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Abstract. In this paper we apply the notion of the product MV -algebra in accordance
with the definition given by B. Riečan. We investigate the convex embeddability of an MV -
algebra into a product MV -algebra. We found sufficient conditions under which any two
direct product decompositions of a product MV -algebra have isomorphic refinements.
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In this paper we apply the notion of the product MV -algebra in accordance with
the article [11]; it is defined to be an MV -algebra with a further binary operation

(called product) satisfying certain axioms. The definition is recalled in Section 1
below.

Different definitions of the operation of product in MV -algebras have been used
in [4] and [5]. If a binary operation satisfies the postulates from [5] then it will be

called a DR-product.

If A is an MV -algebra, then its underlying set will be denoted by A.

LetM1 be the class of all MV -algebras A such that there exists a binary opera-
tion · on A having the property that the algebraic system (A, · ) turns out to be a
product MV -algebra. Further, letM2 be the class of all product MV -algebras.

For A ∈ M1 we denote by P (A) the set of all binary operations op on A such

that (A, op) belongs toM2. Put

P = {cardP (A) : A ∈M1}.

In the present paper we show that P is a proper class. We prove that each MV -
algebra can be convexly embedded into an MV -algebra which is an element ofM1.
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Let A be an MV -algebra and let · be a DR-product defined on A. We investigate

some relations between the direct product decompositions of theMV -algebra A and
the properties of the operation of the DR-product under consideration. In particular,
we find sufficient conditions under which any two direct product decompositions of

(A, · ) have isomorphic refinements.

1. Preliminaries

For MV -algebras several different (but equivalent) systems of axioms have been

applied (cf., e.g., [1], [7], [11]).
In this paper the system from [7] will be used; cf. also the articles [8] and [9].

Hence anMV -algebra A is defined to be a nonempty set A with binary operations
⊕, ∗, a unary operation ¬ and nulary operations 0, 1 on A such that the conditions

(M1)–(M8) from [7] are satisfied.
For lattice ordered groups we apply the notation and the terminology from [3].

Let G be an abelian lattice ordered group with a strong unit u. Let A be the
interval [0, u] of G. For a, b ∈ A we put

a⊕ b = (a + b) ∧ u, ¬a = u− a,

1 = u, a ∗ b = ¬(¬a⊕ ¬b).

Then (cf. Mundici [10]) the algebraic system A = (A;⊕, ∗,¬, 0, 1) is anMV -algebra.

In accordance with [2] we denote this MV -algebra by Γ(G, u). (In [8] and [9] the
notation A0(G, u) has been used.)
Further, for each MV -algebra A there exists an abelian lattice ordered group G

with a strong unit u such that A = Γ(G, u). (Again, cf. Mundici [10].)
Let X be a partially ordered set. A sequence (xn) in X is called decreasing if

xn > xn+1 for each n ∈ 
 . For x ∈ X , the symbol xn ↘ x has the usual meaning.

Let A and G be as above.

1.1. Definition (cf. [11]). Assume that a binary operation · is defined on the
set A such that the following conditions are satisfied:
(i) u · u = u.

(ii) The operation · is commutative and associative.
(iii) If a, b ∈ A and a + b 6 u, then c · (a + b) = c · a + c · b for any c ∈ A.

(iv) If an ↘ 0 and bn ↘ 0, then an · bn ↘ 0.
The MV -algebra A with the operation · is called a product MV -algebra.

Let a, b ∈ A. If a+ b 6 u, then we say that a+ b exists in A or that a+ b is defined
in A.
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1.2. Definition (cf. [5]). A binary operation · on the set A will be called a

DR-product if the following condition is satisfied for each a, b, c ∈ A:

Whenever a + b is defined in A, then a · c + b · c and c · a + c · b exist in A and

(a + b) · c = a · c + b · c,
c · (a + b) = c · a + c · b.

1.3. Definition. Let A be an MV -algebra. Assume that a binary operation ·
is defined on the set A such that

a) the conditions (i), (ii) and (iv) from 1.1 are satisfied;

b) if a, b ∈ A and a + b 6 u, then c · (a + b) = c · a⊕ c · b for any c ∈ A.

Under these assumptions (A, · ) is called a weak product MV -algebra.

Recall that whenever x, y ∈ A and x + y 6 u, then x ⊕ y = x + y. Hence each

product MV -algebra is a weak product MV -algebra.

2. Examples

2.1. Example. Let R be the additive group of all reals with the natural linear

order and let u = 1. Put A = Γ(R, u). Let · be the usual multiplication of reals.
Then (A, · ) is a product MV -algebra.

2.2. Example. Let A be a finite MV -algebra with cardA > 2. For x, y ∈ A the

product x · y is defined as follows:

x · y =

{
0 if either x = 0 or y = 0,

u otherwise.

Then (A, · ) is a weak product MV -algebra.

The following example shows that there exist infinite weak product MV -algebras

with the operation · defined as in 2.2.

2.3. Example. Let Z be the additive group of all integers with the natural linear
order and G1 = G2 = Z. Consider the lexicographic product G = G1 ◦G2 (we apply

the notation as in Fuchs [6]). Denote u = (1, 0), 0 = (0, 0) and let A = Γ(G, u).
Then A is the interval [0, u] of G. If (xn) is a sequence in A with xn ↘ 0, then there
is a positive integer m such that xn = 0 whenever n > m. Let us define the product
x · y analogously as in 2.2. Then A is an infinite weak product MV -algebra.
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For an MV -algebra A we denote by `(A) the underlying lattice. We remark that
the validity of the condition (iv) from 1.1 in the previous example is due to the fact
that the linearly ordered set `(A) has an atom.
The following example shows that an analogous situation can occur also in the

case when `(A) has no atom.
Let J be a linearly ordered set such that

(i) J has the greatest element j0;

(ii) if (jn) is a decreasing sequence in J , then there exists j ∈ J such that j < jn

for each n ∈ 
 .
There exists a proper class of linearly ordered sets satisfying (i) and (ii); in fact,

for each cardinal α there exists J with the above properties such that cardJ > α.

2.4. Example. Let J be as above and for each j ∈ J let Gj = R. If r1, r2 ∈ R,
then the multiplication r1r2 has the usual meaning. Let

G = Γj∈JGj

(the lexicographic product of linearly ordered groups Gj ; cf. [6]). For g ∈ G and

j ∈ J let gj be the component of g in Gj .

Let u ∈ G be such that uj0 = 1 and uj = 0 whenever j 6= j0. Hence u is a strong
unit of G. Consider the MV -algebra A = Γ(G, u). Then `(A) is a linearly ordered
set and it has no atom. Similarly as in 2.3, if xn ↘ 0 in `(A), then there is m ∈ 

such that xn = 0 for each n > m. Let us define the operation · in A analogously as

in 2.2. Then (A, · ) is a weak product MV -algebra.

2.5. Example. Let G be an abelian lattice ordered group, G 6= {0}, and let Z be
the additive group of all integers with the natural linear order. Put H = Z ◦G. For
h ∈ H let h(Z) and h(G) be the components of h in Z and in G, respectively. Let

u ∈ H be such that u(Z) = 1 and u(G) = 0. Then u is a strong unit of H . Consider
the MV -algebra A = Γ(H, u). Denote

X = {a ∈ A : a(Z) = 1}, Y = {a ∈ A : a(Z) = 0}.

Then X ∪ Z = A and X ∩ Y = ∅.

If x1, x2 ∈ X , then x1 + x2 > u, hence x1 + x2 /∈ A.

We define a binary operation · on A as follows. Let z1, z2 ∈ A. We put z1 · z2 = u

if both z1 and z2 belong to X . Otherwise we set z1 · z2 = 0.

It is obvious that the conditions (i), (ii) and (iv) from 1.1 are satisfied. Let us
verify that (iii) holds as well.

800



Let a, b, c ∈ A, a + b 6 u. Hence we cannot have a, b ∈ X . If c ∈ Y , then

(a + b) · c = 0 = a · c + b · c.

The same holds if both a and b belong to Y . In the remaining case we can suppose

that c ∈ X , a ∈ X and b ∈ Y . Thus a + b ∈ X and a · c = u, b · c = 0, whence

(a + b) · c = u = a · c + b · c.

2.6. Example. Let G, H and A be as in 2.5; we use also X and Y in the same
sense as in 2.5.

Consider the binary operation ·(1) on A which is defined as follows. Let z1, z2 ∈ A.
a) If z1, z2 ∈ X , then we put z1 · (1)z2 = (1, z1(G) + z2(G)).
b) In the case z1 ∈ X , z2 ∈ Y we set z1 · (1)z2 = z2 · (1)z1 = z2.
c) For z1, z2 ∈ Y we put z1 · (1)z2 = 0.
Let us remark that in the case a) we have z1(G) 6 0, z2(G) 6 0, whence (1, z1(G)+

z2(G)) ∈ A; therefore the operation · is correctly defined.
Then we have u · (1)u = u. The commutativity of the operation · (1) is obvious.

Let z1, z2, z3 ∈ A.
If z1, z2, z3 ∈ X , then

(z1 · (1)z2) · (1)z3 = (1, z1(G) + z2(G) + z3(G) = z1 · (1)(z2 · (1)z3).

If at least two indices i1, i2 of the set {1, 2, 3} have the property that zi1 , zi2 ∈ Y ,
then

(z1 · (1)z2) · (1)z3 = 0 = z1 · (1)(z2 · (1)z3).

Let i1, i2 and i3 be distinct indices belonging to the set {1, 2, 3}. Suppose that
zi1 , zi2 ∈ X and zi3 ∈ Y . Then we have

(z1 · (1)z2) · (1)z3 = zi3 = z1 · (1)(z2 · (1)z3).

Hence the operation · (1) is associative.
Again, let z1, z2, z3 ∈ A and suppose that z1 + z2 6 u.
First suppose that both z1 and z2 belong to the set Y . Then z1 + z2 ∈ Y . The

case z3 ∈ Y yields

z3 · (1)(z1 + z2) = 0 = z3 · (1)z1 + z3 · (1)z2;

if z3 ∈ X , then

z3 · (1)(z1 + z2) = z1 + z2 = z3 · (1)z1 + z3 · (1)z2.
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The case z1, z2 ∈ X cannot occur. Suppose that z1 ∈ X and z2 ∈ Y . Put

z1 + z2 = z4. Hence z4 ∈ X , z4(G) = z1(G) + z2(G).
If z3 ∈ Y , then

z3 · (1)(z1 + z2) = z3 = z3 · (1)z1 + z3cdot(1)z2;

in the case z3 ∈ X we have

z3 · (1)(z1 + z2) = (1, z3(G)) · (1)(1, z1(G) + z2(G)) = (1, z1(G) + z2(G) + z3(G)),

and at the same time

z3 · (1)z1 + z3 · (1)z2 = (1, z3(G) + z1(G)) + (0, z2(G)) = (1, z3(G) + z1(G) + z2(G)).

Hence the condition (iii) from 1.1 is satisfied.

Let (zn) be a sequence in A such that zn ↘ 0. From the construction of A we
easily obtain that there is m ∈ 
 such that zn ∈ Y for each n > m. This yields that

the condition (iv) from 1.1 is satisfied.
Therefore (A, · (1)) is a product MV -algebra.

Since the operations · and · (1) on A are distinct, we infer

cardP (A) > 2.

3. The class P and convex embeddings

The notion of the direct product of MV -algebras is defined in the usual way.

Cf., e.g., [8].
Let (Ai)i∈I be an indexed system of MV -algebras. Consider the direct product

(1) A =
∏

i∈I

Ai.

Assume that for each i ∈ I a binary operation opi is defined on Ai such that (Ai, opi)
is a product MV -algebra.

For x ∈ A and i ∈ I let xi be the component of x in Ai. We define a binary
operation op on A by putting x op y = z, where

zi = xi opi yi for each i ∈ I.

3.1. Lemma. (A, op) is a product MV -algebra.
�
�������

. Let (xn) be a sequence in A. Then x ↘ 0 if and only if (xn)i ↘ 0 for
each i ∈ I . Hence the condition (iv) from 1.1 is valid for (A, op). It is clear that the
conditions (i), (ii) and (iii) from 1.1 are valid as well. �
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3.2. Corollary. The classM1 is closed with respect to the direct products.

Let α be an infinite cardinal and let I be a linearly ordered set having the cardi-

nality α. Further, let A be as in 2.5. Put

Bi = A for each i ∈ I,

B =
∏

i∈I

Bi.

Choose a fixed element i(0) ∈ I . For each i ∈ I we define a binary operation

op(i(0),i)

on the set Bi as follows:

a) If i 6 i(0) then op(i(0),i) is the operation described in 2.5.

b) If i > i(0) then op(i(0),i) is defined as in 2.6.

Further, we define the binary operation opi(0) on B by putting

x opi(0) y = z,

where

zi = xi op(i(0),i) yi for each i ∈ I.

3.3. Lemma. For each i(1) ∈ I , (B, opi(1)) is a product MV -algebra.
�
�������

. This is a consequence of 3.1 (in view of 2.5 and 2.6). �

If i(0) and i(1) are distinct elements of I , then the operations opi(0) and opi(1) are

distinct as well. Hence we have

P (B) > α.

Therefore we obtain

3.4. Theorem. For each cardinal α there exists a cardinal β belonging to P
such that β > α.

We conclude that P is a proper class.
Let G1 be an abelian lattice ordered group with a strong unit u1. Put A1 =

Γ(G1, u1). Further, let 0 < u2 ∈ A1. The convex `-subgroup of G1 which is generated
by u2 will be denoted by G2. Then u2 is a strong unit in G2. Consider the MV -

algebra A2 = Γ(G2, u2). The lattice `(A2) is a convex sublattice of `(A1). Under
these assumptions A2 is said to be convexly embedded into the MV -algebra A1.
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Let X be a lattice with the least element 0 and let X1 be a sublattice of X such

that

(i) 0 ∈ X1;

(ii) if x ∈ X and x ∧ x1 = 0 for each x1 ∈ X1, then x = 0.
Then X1 will be called a dense sublattice of X (an analogous terminology is applied

in the theory of lattice ordered groups).

3.5. Theorem. Let A1 be an MV -algebra with cardA1 > 1. Then there exists
an MV -algebra A such that
(i) A1 is convexly embedded into A;
(ii) `(A1) is a dense sublattice of `(A);
(iii) A ∈M1;

(iv) cardP (A) > 2.
�
�������

. There is an abelian lattice ordered group G with a strong unit u1 such

that A1 = Γ(G, u1). Then cardG > 1. Let A and H be as in 2.5. The convex
`-subgroup of H which is generated by the element u1 is G. The lattice `(A1) is a
convex sublattice of the lattice `(A). Hence (i) is valid.
Let x ∈ A and suppose that x ∧ x1 = 0 for each x1 ∈ A1. If x(Z) 6= 0, then

x ∧ x1 = x1 for each x1 ∈ A1; hence x(Z) = 0. Suppose that x(G) > 0. Since u1 is

a strong unit in G we obtain u1 ∧ x(G) > 0, whence

(0, u1) ∧ x > 0

and (0, u1) ∈ A1. Thus we have arrived at a contradiction. Therefore x = 0. Hence
(ii) is satisfied.

In view of 2.5, (iii) holds. Finally, according to 2.6, the condition (iv) is valid. �

4. Direct product decompositions

We denote by M0 the class of all algebraic systems (A, · ), where A is an MV -
algebra and · is a DR-product defined on the set A. Then x · 0 = 0 · x = 0 for each
x ∈ A.

For elements (Ai, · ) (i ∈ I) ofM0 the direct product

(1)
∏

i∈I

(Ai, · )

is defined in the standard way (i.e., all operations are performed componentwise).
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Suppose that (A, · ) belongs toM0 and that

(2) ϕ : (A, · ) →
∏

i∈I

(Ai, · )

is an epimorphism. Then we say that ϕ (or the relation (2)) is a direct product

decomposition of (Ai, · ).
An analogous terminology will be applied also for other types of algebraic struc-

tures.
If (2) is valid, x ∈ A, ϕ(x) = (xi)i∈I and i(0) ∈ I , then we denote

(3) ϕi(0)(x) = xi(0).

Suppose that (1) is valid. By dropping the operation · we infer that

(4) ϕ : A →
∏

i∈I

Ai

is a direct product decomposition of the MV -algebra A.
We say that the direct product decomposition (4) of A is determined by the direct

product decomposition (2) of (A, · ).
The question arises whether each direct product decomposition of A is determined

by some direct product decomposition of (A, · ).
Below we show by an example that the answer is negative in general. Further, we

prove

4.1. Theorem. Let (A, · ) ∈M0. The following conditions are equivalent:

(i) Each direct product decomposition of A is determined by some direct product
decomposition of (A, · ).

(ii) Whenever b and c are complementary elements of the lattice `(A), then
a) the interval [0, b] is closed with respect to the operation · ;
b) if b1 ∈ [0, b] and c1 ∈ [0, c], then b1 · c1 = 0.

It is easy to verify that the condition (i) from 4.1 is equivalent to the condition

(∗) Whenever (4) is a direct product decomposition of A, then
a1) for each i ∈ I we can define an operation · on Ai such that (Ai, · ) ∈M0;
b1) if i ∈ I and x, y ∈ A, then ϕi(x · y) = ϕi(x) · ϕi(y).

For proving 4.1 we need some lemmas.

4.2. Lemma. Let A be an MV -algebra and let b, c be complementary elements

of the lattice `(A). Let the mapping

ϕ : A → [0, b]× [0, c]
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be defined by ϕ(x) = (x ∧ b, x ∧ c) for each x ∈ A. Then ϕ is a direct product

decomposition of the lattice `(A).
�
�������

. This is an immediate consequence of the fact that the lattice `(A) is
distributive. �

As above, let A = Γ(G, u) and let b, c be as in 4.2. Let G1 and G2 be the convex
`-subgroups of G which are generated by the elements b and c, respectively. Then
b is a strong unit in G1 and, similarly, c is a strong unit in G2. Denote

B = Γ(G1, b), C = Γ(G2, c).

Hence `(B) = [0, b] and `(C) = [0, c] (where the intervals are taken with respect to
the lattice `(A)).

4.3. Lemma. Under the above assumptions and notation, we have a direct

product decomposition

ϕ : A → B × C.

�
�������
. This is a consequence of 4.2 and of Theorem 3.5 in [8]. �

4.4. Lemma. Let (A, · ) ∈M0 and let (i), (ii) be as in 4.1. Then (i)⇒ (ii).
�
�������

. Let (i) be valid. Let b and c be complementary elements in `(A).
Consider the direct product decomposition ϕ from 4.3. Then (cf. (∗)) we can define
the binary operation · on B and on C such that (B, · ) and (C, · ) belong to M0;

moreover, ϕ is a direct product decomposition of the groupoid (A, · ).
a) Let x, y ∈ [0, b]. Hence a ∧ b = x, x ∧ c = 0, thus ϕ(x) = (x, 0) and similarly,

ϕ(y) = (y, 0). Then
ϕ(x · y) = (x · y, 0)

(since, in view of (i), the operation · is performed componentwise; cf. also (∗)).
Therefore x · y must belong to [0, b].
b) Let b1 ∈ [0, b], c1 ∈ [0, c]. Then ϕ(b1) = (b1, 0), ϕ(c1) = (0, c1) and

ϕ(b1 · c1) = (b1, 0) · (0, c1) = 0.

Thus b1 · c1 = 0. �

Now let us assume that (A, · ) is an element of M0 satisfying the condition (ii).
Let us have a two factor direct product decomposition of A

(5) ϕ1 : A → B1 × C1.
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In view of the definition of the direct product decomposition, all the MV -

operations are performed componentwise with respect to ϕ1. It is well-known that
the lattice operations ∨ and ∧ can be expressed in terms of the operations⊕, ∗ and ¬;
hence ∨ and ∧ are also performed componentwise.
Analogously as in (3) we denote

ϕ1(x) = (xB1 , xC1)

for each x ∈ A. We obviously have 0B1 = 0 = 0C1 .
We denote by b1 and c1 the greatest elements of `(B1) and of `(C1), respectively.

Next, we put
b = ϕ−1

1 ((b1, 0)), c = ϕ−1
1 ((0, c1)).

Then b and c are complementary elements of `(A). Let B and C have the same
meaning as above.
In view of (ii), the set B is closed with respect to the operation · ; let x1, x2, x3 ∈

[0, b] be such that x1+x2 6 b. Then x1+x2 6 u, whence (x1+x2)·x3 = x1 ·x3+x2 ·x3.

Therefore the algebraic system (B, · ) belongs toM0. Analogously (C, · ) ∈M0.
The mapping t → tB1 (where t runs over the set B) is an isomorphism of B

onto B1. Similarly, the mapping z → zC1 (with z running over C) is an isomorphism
of C onto C1.

Let b′1 and b′2 belong to B1. There are uniquely determined elements b1 and b2

in B such that

(bi)B1 = b′i (i = 1, 2).

Put b1 · b2 = b3. Then b3 ∈ B. We define the operation · on B1 by setting

(6) b′1 · b′2 = (b3)B1 .

Analogously we define the operation · on the set C1.

Under this definition we have

(B1, · ) ∈M0, (C1, · ) ∈ M0.

We define the operation · on the set B1×C1 componentwise; then (B1×C1, ·) ∈M0.
Further, whenever b1 and b2 are elements of B, then in view of (6) we have

(6′) ϕ1(b1 · b2) = ϕ(b1) · ϕ(b2).

For x ∈ A we put
x1 = x ∧ b, x2 = x ∧ c.
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Then we have

(x1)B1 = xB1 ∧ b1 = xB1 ,

(x1)C1 = xC1 ∧ 0 = 0.

Similarly,

(x2)B1 = 0, (x2)C1 = xC1 .

Further, x1 ∈ B, x2 ∈ C and x1 ∧ x2 = 0, x1 ∨ x2 = x. Thus x1 ∨ x2 = x1 + x2 = x.

For y ∈ A we apply analogous notation. Hence

x · y = (x1 + x2) · (y1 + y2) = x1 · y1 + x1 · 2 + x2 · y1 + x2 · y2.

In virtue of the condition b) in (ii) we get

x1 · y2 = 0 = x2 · y1,

whence

x · y = x1 · y1 + x2 · y2,

ϕ1(x · y) = ϕ1(x1 · y1) + ϕ1(x2 · y2).

In view of (6) and (6′) we obtain

ϕ1(x1 · y1) = ϕ1(x1) · ϕ1(y1) = ((x1)B1 , 0) · ((y1)B1 , 0)

= ((x1)B1 · (y1)B1 , 0) = (xB1 · yB1 , 0).

Analogously,

ϕ1(x2 · y2) = (0, (x2)C1 · (y2)C1) = (0, xC1 · yC1).

Therefore

ϕ1(x · y) = (xB1 · yB1 , xC1 · yC1).

Hence the operation · is performed componentwise with respect to the mapping ϕ1.
Thus we have

4.5. Lemma. Let (A, · ) ∈ M0 and suppose that the condition (ii) from 4.1 is

satisfied. Let (5) be valid. Then we can define the binary operation · on B1 and

on C1 such that

(i) (B1, · ) and (C1, · ) belong toM0;
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(ii) the direct product decomposition

(7) ϕ1 : (A, · ) → (B1, · )× (C1, · )

is valid.

Again, let (A, · ) ∈M0 and assume that the condition (ii) from 4.1 holds. Assume
that

(5′) ϕ2 : A →
∏

i∈I

Ai

is a direct product decomposition of A. Let i(0) be a fixed element of I . The case
I = {i(0)} being trivial we can suppose that the set J = I \ {i(0)} is nonempty. Put

A′
i(1) =

∏

j∈J

Aj .

In view of (5′) there exists a direct product decomposition

(5′′) ϕ2i(0) : A → Ai(0) ×A′
i(0)

such that, for each s ∈ A, the component of x in Ai(0) with respect to (5′) is the

same as the component of x in Ai(0) with respect to (5′′).
Now we can apply Lemma 4.5 to the direct product decomposition (5′′). In view

of (∗) we obtain that the condition (i) from 4.1 is valid for (A, · ). Thus we have

4.6. Lemma. Let (A, · ) ∈M0 and let (i), (ii) be as in 4.1. Then (ii)⇒ (i).
From 4.4 and 4.6 we conclude that Theorem 4.1 is valid.

4.7. Example. Let G1 = G2 = R, G = G1 ×G2. For g ∈ G we denote by gi the

component of g in Gi, (i = 1, 2). Let u = (1, 1), A = Γ(G, u). If z1, z2 ∈ R, then
z1z2 denotes the usual multiplication in R.

Let x, y ∈ A. Denote

t =
1
4
(x1y1 + x2y2).

Put x · y = (t, t). Then (A, · ) is an element of M0 which fails to satisfy the con-

dition (ii) from 4.1. The MV -algebra A is directly decomposable, but the algebraic
system (A, · ) is directly indecomposable.

4.8. Theorem. Let (A, · ) ∈ M0 and suppose that the condition (ii) from 4.1

is satisfied. Then any two direct product decompositions of (A, · ) have isomorphic
refinements.
�
�������

. This is a consequence of 4.1 and of [8], Corollary 3.6. �

809



References

[1] G. Cattaneo and F. Lombardo: Independent axiomatization for MV -algebras. Tatra Mt.
Math. Publ. 15 (1998), 227–232.

[2] R. Cignoli, I.M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued
Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.

[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1971.
[4] A. Dvurečenskij and A. DiNola: Product MV -algebras. Multiple Valued Logic 6 (2001),

193–251.
[5] A. Dvurečenskij and B. Riečan: Weakly divisible MV -algebras and product. J. Math.

Anal. Appl. 234 (1999), 208–222.
[6] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964.
[7] D. Gluschankof: Cyclic ordered groups and MV -algebras. Czechoslovak Math. J.
43(118) (1993), 249–263.

[8] J. Jakubík: Direct product decompositions of MV -algebras. Czechoslovak Math. J.
44(119) (1994), 725–739.

[9] J. Jakubík: On complete MV -algebras. Czechoslovak Math. J. 45(120) (1995), 473–480.
[10] D. Mundici: Interpretation of AFC∗-algebra in  Lukasiewics sentential calculus. J. Funct.

Anal. 65 (1986), 15–63.
[11] B. Riečan: On the product MV -algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149.

Author’s address: Matematický ústav SAV, Grešákova 6, 040 01 Košice, Slovakia,
e-mail: kstefan@saske.sk.

810


		webmaster@dml.cz
	2020-07-03T13:50:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




