
Czechoslovak Mathematical Journal

Xiao-Dong Zhang; Rong Luo
Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 3, 537–544

Persistent URL: http://dml.cz/dmlcz/127741

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127741
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 537–544

UPPER BOUND FOR THE NON-MAXIMAL EIGENVALUES

OF IRREDUCIBLE NONNEGATIVE MATRICES

Xiao-Dong Zhang, Hefei, and Rong Luo, Morgantown

(Received July 27, 1999)

Abstract. We present a lower and an upper bound for the second smallest eigenvalue of
Laplacian matrices in terms of the averaged minimal cut of weighted graphs. This is used
to obtain an upper bound for the real parts of the non-maximal eigenvalues of irreducible
nonnegative matrices. The result can be applied to Markov chains.
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1. Introduction

The matrices in this paper are real and square. The eigenvalues of an n × n

matrix A are arranged in the non-increasing order with respect to their real parts:

(1) Reλ1(A) � Reλ2(A) � . . . � Reλn(A).

Given n real numbers a1, a2, . . . , an, denote by a = max{ai : 1 � i � n} and a =
min{ai : 1 � i � n}.
For a given n×n symmetric nonnegative matrix C = (cij), we associate a weighted

graph Gc = (V, E) with V = {1, 2, . . . , n}, (i, j) ∈ E if and only if cij > 0 and i �= j,

and the weight of the edge (i, j) is cij . Let ri be the i-th row sum of C, i = 1, 2, . . . , n.
Then

(2) L(Gc) = diag(r1, r2, . . . , rn)− C
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is the Laplacian matrix of the weighted graph Gc [5] (if C is a (0, 1)-matrix, then

L(Gc) = L(G) is the Laplacian matrix ofG). It is easily seen that L(Gc) is a singular,
positive semidefinite matrix. Moreover, if C is irreducible, then λn−1(L(Gc)) >

λn(L(Gc) = 0.

Let Gc be a weighted graph. The edge-density [6], [7] of a subset M of the vertex

set V is defined to be

(3) �c(M) =
∑

i∈M, j �∈M

cij

|M |(n− |M |) ,

and, the averaged minimal cut [2], [6] of Gc is defined to be

(4) γ(Gc) = min{�c(M) : 0 < |M | < n},

where |M | is the cardinality of the set M . Since γ(Gc) = 0 if and only if C is
reducible, it is also called the averaged measure [2] of irreducibility of C.

In Section 2 we use γ(Gc) to obtain a lower and an upper bound for λn−1(L(Gc))

(i.e., the algebraic connectivity of Gc [5], [6]). This, in turn, will be applied to
obtain, in Section 3, an upper bound for real parts of the non-maximal eigenval-
ues of irreducible nonnegative matrices. This has applications to Markov chains in

Section 4.

2. Laplacian matrices

In order to prove our results, we first give the following inequality which may be
of independent interest.

Lemma 2.1. If n positive numbers d1, d2, . . . , dn and n real numbers x1,

x2, . . . , xn satisfy the condition
n∑

i=1
xi/di = 0, then

(5)
n−1∑

i=1

i(n− i)(xi − xi+1)
2 � 2d

n∑

i=1

x2i
di

.

�����. Let the n × n matrix S = (sij) correspond to the quadratic form of

the left-hand side in (5). It is easily seen that S is a symmetric positive semidefinite
matrix with the eigenvectors e = (1, 1, . . . , 1)T and f = (n−1, n−3, n−5, . . . ,−n+1)T

corresponding to the eigenvalues λn(S) = 0 and λn−1(S) = 2, respectively (cf. [2]).
Thus S − 2In has only one negative eigenvalue, where In is the identity matrix.
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Denote D = diag(d1, d2, . . . , dn). Since D
1
2 (S − 2In)D

1
2 is congruent to S − 2In,

D
1
2 (S − 2In)D

1
2 and S − 2In have the same numbers of positive, negative and zero

eigenvalues. Therefore λn−1
(
D
1
2 (S − 2In)D

1
2
)
= 0. Thus by [4, p. 242],

0 � λn−1(D
1
2SD

1
2 ) + λ1(−2D) = λn−1(D

1
2SD

1
2 )− 2d.

Hence, by the Courant-Fischer Theorem and in view of the identity
n∑

i=1
xi/di = 0,

we have that,

2d � λn−1(D
1
2SD

1
2 ) = min

yT D−
1
2 e=0

yT D
1
2SD

1
2 y

yT y

= min
zT D−1e=0

zT Sz

zT D−1z
� xT Sx

xT D−1x
,

where z = D
1
2 y and x = (x1, x2, . . . , xn)T . Therefore (5) holds. �

Theorem 2.2. Let Gc be a weighted connected graph (i.e., C = (cij) is irre-
ducible) with n vertices. Let D = diag(d1, d2, . . . , dn) be a positive diagonal matrix

and Ω = DL(Gc). Then

(6) 2dγ(Gc) � λn−1(Ω) � ndγ(Gc).

�����. Since Ω is similar to D
1
2L(Gc)D

1
2 , all of the eigenvalues of Ω are real

and λn(Ω) = 0. Let x = (x1, x2, . . . , xn)T be the real eigenvector of Ω corresponding

to the eigenvalue λn−1(Ω), i.e.,

(7) DL(Gc)x = λn−1(Ω)x.

Without loss of generality, we assume that x1 � x2 � . . . � xn and L(Gc) = (lij).

So
n∑

j=1
lij =

n∑
i=1

lij = 0. Hence by (7),

m∑

i=1

λn−1(Ω)
xi

di
=

m∑

i=1

n∑

j=1

lijxj =
m∑

i=1

m∑

j=1

lijxj +
m∑

i=1

n∑

j=m+1

lijxj

=
m∑

j=1

(
−

n∑

i=m+1

lij

)
xj +

m∑

i=1

n∑

j=m+1

lijxj

=
m∑

j=1

n∑

i=m+1

(−lijxj) +
m∑

i=1

n∑

j=m+1

lijxj

=
m∑

i=1

n∑

j=m+1

(−lij(xi − xj)) �
m∑

i=1

n∑

j=m+1

−lij(xm − xm+1)

� γ(Gc)m(n−m)(xm − xm+1).
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Multiplying the above inequality by xm − xm+1 and summing them for m =

1, 2, . . . , n− 1, we have

(8) λn−1(Ω)
n∑

i=1

x2i
di

� γ(Gc)
n−1∑

i=1

i(n− i)(xi − xi+1)2,

since λn−1(Ω)
n∑

i=1

xi

di
= eT D−1Ωx = 0 by (7), where e = (1, 1, . . . , 1)T . Combining

Lemma 2.1 and (8), we obtain the left inequality in (6).

LetM0 be a proper subset of the vertex set V such that γ(Gc) = �c(M0). Define an
n-dimensional vector y = (y1, y2, . . . , yn)T where yi = a√

di
if i ∈ M0, and yi = − b√

di

if i �∈ M0 where a =
∑

i�∈M0

1
di
, b =

∑
i∈M0

1/di. It is easily seen that yT D− 12 e = 0.

Hence by the Courant-Fischer Theorem,

λn−1(Ω) = λn−1(D
1
2L(Gc)D

1
2 ) = min

zD−
1
2 e=0

zT D
1
2L(Gc)D

1
2 z

zT z
� yT D

1
2L(Gc)D

1
2

yT y

= γ(Gc)
(1

a
+
1
b

)
|M0|(n− |M0|) � ndγ(Gc).

�

Corollary 2.3 ([2], [7]). Let G be a simple connected graph with n vertices. Then

(9) 2γ(G) � λn−1(L(G)) � nγ(G).

�����. It follows from (6) and d1 = d2 = . . . = dn = 1. �

Corollary 2.4. Let G be a simple graph with n vertices. Let A be the adjacency

matrix and ∆, δ be the maximum and the minimum vertex degree of G, respectively.

Then

(10) δ − nγ(G) � λ2(A) � ∆− 2γ(G).

�����. Since δIn − L(G) = A − (diag(r1, r2, . . . , rn) − δIn), we have that

λ2(δIn−L(G)) � λ2(A). Hence, by (6), the left inequality in (10) holds. In a similar
way, the right inequality in (10) is also obtained. �
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3. Irreducible nonnegative matrices

For an n× n nonnegative matrix A and positive vectors x and y in �n , define

(11) η(A, x, y) = min

∑
i∈M, j �∈M

(aijxjyi + ajixiyj)

2|M |(n− |M |) ,

where the minimum is taken over all nonempty subsets M of {1, 2, . . . , n}. If y = x,

we denote η(A, x, y) by η(A, x).

Lemma 3.1. Let A be an n × n irreducible symmetric nonnegative matrix and

let Au = λ1(A)u, u = (u1, u2, . . . , un) > 0. Then

(12) λ1(A)−
n

u2
η(A, u) � λ2(A) � λ1(A)−

2

u2
η(A, u).

�����. Let U = diag(u1, u2, . . . , un) and C = UAU . Define Gc to be the

weighted graph associated with C. Then L(Gc) = U(λ1(A)In −A)U . Now choosing
D = U−2 and Ω = U−1(λ1(A)In − A)U , it follows that λn−1(Ω) = λ1(A) − λ2(A).
Since A is symmetric, Au = λ1(A)u, uT = λ1(A)uT and

γ(Gc) = min

∑
i∈M, j �∈M

aijuiuj

|M |(n− |M |) = η(A, u).

Thus, by Theorem 2.2, (12) holds. �

Theorem 3.2. Let A be an n × n irreducible nonnegative matrix. Let Au =

λ1(A)u, u > 0, vT A = λ1(A)vT , v > 0, wi = uivi. Then

(13) Reλ2(A) � λ1(A)−
2
w

η(A, u, v).

�����. Let di =
√

vi/ui, D = diag(d1, d2, . . . , dn) and B = 1
2 (DAD−1 +

(DAD−1)T ). Then D2u = v and

B(Du) =
DAu+D−1AD2u

2
=

Dλ1(A)u +D−1λ1(A)v
2

= λ1(A)(Du).

Moreover, it is easily seen that η(B, Du) = η(A, u, v) and (Du)i =
√

uivi =
√

wi.

On the other hand, it follows from [6, p. 237] that λ1(A)+λ2(B) = λ1(B)+λ2(B) �
λ1(A) + Reλ2(A). Thus (13) follows from (12). �
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Corollary 3.3 ([2]). Let A be an n× n doubly stochastic matrix. Then

(14) |1− λ2(A)| � 2γ(GA).

�����. If A is reducible, then γ(GA) = 0 and (14) holds. We now assume

that A is irreducible. Since A is a doubly stochastic matrix, we have that u = v =
(1, 1, . . . , 1)T and η(A, u, v) = γ(GA). Therefore, by (13),

|1− λ2(A)| � |1− Reλ2(A)| � 2γ(GA).

�

4. Applications to Markov chains

Markov chains techniques are often used to model the behavior of large irreducible

nearly uncoupled evolutionary systems in which the states naturally divide into
k-clusters such that the states within each cluster are strongly coupled, but the

clusters themselves are only weakly coupled to each other. We may use a stochastic
matrix P to describe the states of such a chain. In [3], Hartfiel and Meyer defined

the uncoupling measure of P as following:

(15) σ(P ) = min

( ∑

i∈M1, j �∈M1

pij +
∑

i∈M2, j �∈M2

pij

)
,

where the minimum is taken over all nonempty proper subsetsM1,M2 of {1, 2, . . . , n}
with M1 ∩M2 = ∅.
The following theorem provides the relation between σ(P ) and λ2(P ).

Theorem 4.1. Let P be an n × n irreducible stochastic matrix and v =
(v1, v2, . . . , vn)T be the stationary distribution vector of P . Denote

µ = max

{
vi

vj
: 1 � i, j � n

}
.

Then

(16) σ(P ) � 2n
2 + (−1)n − 1

8
µ|1− λ2(P )|.
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�����. Since P is a stochastic matrix, we have that Pe = e, e = (1, 1, . . . , 1)T

and

η(P, e, v) = min

∑
i∈M, j �∈M

(pijvi + pjivj)

2|M |(n− |M |) � vmin

∑
i∈M,j �∈M

(pij + pji)

2|M |(n− |M |)

� 4v
2n2 + (−1)n − 1 min

∑

i∈M,j �∈M

(pij + pji) =
4v

2n2 + (−1)n − 1 σ(P ).

On the other hand, by Theorem 3.2,

|1− λ2(P )| � |1− Reλ2(P )| �
2η(P, e, v)

v
.

Hence

σ(P ) � 2n
2 + (−1)n − 1
4v

η(P, e, v) � 2n
2 + (−1)n − 1

8
µ|1− λ2(P )|.

�

Corollary 4.2. Let P be a doubly stochastic matrix. Then

(17) σ(P ) � 2n
2 + (−1)n − 1

8
|1− λ2(P )|.

�����. If P is reducible, then σ(P ) = 0 and (17) holds. If P is irreducible,

then it follows from (16) and µ = 1. �

Corollary 4.3. Let P be an irreducible stochastic matrix and

p = min{pij : pij �= 0, i �= j}.

Then

(18) σ(P ) � n2

4pn−1 |1− λ2(P )|.

�����. It follows from (4.2) and µ � (1/p)n−1 by [8]. �

Remark 4.4. Theorem 4.1, Corollary 4.2 and 4.3 partly answer the Hartfiel and
Meyer’s Conjecture [3].
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