family of

seminorms ΓE = {pA : A ∈ E } induces the topology τ of X and τe of X∗∗.
Let XA = XpA/p−1A (0) and let YA = X̃A, the completion of the normed space XA.

For E ∈ B(T ),

‖mpA‖(E) = sup{|y∗ ◦m|(E) : y∗ ∈ YA
∗, ‖y∗‖ � 1}.

Lemma 1. Let A ∈ E . Then:

(i) For E ∈ B(T )

‖mpA‖(E) = ‖m‖pA(E) = sup{|x∗ ◦m|(E) : x∗ ∈ A}.

(ii) For E ∈ Bc(T )

‖(mc)pA‖(E) = ‖mc‖pA(E) = sup{|x∗ ◦mc|(E) : x∗ ∈ A}
= sup{|x∗ ◦m|(E) : x∗ ∈ A}

where |x∗ ◦mc|(E) = var(x∗ ◦mc, Bc(T ))(E).

(iii) For E ∈ B0(T )

‖(m0)pA‖(E) = ‖m0‖pA(E) = sup{|x∗ ◦m0|(E) : x∗ ∈ A}
= sup{|x∗ ◦m|(E) : x∗ ∈ A}

where |x∗ ◦m0|(E) = var(x∗ ◦m0, B0(T ))(E).

�����. Each element x̃ ∈ XA is of the form x̃ = x + pA
−1(0) for some

x ∈ X and it is easy to show that the quotient norm ‖x̃‖pA = pA(x). For x∗ ∈ A, let
Ψx∗(x+pA

−1(0)) = x∗(x). Then Ψx∗ : XA → � is well defined and linear. Moreover,

for x∗ ∈ A,

|Ψx∗(x+ pA
−1(0))| = |x∗(x)| � pA(x) = ‖x+ pA

−1(0)‖pA

and hence ‖Ψx∗‖ � 1. Then by continuity Ψx∗ has a unique continuous linear
extension to the whole of YA with the norm less than or equal to one and we denote
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this extension again by Ψx∗ . Clearly, the mapping x∗ → Ψx∗ of A into YA
∗ is

injective. For x̃ = x+ pA
−1(0) ∈ XA with x ∈ X we have

‖x̃‖pA = ‖x+ pA
−1(0)‖pA = pA(x) = sup

x∗∈A
|x∗(x)|

= sup
x∗∈A

|Ψx∗(x̃)| � sup
y∗∈YA

∗, ‖y∗‖�1
|y∗(x̃)| = ‖x̃‖pA

and hence

(1) ‖x̃‖pA = sup
x∗∈A

|Ψx∗(x̃)|.

Let us write Ψx∗(y) = x∗(y) for x∗ ∈ A and y ∈ YA. Let y ∈ YA and let ε > 0. Since
XA is dense in YA, there exists x̃ ∈ XA such that |y− x̃|pA < ε. Then by (1) we have

‖y‖pA < ε+ ‖x̃‖pA = ε+ sup
x∗∈A

|Ψx∗(x̃)|

� ε+ sup
x∗∈A

|Ψx∗(x̃− y)|+ sup
x∗∈A

|Ψx∗(y)|

� ε+ ‖x̃− y‖pA + sup
x∗∈A

|x∗(y)| < 2ε+ sup
x∗∈A

|x∗(y)|

and hence

‖y‖pA = sup
x∗∈A

|Ψx∗(y)| = sup
x∗∈A

|x∗(y)|

for y ∈ YA. Thus {Ψx∗ : x∗ ∈ A} is a norm determining subset of {y∗ ∈ YA
∗ : ‖y∗‖ �

1}. Using this result and writing Ψx∗(y) = x∗(y) for all x∗ ∈ A and y ∈ YA in the

proof of the first part of Proposition 11 of [1], one can show that

‖m‖pA(E) = ‖mpA‖(E) = sup{|Ψx∗ ◦m|(E) : x∗ ∈ A}(2)

= sup{|x∗ ◦m|(E) : x∗ ∈ A}

for E ∈ B(T ). Thus (i) holds.
Replacing m by mc (by m0) and B(T ) by Bc(T ) (by B0(T )) in the above argu-

ment, similarly we have

‖(mc)pA‖(E) = ‖mc‖pA(E) = sup{|x∗ ◦mc|(E) : x∗ ∈ A}

for E ∈ Bc(T ) and

‖(m0)pA‖(E) = ‖m0‖pA(E) = sup{|x∗ ◦m0|(E) : x∗ ∈ A}

for E ∈ B0(T ). Now a reference to Proposition 1 completes the proofs of (ii) and
(iii) of the lemma. �
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The following result is the same as Lemma 2 of [13].

Lemma 2. u∗A is bounded in M(T ) for each A ∈ E .

Notation 1. U0 denotes the family of all open Baire sets in T .

Lemma 3. Suppose m0(U0) ⊂ X . Then:

(i) m0 is σ-additive in U0 in τ . That is, given a disjoint sequence (Un)∞1 in U0,

then m0
(⋃∞
1 Un

)
=

∑∞
1 m0(Un) (in the topology τ).

(ii) If (Un)∞1 is a disjoint sequence in U0, then, for each A ∈ E , limn ‖m0‖pA(Un) =

0.

�����. (i) By Proposition 5 (i), x∗ ◦m ∈ M(T ) for x∗ ∈ X∗ and hence

(x∗ ◦m0)

(∞⋃

1

Un

)
=

∞∑

1

(x∗ ◦m0)(Un)

for each x∗ ∈ X∗. By hypothesis, m0(U0) ⊂ X and hence by the Orlicz-Pettis
theorem we conclude that m0

(⋃∞
1 Un

)
=

∑∞
1 m0(Un) in the topology τ . Thus

(i) holds.
(ii) If possible, let infn ‖m0‖pA(Un) > 4δ > 0 for some A ∈ E . Then by Lemma 1

we have supx∗∈A |x∗ ◦m0|(Un) > 4δ for all n. Then there exists an x∗n ∈ A such that
|x∗n ◦ m0|(Un) > 4δ. Consequently, supB∈B0(T ), B⊂Un

|(x∗n ◦m0)(B)| > δ and hence
there exists Bn ⊂ Un in B0(T ) such that |(x∗n ◦ m0)(Bn)| > δ. Since x∗n ◦ m0 is a

(σ-additive) scalar Baire measure, it is Baire regular and hence there exists an open
Baire set Gn with Bn ⊂ Gn ⊂ Un such that |(x∗n ◦ m0)(Gn)| > δ. Consequently,

infn |(x∗n ◦m0)(Gn)| > δ. This is absurd, since |(x∗n ◦m0)(Gn)| � ‖m0(Gn)‖pA → 0
by (i) as (Gn) is a disjoint sequence in U0. �

Lemma 4. m0 is Baire inner regular in E ∈ B0(T ) if and only if, for each
A ∈ E and ε > 0, there exists a compact K ∈ K0 with K ⊂ E such that

supµ∈u∗A |µ|(E \K) < ε; i.e. if and only if, for each A ∈ E , u∗A is uniformly Baire

inner regular in E in the sense of Definition 1 of [12].

�����. Let m0 be Baire inner regular in E ∈ B0(T ). Given A ∈ E and ε > 0,
by Definition 4 there exists K ∈ K0 with K ⊂ E such that ‖m0‖pA(E \ K) < ε.

Then by Lemma 1 and Proposition 5 (ii) we have

‖m0‖pA(E \K) = sup
x∗∈A

|x∗ ◦m|(E \K) = sup
µ∈u∗A

|µ|(E \K) < ε.

The converse is immediate from Definition 4 and Lemma 1 as u∗A = {x∗◦m : x∗ ∈ A}
by Proposition 5 (ii) and ΓE = {pA : A ∈ E } induces the topology τe of X∗∗. �
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In the proofs of Lemmas 5 and 6 below we use, respectively, the implications

(iii)⇒ (iv) and (iv)⇒ (v) of Theorem 1 of [12].

Lemma 5. Let m0(U0) ⊂ X . Then:

(i) m0 is Baire inner regular (in τe) in each U ∈ U0.

(ii) For each ε > 0 and for each A ∈ E , there exists a K ∈ K0 such that ‖m‖pA(T \
K) = supx∗∈A |x∗ ◦m|(T \K) < ε.

�����. Let A ∈ E . Then by Proposition 5 (ii), u∗A = {x∗ ◦m : x∗ ∈ A} and by
Lemma 2, u∗A is bounded in M(T ). By Proposition 1, Lemma 1 and Lemma 3 (ii),
for each disjoint sequence (Un) of open Baire sets we have limn supx∗∈A |x∗◦m|(Un) =

limn supµ∈u∗A |µ|(Un) = 0. Thus by the implication (iii)⇒ (iv) of Theorem 1 of [12]
the result holds. �

Lemma 6. Suppose m0 is Baire inner regular in each U ∈ U0 with respect to the

topology τe of X∗∗ and, for each ε > 0 and for each A ∈ E , suppose there exists K ∈
K0 such that ‖m0‖pA(T \K) = supx∗∈A{|x∗ ◦m|(B) : B ⊂ T \K, B ∈ B0(T )} < ε

(note that the range of m0 is contained in X∗∗). Then m0 is Baire inner regular in

B0(T ) with respect to τe.

�����. Let A ∈ E . Then by Lemma 2, u∗A is bounded in M(T ). Since m0 is

Baire inner regular in each open Baire set, Lemma 4 implies that u∗A is uniformly
Baire inner regular (in the sense of Definition 1 of [12]) in each open Baire set.

Claim 1.

(3) ‖m‖pA(T \K) = sup
x∗∈A

|x∗ ◦m|(T \K) = sup
µ∈u∗A

|µ|(T \K) < ε.

In fact, by the second hypothesis, by the Borel regularity of |x∗ ◦ m|, by Theo-
rem 50.D of [7] and by Lemma 1 (i), Proposition 1 and Proposition 5 (ii), we have

‖m‖pA(T \K) = sup
x∗∈A

|x∗ ◦m|(T \K)

= sup
µ∈u∗A

sup
C∈K , C⊂T\K

|µ|(C)

= sup
µ∈u∗A

sup
C∈K0, C⊂T\K

|µ|(C)

= sup
x∗∈A

sup
C∈K0, C⊂T\K

|x∗ ◦m0|(C)

< ε.

Hence the claim holds.
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Thus, in virtue of (3), the hypotheses of the lemma show that u∗A satisfies the

hypothesis of the statement (iv) of Theorem 1 of [12]. Consequently, by (iv) ⇒ (v)
of Theorem 1 of [12], u∗A is uniformly Baire inner regular in each E ∈ B0(T ). Since
this holds for all A ∈ E and since ΓE induces the topology τe, Lemma 4 yields that

m0 is Baire inner regular in B0(T ). �

Lemma 7. Suppose m (mc, m0) is Borel (σ-Borel, Baire) inner regular (in τe) in

B(T ) (Bc(T ), B0(T )). Then m (mc, m0, respectively) is σ-additive in τe.

�����. Let A ∈ E and let ε > 0. Let S = B(T ) and γ = m (S = Bc(T ) and
γ = mc; S = B0(T ) and γ = m0, respectively). Since ‖γ(E)‖pA � ‖γ‖pA(E) for

E ∈ S , it suffices to show that limn ‖γ‖pA(En) = 0 whenever (En) is a decreasing
sequence in S with

⋂∞
1 En = ∅. By hypothesis, for each n there exists a compact

Kn ∈ S with Kn ⊂ En such that ‖γ‖pA(En \Kn) < ε/2n. Then adapting suitably
the proof at the end of p. 158 and at the top of p. 159 of [1], we can show that there

exists n0 such that ‖γ‖pA(En) < ε for n � n0. Hence the lemma holds. �

4. Characterizations of weakly compact operators on C0(T )

Let X be a quasicomplete lcHs. Using Propositions 1–6 and Lemmas 1–7 of the

preceding sections and Theorem 1 of [11] we will obtain below all the 35 charac-
terizations given in [13] for a continuous linear map u : C0(T ) → X to be weakly

compact. As mentioned at the outset, the Borel extension theorem (Proposition 6)
for σ-additive X-valued Baire measures on T plays a key role in the present proof in

contrast to the proofs of the characterization theorems of [13].

Theorem 1. Let u : C0(T ) → X be a continuous linear map, where X is a

quasicomplete lcHs. Let m be the representing measure of u and let mc = m
∣∣
Bc(T )

and m0 = m
∣∣
B0(T )

. Then the following assertions are equivalent.

(i) u is weakly compact.

(ii) The range of m is contained in X .

(iii) The range of mc is contained in X .

(iv) The range of m0 is contained in X .

(v) m(U) ∈ X for all open sets U in T .

(vi) m(F ) ∈ X for all closed sets F in T .

(vii) m(U) ∈ X for all σ-Borel open sets U in T .

(viii) m(U) ∈ X for all open Baire sets U in T .

(ix) m(U) ∈ X for all open sets U in T which are σ-compact.

(x) m(F ) ∈ X for all closed sets F in T which are Gδ.
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(xi) m(U) ∈ X for all open sets U in T which are Fσ .

(xii) For each increasing sequence (fn)∞1 ⊂ C0(T ) with 0 � fn � 1, (ufn)
converges weakly in X .

(xiii) m is σ-additive in the topology τe of X∗∗.

(xiv) mc is σ-additive in the topology τe of X∗∗.

(xv) m0 is σ-additive in the topology τe of X∗∗.

(xvi) m is strongly additive in the topology τe of X∗∗.

(xvii) mc is strongly additive in the topology τe of X∗∗.

(xviii) m0 is strongly additive in the topology τe of X∗∗.

(xix) m is Borel regular in τe of X∗∗.

(xx) m is Borel inner regular in τe of X∗∗.

(xxi) m is Borel inner regular (in τe) in each open set U in T .

(xxii) m is Borel outer regular (in τe) in each compact set K in T and Borel inner

regular (in τe) in the set T .

(xxiii) mc is σ-Borel regular in τe of X∗∗.

(xxiv) mc is σ-Borel inner regular in τe of X∗∗.

(xxv) mc is σ-Borel inner regular (in τe) in each σ-Borel open set U in T and in

the set T .

(xxvi) mc is σ-Borel outer regular (in τe) in each compact set K in T and σ-Borel

inner regular (in τe) in the set T .

(xxvii) m0 is Baire regular in τe of X∗∗.

(xxviii) m0 is Baire inner regular in τe of X∗∗.

(xxix) m0 is Baire inner regular (in τe) in each open Baire set U in T and in the

set T .

(xxx) m0 is Baire outer regular (in τe) in each compact Gδ in T and Baire inner

regular (in τe) in the set T .

(xxxi) All bounded Borel measurable scalar functions f on T are m-integrable

and
∫

T
f dm ∈ X .

(xxxii) All bounded Bc(T )-measurable scalar functions f on T are mc-integrable

and
∫

T f dmc ∈ X .

(xxxiii) All bounded Baire measurable scalar functions f on T are m0-integrable

and
∫

T
f dm0 ∈ X .

(xxxiv) All bounded scalar functions f belonging to the first Baire class in T are

m0-integrable and
∫

T f dm0 ∈ X .

(xxxv) u∗∗f ∈ X for all bounded scalar functions f belonging to the first Baire

class in T .

�����. In the sequel we will prove only those implications which are not
obvious.
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(i) ⇒ (ii): By (i) and Proposition 2, u∗∗C∗∗
0 (T ) ⊂ X and by Proposition 5 (v),

m(E) = u∗∗(χE) for E ∈ B(T ). As B(T ) ⊂ C∗∗
0 (T ), (ii) holds.

(viii) ⇒ (iv): In fact, by hypothesis (viii) and by Lemmas 5 and 6, m0 is Baire

inner regular in τe of X∗∗. Given K ∈ K0, by Theorem 50.D of Halmos [7] there
exists U ∈ U0 such that K ⊂ U and hence m0(K) = m0(U) − m0(U \ K) ∈ X .

Thus m0(K0) ⊂ X . Let E ∈ B0(T ). Let D(E) = {K ∈ K0 : K ⊂ E} and let
K1 � K2 for K1, K2 ∈ D(E) if K1 ⊃ K2. Then by the Baire inner regularity of m0
in E, limD(E)m0(K) = m0(E) so that the net {m0(K) : K ∈ D(E)} is τe-Cauchy
with the limit m0(E). Since by Proposition 5 (iv), m has τe-bounded range in X∗∗,

m0(K0) is τ -bounded in X . Thus there exists a τ -bounded closed set H in X such
that m0(K0(T )) ⊂ H . Since X is quasicomplete, we conclude that m0(E) ∈ H ⊂ X .

Thus m0 has the range in X .

(iv) ⇒ (i): In fact, by hypothesis, Proposition 5 (i) and the Orlicz-Pettis theorem,
m0 is σ-additive in τ . Then by Proposition 6 there exists a unique X-valued Borel

regular σ-additive extension m̂ of m0 on B(T ). As each f ∈ C0(T ) is a bounded
Baire measurable function by Theorem 51.B of Halmos [7], by Proposition 5 (iii) we

have

x∗uf =
∫

T

f d(x∗ ◦m) =
∫

T

f d(x∗ ◦m0) =
∫

T

f d(x∗ ◦ m̂), f ∈ C0(T ).

Since x∗ ◦ m ∈ M(T ) by Proposition 5 (i) and since x∗ ◦ m̂ ∈ M(T ) as m̂ is Borel
regular and σ-additive, it follows by the uniqueness part of the Riesz representation

theorem that x∗ ◦m = x∗ ◦ m̂ for each x∗ ∈ X∗. Since m has the range in X∗∗ and
m̂ has the range in X we conclude that m = m̂ and hence m not only has the range
in X but also is σ-additive in B(T ) in τ . Thus, given a disjoint sequence (Un) of

open sets in T , m(
⋃∞
1 Un) =

∑∞
1 m(Un) and in particular, limn m(Un) = 0. Thus,

for each equicontinuous subset A of X∗, Proposition 5 (ii) yields limn ‖m(Un)‖pA =

limn supx∗∈A |(x∗ ◦ m)(Un)| = limn supµ∈u∗A |µ(Un)| = 0. Moreover, by Lemma 2,
u∗A is bounded in M(T ). Therefore, by Proposition 3, u∗A is relatively weakly

compact in M(T ). Consequently, by Proposition 2, u is weakly compact. Thus (i)
holds.

(x) ⇒ (xi): Let U be an open set in T such that it is a countable union of closed

sets. Then T \ U is a closed set which is Gδ and hence by hypothesis (x) we have
m(U) = m(T )−m(T \ U) ∈ X . Hence (xi) holds.

(ix) ⇒ (viii): by § 14, Chapter III of Dinculeanu [2].

(ii) ⇒ (xii): Let (fn) be as in (xii). Then limn fn(t) = f(t) exists in [0,1]

for each t ∈ T and f is Borel measurable. Then the hypothesis (ii) combined with
Proposition 5 (i) and the Orlicz-Pettis theorem implies that m is σ-additive in B(T ).
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Consequently, by Proposition 4 we obtain

lim
n

∫

T

fn dm =
∫

T

f dm ∈ X.

Then by Propositions 4 (i) and 5 (iii) we have

lim
n

x∗ufn = lim
n

∫

T

fn d(x∗ ◦m) = x∗
(
lim
n

∫

T

fn dm

)
= x∗

(∫

T

f dm

)

for all x∗ ∈ X∗. Thus (xii) holds.
(xii) ⇒ (viii): Let U ∈ U0. Then by § 14, Chapter III of Dinculeanu [2], there

exists a sequence (Kn) ⊂ K0 such that Kn ↗ U . By Urysohn’s lemma we can
choose an increasing sequence gn of non negative continuous functions with compact

supports such that gn ↗ χU . Then by hypothesis there exists a vector x0 ∈ X

such that limn x∗ugn = x∗x0 for all x∗ ∈ X∗. Therefore, by the Lebesgue bounded

convergence theorem and by Proposition 5 we have x∗x0 = limn

∫
T gn d(x∗ ◦ m) =

x∗m(U) for all x∗ ∈ X∗. Since m(U) ∈ X∗∗, it follows that m(U) = x0 ∈ X . Hence

(viii) holds.
(ii) ⇒ (xiii): By (ii) m has the range in X and hence by Proposition 5 (i) and

the Orlicz-Pettis theorem m is σ-additive in τ . Since τe|X = τ , (xiii) holds.
(xv) ⇒ (i): Let Y be the completion of (X∗∗, τe). Then by hypothesis

m0 : B0(T )→ Y is σ-additive in τe and hence by Proposition 6 there exists a
unique Y -valued Borel regular σ-additive (in τe) extension m̃ of m0 on B(T ). Each

f ∈ C0(T ) is a bounded Baire measurable function by Theorem 51.B of Halmos [7]
and consequently, by Proposition 5 (iii) we have

x∗uf =
∫

T

f d(x∗ ◦m) =
∫

T

f d(x∗ ◦m0) =
∫

T

f d(x∗ ◦ m̃)

for each f ∈ C0(T ). By Proposition 5 (i), x∗ ◦ m ∈ M(T ). Since each x∗ ∈ X∗ is

τe-continuous in X∗∗, it follows that x∗ ◦ m̃ is a σ-additive regular Borel complex
measure on T and hence x∗ ◦ m̃ ∈ M(T ). Thus the continuous linear functional x∗u

on C0(T ) is represented by both x∗ ◦ m and x∗ ◦ m̃ belonging to M(T ) and hence
x∗ ◦ m = x∗ ◦ m̃ for all x∗ ∈ X∗. Since m takes values in X∗∗ and m̃ takes values

in Y , it follows that m = m̃ so that m̃ has values in X∗∗. Moreover, m (= m̃)
is σ-additive in τe. Consequently, given a disjoint sequence (Un) of open sets in

T , by Proposition 5 (ii) we have limn ‖m(Un)‖pA = limn supx∗∈A |(x∗ ◦ m)(Un)| =
limn supµ∈u∗A |µ(Un)| = 0 for each A ∈ E . Moreover, for such A, by Lemma 2, u∗A

is bounded in M(T ). Then by an argument similar to that in the end of the proof
of (iv) ⇒ (i) we conclude that u is weakly compact. Hence (i) holds.
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(xviii) ⇒ (i): Let Σ(B0(T )) be the Banach space of all bounded complex func-

tions which are uniform limits of sequences ofB0(T )-simple functions, with pointwise
addition and scalar multiplication and with the supremum norm ‖·‖T . Let

V f =
∫

T

f dm0, f ∈ Σ(B0(T )).

By Proposition 5 (iv), m0 is a τe-bounded vector measure and hence, by Lemma 6
of [11], V is a well defined X∗∗-valued continuous linear map. Then as the repre-

senting measure m0 of V (see Definition 2 of [11]) is strongly additive by hypothe-
sis (xviii), by Theorem 1 of [11] V is a weakly compact operator. By Theorem 51.B

of Halmos [7] each f ∈ C0(T ) is Baire measurable and bounded and hence is the
uniform limit of a sequence of Baire simple functions. Hence C0(T ) ⊂ Σ(B0(T )).
In particular, V |C0(T ) is weakly compact. Moreover, by Propositions 4 (i) and 5 (iii),
we have

x∗V f =
∫

T

f d(x∗ ◦m0) =
∫

T

f d(x∗ ◦m) = x∗uf, f ∈ C0(T )

for each x∗ ∈ X∗. Since V f ∈ X∗∗ and uf ∈ X , we conclude that V f = uf for
each f ∈ C0(T ). Consequently, u = V |C0(T ) and hence {uf : ‖f‖T � 1} is relatively
σ(X∗∗, X∗∗∗)-compact. Since u(C0(T )) ⊂ X , it follows that {uf : ‖f‖T � 1} is
relatively weakly compact in X . Thus u is weakly compact. Hence (i) holds.

(ii) ⇒ (xix): By (ii), Proposition 5 (i) and the Orlicz-Pettis theorem, m is

σ-additive in B(T ) in the topology τ of X . Then m0 is σ-additive in B0(T ) and has
the range in X . Therefore, by Proposition 6 there exists a unique Borel regular X-

valued σ-additive (in τ) extension m̂ of m0 onB(T ). Then by Proposition 5 (iii) and
by the fact that each f ∈ C0(T ) is bounded and Baire measurable (by Theorem 51.B

of [7]), we have

x∗uf =
∫

T

f d(x∗ ◦m) =
∫

T

f d(x∗ ◦m0) =
∫

T

f d(x∗ ◦ m̂)

for each x∗ ∈ X∗ and f ∈ C0(T ). Since x∗ ◦ m ∈ M(T ) by Proposition 5 (i) and

since x∗ ◦ m̂ ∈ M(T ) as m̂ is Borel regular and σ-additive in τ with values in X ,
we conclude that x∗ ◦m = x∗ ◦ m̂ for each x∗ ∈ X∗. Since by hypothesis m has the

range in X and m̂ in X , it follows that m = m̂. Thus m is Borel regular in τ and
hence m is Borel regular in τe as τe

∣∣
X
= τ . Thus (xix) holds.

(xxi) (or (xxv), (xxix)) ⇒ (xxviii): Let U ∈ U0 or let U = T . Let A ∈ E

and ε > 0. Then by hypothesis and by Theorem 50.D of Halmos [7] there exists
a compact Gδ K such that K ⊂ U and ‖m‖pA(U \ K) < ε (‖mc‖pA(U \ K) < ε,
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‖m0‖pA(U \ K) < ε, respectively). Thus, in particular, ‖m0‖pA(E) < ε for all

E ∈ B0(T ) with E ⊂ U \ K. Since this holds for all U ∈ U0 and for U = T , the
conditions of Lemma 6 are satisfied by m0. Therefore, m0 is Baire inner regular in
B0(T ). Hence (xxviii) holds.

(xxviii) ⇒ (xv): by Lemma 7.

(xxii) ⇒ (i): Let K ∈ K and let A ∈ E . Given ε > 0, by hypothesis there
exists an open set U in T such that ‖m‖pA(U \K) < ε. Then by Lemma 1 (i) and

Proposition 5 (ii) we have sup{|x∗ ◦m|(U \K) : x∗ ∈ A} = supµ∈u∗A |µ|(U \K) < ε

and by Lemma 2, u∗A is bounded in M(T ). Thus condition (iv) (a) of Proposition 3

is satisfied by u∗A. Since m is inner regular in T , there exists a compact set C

such that ‖m‖pA(T \ C) < ε so that by an argument similar to that above we

have supµ∈u∗A |µ|(T \ C) < ε. Therefore, condition (iv) (b) of Proposition 3 is also
satisfied by u∗A. Hence by Proposition 3, u∗A is relatively weakly compact inM(T )

and consequently, by Proposition 2, u is weakly compact. Thus (i) holds.

(ii) ⇒ (xxiii): Proceeding as in the proof of (ii) ⇒ (xix), we have m = m̂ on
B(T ). Since m̂|Bc(T ) is σ-Borel regular by Proposition 6, we conclude that mc is

σ-Borel regular in τ and hence in τe. Thus (xxiii) holds.

(xxiv) ⇒ (xiv): by Lemma 7.

(xxiii) implies the first part of (xxv) and (xix) implies the second part of (xxv).

As (xxv) ⇒ (xxviii), it follows that (i) ⇔ (xxv).

(xix) ⇒ (xxvi): Given K ∈ K , A ∈ E and ε > 0, then by hypothesis there

exists an open set U with U ⊃ K such that ‖m‖pA(U \K) < ε. By Theorem 50.D of
Halmos [7] we can choose a V ∈ U0 such thatK ⊂ V ⊂ U so that ‖mc‖pA(V \K) < ε.

Thus mc is σ-Borel outer regular in K. Clearly, mc is σ-Borel inner regular in T as
m is, by hypothesis, Borel inner regular in T . Hence (xxvi) holds.

(xxvi) ⇒ (i): Let K ∈ K . Proceeding as in the proof of (xxii) ⇒ (i),

we have ‖mc‖pA(U \K) < ε, where U is a σ-Borel open set containing K. Thus by
Lemma 1 (ii) and Proposition 1 we have ‖mc‖pA(U \K) = supx∗∈A |x∗◦mc|(U \K) =
supx∗∈A |x∗ ◦m|(U \K) < ε. Hence, by Proposition 5 (ii), supµ∈u∗A |µ|(U \K) < ε.
Since u∗A is bounded in M(T ) by Lemma 2, condition (iv) (a) of Proposition 3 is

satisfied by u∗A. Again by hypothesis, there exists a compact C such that ‖mc‖pA(T \
C) < ε. Thus for each compact K ⊂ T \ C, by Lemma 1 (ii) we have supx∗∈A |x∗ ◦
m|(K) < ε. As |x∗ ◦ m| is Borel regular by Proposition 5 (i) for each x∗ ∈ A,
and x∗ ◦ m = u∗x∗ by Proposition 5 (ii), it follows that supx∗∈A |x∗ ◦ m|(T \ C) =

supµ∈u∗A |µ|(T \C) � ε. Thus condition (iv) (b) of Proposition 3 is also satisfied by
u∗A. Therefore, u∗A is relatively weakly compact in M(T ) for each A ∈ E . Now by

Proposition 2 we conclude that u is weakly compact. Hence (i) holds.

(xv) ⇒ (xxvii): Since m0 is σ-additive in τe, by the first part of Proposition 6,
m0 is Baire regular in τe. Thus (xxvii) holds.
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(xxix) ⇒ (xxviii): by Lemma 6.

(xix) ⇒ (xxix): Let U ∈ U0, A ∈ E and ε > 0. By hypothesis, there exists a

compact K ⊂ U such that ‖m‖pA(U \K) < ε. By Theorem 50.D of Halmos [7] there
exists a compact C ∈ K0 such that K ⊂ C ⊂ U . Then ‖m0‖pA(U \ C) < ε. Hence

m0 is Baire inner regular in U . As m is Borel inner regular in T , there exists K ∈ K

such that ‖m‖pA(T \K) < ε. By Theorem 50.D of Halmos [7] there exists C ∈ K0
such that K ⊂ C and hence ‖m0‖pA(B) < ε for all B ∈ B0(T ) with B ⊂ T \ C.
Thus m0 is Baire inner regular in T . Hence (xxix) holds.

(xix) ⇒ (xxx): Let K ∈ K0, A ∈ E and ε > 0. By hypothesis and by Theo-

rem 50.D of Halmos [7] there exists U ∈ U0 with K ⊂ U such that ‖m‖pA(U \K) < ε

so that by (i) and (iii) of Lemma 1 we have ‖m0‖p(U \ K) < ε. Similarly, we can

show that m0 is Baire inner regular in T . Hence (xxx) holds.

(xxx) ⇒ (xxix): Clearly, it suffices to show that m0 is Baire inner regular in each

open Baire set. Given A ∈ E and ε > 0, by the hypothesis of Baire inner regularity
of m0 in T and by Theorem 50.D of Halmos [7] there exists a compact Ω ∈ K0 such

that ‖m0‖pA(T \ Ω) < ε/2. Let U ∈ U0 such that U is relatively compact.

Claim 1. m0 is Baire inner regular in U .

In fact, by Theorem 50.D of Halmos [7] we can choose a compact C ∈ K0 such
that U ⊂ C. Then U = C \ (C \U) and C \U ∈ K0 by Theorem 51.D of Halmos [7].

Therefore, by hypothesis there existsW ∈ U0 withW ⊃ C\U such that ‖m0‖pA(W \
(C \U)) < ε. Now U = C \(C \U) ⊃ C \W and C \W ∈ K0 again by Theorem 51.D

of Halmos [7]. Moreover, U \ (C \W ) = U ∩ ((T \ C) ∪W ) = U ∩W . On the other
hand, W \ (C \ U) ⊃ W ∩ U . Therefore, ‖m0‖pA(U \ (C \W )) < ε. Thus the claim

holds.

Now let U ∈ U0. Choose by Theorem 50.D of Halmos [7] a relatively compact

open Baire set V such that Ω ⊂ V . Then U ∩ V is relatively compact and belongs
to U0. Therefore, by Claim 1, m0 is Baire inner regular in U ∩ V and hence there

exists a compact K ∈ K0 with K ⊂ U ∩ V such that ‖m0‖pA((U ∩ V ) \K) < ε/2.
Then K ⊂ U and ‖m0‖pA(U \ K) � ‖m0‖pA((U ∩ V ) \ K) + ‖m0‖pA(U \ Ω) < ε.

Therefore, m0 is Baire inner regular in each open Baire set and hence (xxix) holds.

(ii) ⇒ (xxxi), (xxxii) and (xxxiii): By (ii), Proposition 5 (i) and the Orlicz-
Pettis theorem m is X-valued and σ-additive in τ . Since every bounded Borel (σ-

Borel, Baire) measurable scalar function is the uniform limit of a sequence of Borel
(σ-Borel, Baire) simple functions and m is a τ -bounded X-valued vector measure,

f is m-integrable (see Definition 1 of [11]) and
∫

T f dm ∈ X (f is mc-integrable and∫
T

f dmc ∈ X , f is m0-integrable and
∫

T
f dm0 ∈ X , respectively).
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(xxxi) (or (xxxii), (xxxiii)) ⇒ (ii) ((iii), (iv)): Let E ∈ B(T ) (E ∈ Bc(T ),

E ∈ B0(T )). Then by hypothesis, m(E) (mc(E), m0(E)) belongs to X . Thus (ii)
((iii), (iv), respectively) holds.

(xxxiv) ⇒ (viii): Let U be an open Baire set. Then by § 14, Chapter III of

Dinculeanu [2], there exists an increasing sequence Kn of compact Gδ sets such that
U =

⋃∞
1 Kn. Then by Urysohn’s lemma we can choose non negative continuous

functions gn with compact supports such that gn ↗ χU . Thus χU belongs to the
first Baire class and is bounded. Then by hypothesis, m0(U) ∈ X . Thus (viii) holds.

(i) ⇒ (xxxv): If u is weakly compact, then by Proposition 2, u∗∗ has the range

in X . Since the bounded scalar functions of the first Baire class belong to C∗∗
0 (T ),

(xxxv) holds.

(xxxv) ⇒ (viii): By Proposition 5 (v), u∗∗(χU ) = m(U) for U ∈ U0. As observed
in the proof of (xxxiv) ⇒ (viii), χU is bounded and belongs to the first Baire class.

Hence, by hypothesis, m(U) ∈ X . Thus (viii) holds.

This completes the proof of the theorem. �

Remark 2. As in [13], the strict Dunford-Pettis property of C0(T ) is an imme-
diate consequence of the above theorem and the proof of the latter is not based on

this property unlike the proof of Theorem 6 of Grothendieck [6]. Theorem 5.3 of
Thomas [16] is also deducible from the above theorem by the same argument as that

used in the proof of Theorem 13 in [13].

Remark 3. All these 35 characterizations are given in [13] in Theorems 2–9.
Some of the proofs given here are the same as those in [13] (for example, (i) ⇒
(ii) ⇒ (iii) of Theorem 2 of [13], (i) ⇔ (xi) of Theorem 3 of [13] and Theorem 9

of [13]) but, for the sake of completeness, we have given the proofs of all non obvious
equivalences of these 35 characterizations. In the present proof the use of Theorems 1

and 2 of [12] has been dispensed with unlike the proof in [13] and instead, the Borel
extension theorem has been used along with the first part of Theorem 1 of [13],

Lemma 1 and Theorem 2 of [6], Theorem 1 of [11] and Lemmas 1–7.
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