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A FUNCTION RELATED TO A LAGRANGE-BÜRMANN SERIES

Paul Bracken, Montréal

(Received August 30, 1999)

Abstract. An infinite series which arises in certain applications of the Lagrange-Bürmann
formula to exponential functions is investigated. Several very exact estimates for the Laplace
transform and higher moments of this function are developed.
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The Lagrange-Bürmann formula [1], [2] has found many applications, such as

evaluating roots of certain transcendental equations and obtaining expansions of a
function in powers of a related but different function. Here, we would like to discuss

some properties of a function which appears naturally in some of these problems, for
example, expanding the function eαz in powers of w = ze−z where α is an arbitrary
constant. The function F (x) is defined by the series

(1) F (x) =
∞∑

n=1

nn−1xn−1

n!
e−nx.

From this expression, one can obtain the usual Laplace transform and higher moment

integrals of the Laplace transform of this function. This function is also found in
the work of S. Ramanujan [3] in a form which is different from that which appears

in (1), and also in the Questions and Solutions of his collected papers [4].

Lemma 1. For 0 � x � 1,

(2)
∞∑

n=1

e−nx (nx)n−1

n!
= 1.
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�����. Clearly, this holds at x = 0. Suppose that x > 0, then the equation

w = x/ϕ(x) where ϕ(x) is regular in a neighbourhood of x = 0, ϕ(0) �= 0 implies
that a Lagrange series for x in powers of w can be written as follows

x =
∞∑

n=1

wn

n!

[
dn−1[ϕ(y)]n

dyn−1

]

y=0

.

In the case in which one puts ϕ(x) = ex so that w = xe−x, one obtains

x =
∞∑

n=1

xne−nx

n!
nn−1.

Removing a factor of x on both sides of this expression gives (2).

Letting the variable in the region x > 1 be called y, any y > 1 can be associated
to a particular x < 1 by means of the equation xe−x = ye−y. Thus

x =
∞∑

n=1

nn−1yn

n!
e−ny.

If s(y) is defined by x = ys(y) for y > 1, then

F (y) = s(y) =
∞∑

n=1

nn−1yn−1

n!
e−ny.

These results are summarized in Theorem 1. �

Theorem 1. The function F (x) defined by equation (1) is given by

(3) F (x) = 1, x � 1, F (x) = s(x), x > 1.

Define the related functions gm(x) and fm(x) on (0, 1) and I = [0, 1] respectively
as follows

(4) gm(x) =
∞∑

n=1

e−xn (xn)n−m

n!
, fm(x) = xmgm(x) =

∞∑

n=1

e−xn xnnn−m

n!
.

The terms in the series for fm(x) are defined and continuous for all x � 0. The
function xne−xn has a maximum at x = 1 for all n � 1 and a minimum of zero at
x = 0. Setting

an(x) = e
−nx nn−m

n!
xn,
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then the bound

lim
n→∞

an+1(x)
an(x)

= xe1−x < 1,

holds for x �= 1 since xe1−x has a maximum value of 1 at x = 1. Therefore fm(x)
in (4) converges on (0, 1) and (1,∞), respectively. Thus the series for f0(x) converges
uniformly for all x ∈ [0, 1). Using Stirling’s formula,

1
n!

<
1√
2�n

n−nen exp

(
− 1

12n+ 14

)
,

it follows that

an(x) <
1√
2�n

n−m exp

(
− 1

12n+ 14

)
<

1
nm+1/2

.

The series on the right hand side converges for all integersm � 1, since it is a p-series.

The Weierstrass test then implies that the series in (4) for fm(x) converges uniformly
on �, for all integers m � 1, hence on I. Thus fm(x) can be differentiated term by

term with respect to x in this interval. Also, gm(x) is obtained by multiplying fm(x)
by x−m when x �= 0.

Theorem 2. For x ∈ I and m � 1,

(5) fm(x) =
∫ x

0

(1 − u)
u

fm−1(u) du,

and for x �= 0,

(6) gm(x) = x−m

∫ x

0
(1− u)um−2gm−1(u) du.

�����. Suppose m � 1 and let x ∈ I. Uniform convergence allows one to

differentiate fm(x) with respect to x term by term to obtain

f ′m(x) = −
∞∑

n=1

ne−nx xnnn−m

n!
+

∞∑

n=1

ne−nx xn−1nn−m

n!
=
(1 − x)

x
fm−1(x).

Using (4), the function on the right hand side of this equation is continuous on I, so
this differential equation can be integrated to give

fm(x) =
∫ x

0

(1 − u)
u

fm−1(u) du.

This is just (5). Using the definition fm(x) = xmgm(x), one obtains (6), and we are
done. �
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From Lemma 1, it is clear that g1(x) = 1, hence f1(x) = x and the differential

equation for fm(x) gives
f0(x) = g0(x) =

x

1− x
.

One can now use (6) to work out g2(x) for m = 2 as follows

g2(x) =
1
x
− 1
2
.

In fact, a formula which gives gm(x) can be obtained and is given in the following
Theorem.

Theorem 3. For x ∈ (0, 1] and m � 2, the function gm(x) can be written as a
finite series in the form

(7) gm(x) =
1

xm−1 +
m−1∑

i=1

am,i

xm−1−i
.

The coefficients am,i can be determined recursively by using the relations

am,1 =
1
2
(am−1,1 − 1),(8)

am,i =
1

i+ 1
(am−1,i − am−1,i−1), i = 2, . . . , m− 2

am,m−1 = − 1
m

am−1,m−2.

The recursion is initialized by using the value a2,1 = −1/2.
�����. The proof is by induction. The form of gm(x) given by (7) is clear from

the calculated form of g2(x), which agrees with (7) using the given initialization.

Suppose that

gm−1(x) =
1

xm−2 +
m−2∑

i=1

am−1,i
xm−i−2 .

Substituting this into (6), one obtains

gm(x) = x−m

∫ x

0
(1− t)

(
1 +

m−2∑

i=1

am−1,it
i

)
dt(9)

= x−m+1 +
1
2
(am−1,1 − 1)x−m+2

+
m−2∑

i=2

1
i+ 1

(am−1,i − am−1,i−1)xi−m+1 − 1
m

am−1,m−2.

This is of the form (7), and the result follows by induction under the identification (8).
�
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Define the function Pr(x) for x > 0 by means of the integral

(10) Pr(x) =
∫ ∞

0
tre−xtF (t) dt

in terms of the function F , which is defined by equation (1). The case r = 0 is
just the Laplace transform of F (x). Substituting the function F from (1) into the

integral (10), one can obtain a series representation for the function Pr(x) as follows

Pr(x) =
∫ ∞

0
e−xt

∞∑

n=1

nn−1tn+r−1

n!
e−nt dt

=
∞∑

n=1

∫ ∞

0

nn−1tn+r−1

n!
e−(n+x)t

=
∞∑

n=1

nn−1

n!(n+ x)n+r−1

∫ ∞

0
zn+r−1e−z dz

=
∞∑

n=1

nn−1

n!(n+ x)n+r−1 Γ(n+ r).

For example, let us write the cases corresponding to r = 0, 1 explicitly in order to
see their structure. They are

P0(x) =
∞∑

n=1

nn−2

(n+ x)n−1
, P1(x) =

∞∑

n=1

nn−1

(n+ x)n
.

The behaviour of Pr(x) for larger values of x can be studied and we will do this here
for the cases r = 0 and 1 proceeding directly from the integral (10).
Putting r = 0 in the integral (10), one can write

P0(x) =
∫ ∞

0
e−xtF (t) dt =

∫ 1

0
e−xt dt+

∫ ∞

1
e−xts(t) dt =

1
x
+
1
x

∫ ∞

1
e−xt ds.

Taking x = ys(y) in the equation xe−x = ye−y, one can solve the equation (s−1)y =
log s for y. Therefore, P0(x) can be written as follows,

(11) P0(x) =
1
x
− e

−x

x

∫ 1

0

(
e(1− v)1/v

)x
dv =

1
x
+R0(x)

where R0(x) is defined in the obvious way.

Lemma 2. The following inequalities hold for 0+ � v � 1,

(12) (1− v) � e(1− v)1/v � (1− v)1/2,
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and

(13) e(1− v)1/v �
{
(1 − 4v/3)3/8, 0 � v � 3/4,
0, 3/4 � v � 1.

�����. Only the proof of the first inequality in (12) will be given here. To do

this define the function

f(v) = log(1− v)− v log(1− v) + v.

Then f(0) = 0 and f ′(v) = − log(1 − v) � 0, so this function is strictly increasing
on [0, 1), and f(v) � 0. Dividing by v and exponentiating, we are done. The other
inequalities can be done in the same way. �

Theorem 4. The following bounds for R0(x) defined in (11) hold,

(14) − 2e−x

x(x + 2)
� R0(x) � − e−x

x(x + 1)
.

In fact, one can write

(15) P0(x) =
1
x
− 2e−x

x(x + 2 + θ)
, 0 < θ <

2
3
.

�����. To prove these bounds, it is easy to see that the inequalities in (12) can

be integrated with respect to v after raising the inequalities to the power x. This
gives us

1
x+ 1

�
∫ 1

0

(
e(1− v)1/v

)x
dv � 2

x+ 2
.

On the other hand, using (13), one can obtain a slightly different lower bound as

follows,
2

x+ 8/3
�

∫ 1

0

(
e(1 − v)1/v

)x
dv � 2

x+ 2
.

Consequently, one can write P0(x) in the form (15). The limits 8/3 and 2 are actually
obtained at x =∞ and x = 0. �

Consider the case r = 1 in the integral given by (10). Using the properties of F (t)
given in Theorem 1, one can write

∫ ∞

0
te−xtF (t) dt =

∫ 1

0
te−xt dt+

∫ ∞

1
te−xts(t) dt.
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The first integral can be done by parts to give
∫ 1

0
te−xt dt = −e−x

x
− 1

x2
(e−x − 1).

Similarly one obtains for the second integral,
∫ ∞

1
te−xts(t) dt =

e−x

x
+
e−x

x2
+

∫ ∞

1

(
t

x
+
1
x2

)
e−xt ds.

Adding these two equations, one obtains the following expression for P1(x)
∫ ∞

0
te−xtF (t) dt =

1
x2
+
1
x

∫ ∞

1

(
t+
1
x

)
e−xt ds =

1
x2
+R1(x),

where R1(x) is defined in the obvious way. Again putting x = ys(y) in the equation

xe−x = ye−y, one can solve the equation (s− 1)y = log s for y, and introducing the
variable s = 1− v, one obtains the following expression for R1(x),

(16) R1(x) = −
e−x

x

∫ 1

0

(
− log(1− v)

v
+
1
x

)(
e(1− v)1/v

)x
dv.

Theorem 5. The following bounds for R1(x) hold

(17) −2e
−x

x2
p1(x) � R1(x) � −2e

−x

x2
p2(x),

where

p1(x) =
x4 + 21x3 + 158x2 + 504x+ 192
(x + 2)(x+ 4)(x+ 6)(x+ 8)

,(18)

p2(x) =
x3 + 463 x2 + 2003 x+ 1283(
x+ 83

)(
x+ 163

)
(x + 8)

.

�����. The following inequality is easy to show

g(v) = − log(1− v)
v

� (1 + v)(1 + v2),

for v in the interval [0, 1]. Using this fact and the inequality on the right of (12), it
follows by integrating that

1
x

∫ 1

0

(
− log(1− v)

v
+
1
x

)(
e(1− v)1/v

)x
dv

� 1
x

∫ 1

0

(
(1 + v)(1 + v2) +

1
x

)
(1− v)x/2 dv

=
2
x2

x4 + 21x3 + 158x2 + 504x+ 192
(x+ 2)(x+ 4)(x+ 6)(x+ 8)

which is of the form p1(x) in (18).
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Similarly, using the fact that − log(1 − v)/v � 1 + v/2 + v2/3 on [0, 1), one can

obtain a bound in the other direction using inequality (13),

1
x

∫ 1

0

(
− log(1− v)

v
+
1
x

)(
e(1− v)1/v

)x
dv

� 1
x

∫ 1

0

(
1 +

v

2
+

v2

3
+
1
x

)(
1− 4v

3

)3x/8

dv

=
1
9x2
162x3 + 2484x2 + 10800x+ 6912
9x3 + 144x2 + 704x+ 1024

which is of the form p2(x) in (18) after rearranging constants. This gives the stated

upper bound for R1(x) given in (17). �
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