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Abstract. A variety is called normal if no laws of the form s = t are valid in it where s
is a variable and t is not a variable. Let L denote the lattice of all varieties of monounary
algebras (A, f) and let V be a non-trivial non-normal element of L. Then V is of the form
Mod(fn(x) = x) with some n > 0. It is shown that the smallest normal variety containing
V is contained in HSC(Mod(fmn(x) = x)) for every m > 1 where C denotes the operator
of forming choice algebras. Moreover, it is proved that the sublattice of L consisting of all
normal elements of L is isomorphic to L.
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1. Introduction and motivation

The concept of normal identity was introduced by I. I. Mel’nik ([7]) and the so
called normally presented varieties were studied by E. Graczyńska ([2]) and J. P�lonka

(cf. the references in [2]). For any variety V let IdNV denote the set of all normal
identities holding in V and N(V ) the model of IdNV . As pointed out in [2] and [7],

N(V ) is a variety covering V in the lattice of all varieties of the same type. The
first author was interested in the construction of N(V ) by using the so called choice
algebras (cf. [1]). Unfortunately, this construction (valid for algebras of a larger

type) fails for monounary algebras (see [4], [6] and [8]). The aim of this paper is to
improve this situation by showing how N(V ) can be obtained from V in this case.

Moreover, we show that the lattice of all varieties of monounary algebras and that
of all normally presented monounary algebras are isomorphic.

This paper is a result of the collaboration of the authors within the framework of the
“AKTION Österreich-Tschechische Republik” (grant No. 22p2 “Ordered algebraic struc-
tures and applications”).
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2. Varieties of monounary algebras

A monounary algebra is an algebra of type (1). In what follows let L denote the
lattice of all varieties of such algebras. We first summarize some well-known facts
about L (cf. [3] and [5]):

L consists exactly of the following varieties:

Vi := Mod(f i(x) = f i(y)) for i � 0,

Vij := Mod(f j(x) = f i(x)) for 0 � i � j

and V := Mod∅.

(Here and in the sequel ModΣ denotes the class of all monounary algebras satisfying
Σ and f0 denotes the identity mapping.)

We have

Vi ⊆ Vj iff i � j,

Vi ⊆ Vjk iff i � j,

Vij �⊆ Vk,

Vij ⊆ Vkl iff both i � k and j − i | l − k

and hence

Vi ≺ Vj iff j = i + 1,

Vi ≺ Vjk iff (j, k) = (i, i + 1),

Vij �≺ Vk,

Vij ≺ Vkl iff either (k, l) = (i + 1, j + 1) or (k, l) = (i, i + p(j − i)) with p prime.

If for a class K of monounary algebras, Σ(K) denotes the set of all laws holding
in K then we have

Σ(Vi) = {f j(x) = fk(y) | j, k � i} ∪ {f j(x) = fk(x) | j, k � i}
∪ {f j(x) = f j(x) | j � 0}

and

Σ(Vij) = {fk(x) = f l(x) | k, l � i; j − i | k − l} ∪ {fk(x) = fk(x) | k � 0}.

We can now prove

Theorem 1. L is distributive but not pseudocomplemented, has exactly two

atoms and no coatoms and has both infinite chains and infinite antichains.
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�����. The above description of L yields

Vi ∨ Vj = Vmax(i,j),

Vi ∧ Vj = Vmin(i,j),

Vi ∨ Vjk = Vmax(i,j),max(i,j)+k−j ,

Vi ∧ Vjk = Vmin(i,j),

Vij ∨ Vkl = Vmax(i,k),max(i,k)+lcm(j−i,l−k)

and

Vij ∧ Vkl = Vmin(i,k),min(i,k)+gcd(j−i,l−k).

Distinguishing all (finitely many) possible cases, distributivity of L can now be
checked. Since {V ∈ L | V ∧ V1 = V0} = {V0} ∪ {V0j | j > 0} it follows that

V1 has no pseudocomplement and hence L is not pseudocomplemented. Of course,
V1 and V01 are the only atoms of L and no coatoms exist in L. {Vi | i � 0} is an

infinite chain and {L0p | p prime} an infinite antichain in L. �

Remarks. (i) The fact that L has exactly two atoms was already remarked
in [3]. In that paper it was also proved how to calculate the join and the meet of two

elements of L.

(ii) Since L is complete and distributive, but not pseudocomplemented, ∧ is not

infinitely distributive with respect to ∨ in L.

(iii) Since

{V ∈ L | V ∧ V0 = V0} = L,

{V ∈ L | V ∧ Vi = V0} = {V0} ∪ {V0j | j > 0} for i > 0,

{V ∈ L | V ∧ V0j = V0} = {Vi | i � 0},
{V ∈ L | V ∧ Vij = V0} = {V0} for i > 0

and {V ∈ L | V ∧ V = V0} = {V0},

the only elements V of L having a pseudocomplement V ∗ are V0, Vij for i > 0 and
V : V ∗

0 = V and V ∗
ij = V ∗ = V0 for i > 0.
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3. Normal varieties of monounary algebras

A variety is called normal if no laws of the form s = t are valid in it where s is a
variable and t is not a variable. For every variety V let N(V ) denote the smallest

normal variety (of the same type as V ) containing V .

Remark. From the results in Section 2 it follows that the non-normal elements of

L are exactly V0 and V0j (j > 0) and that N(V0) = V1 and N(V0j) = V1,j+1 (j > 0).

Next, we want to explain the concept of a choice algebra:

Let M be a set and θ an equivalence relation on M . A choice function on M/θ

is a mapping ϕ from M/θ to M such that ϕ(B) ∈ B for every B ∈ M/θ. Let

(A, F ) be an algebra, θ ∈ ConA and let ϕ be a choice function on A/θ. Then the
algebra (A, F ∗) where F ∗ := {f∗ | f ∈ F} and where for every n-ary f ∈ F , the

operation f∗ is defined by f∗(a1, . . . , an) := ϕ([f(a1, . . . , an)]θ) for all a1, . . . , an ∈
A, is called the choice algebra corresponding to A and θ. (It is well-known that

choice algebras corresponding to both the same algebra and the same congruence
are isomorphic.) For every class K of algebras let C(K) denote the class of all choice

algebras corresponding to members of K.
Let (A, f) be a monounary algebra, k, l positive integers and m > 0 a cardinal

number. (A, f) is called a k-cycle if |A| = k and if there exists a ∈ A such that
a, f(a), . . . , fk−1(a) are mutually distinct and fk(a) = a. (A, f) is called a k-cycle

with an l-element chain if there exists b ∈ A such that b, f(b), . . . , f l(b) are mutually
distinct and A \ {b, f(b), , f l−1(b)} is a k-cycle. (A, f) is called a k-cycle with m

meeting l-element chains if there exists an m-element subset C of A such that for
every c ∈ C c, f(c), . . . , f l(c) are mutually distinct, {c, f(c), . . . , f l−1(c)}, c ∈ C, are

mutually disjoint, f l(c) = f l(d) for all c, d ∈ C and A \⋃
c ∈ C{c, f(c), . . . , f l−1(c)}

is a k-cycle.

For every variety V and every set X let FV (X) denote the free algebra over X

with respect to V . The following can be easily seen:

Lemma 2. For any non-empty set X the following conditions (i)–(iii) hold:
(i) For i > 0, FVi(X) is a 1-cycle with |X | meeting i-element chains.

(ii) FV0j (X) is the disjoint union of |X | j-cycles.

(iii) For i > 0, FVij (X) is the disjoint union of |X | (j − i)-cycles with an i-element

chain.

Now we can prove our main theorem:

Theorem 3. Let V be a non-trivial non-normal element of L. Then V is of the

form V = Mod(fn(x) = x) for some n > 0 and N(V ) ⊆ HSC(Mod(fmn(x) = x))
holds for every m > 1.
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�����. Let V be a non-trivial non-normal element of L. Then V = V0n for

some n > 0 and N(V ) = V1,n+1. Let A ∈ N(V ). (Without loss of generality,
A �= ∅.) Then A ∈ H(F1) where F1 := FN(V )(A). Let m > 1. From Lemma 2 it
follows that F1 is the disjoint union of |A| n-cycles with a one-element chain and that

F2 := FV0,mn (A) is the disjoint union of |A| mn-cycles. Let θ denote the equivalence
relation on F2 corresponding to the partition {{x, fn(x)} | x ∈ F2} of F2. Then

θ ∈ ConF2. Let F ∗
2 denote the choice algebra corresponding to F2 and θ. It is easy

to see that F1 ∈ IS(F ∗
2 ). So we finally arrive at

A ∈ H(F1) ⊆ HIS(F ∗
2 ) ⊆ HISC(F2) ⊆ HISC(V0,mn) = HSC(V0,mn).

Since A was an arbitrary member of N(V ), the proof is complete. �

Finally, we mention an interesting result concerning the lattice of all normal vari-

eties of monounary algebras:

Theorem 4. The sublattice of L consisting of all normal elements of L is isomor-
phic to L.

�����. Let L′ denote this sublattice. Then the mapping assigning Vi+1 to

Vi, Vi+1,j+1 to Vij and V to V is an order isomorphism and hence also a lattice
isomorphism from L to L′. �
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