
Czechoslovak Mathematical Journal

Ján Jakubík
Convex chains in a pseudo MV-algebra

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 1, 113–125

Persistent URL: http://dml.cz/dmlcz/127785

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127785
http://dml.cz


Czechoslovak Mathematical Journal, 53 (128) (2003), 113–125

CONVEX CHAINS IN A PSEUDO MV-ALGEBRA

��� � � ��� � � 	 �
, Košice

(Received February 7, 2000)

Abstract. For a pseudo MV -algebra A we denote by `(A ) the underlying lattice of A .
In the present paper we investigate the algebraic properties of maximal convex chains in
`(A ) containing the element 0. We generalize a result of Dvurečenskij and Pulmannová.
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1. Introduction

Convex chains inMV -algebras have been investigated in [8]; the results concerned
the relations between convex chains in anMV -algebra A and direct product decom-

positions of A .
The notion of a pseudo MV -algebra was introduced by Georgescu and Iorgules-

cu [5], [4], and by Rach̊unek [9] (who applied the term ‘non-commutative MV -
algebra’); cf. also the forthcoming monograph [3] by Dvurečenskij and Pulmannová.

We apply the terminology and the notation from [3] and [5].
To each pseudoMV -algebra A there corresponds a distributive lattice `(A ) such

that the underlying sets of A and of `(A ) coincide.
In the present paper we prove that Theorem 2.4 of [8] on convex chains remains

valid for pseudo MV -algebras. In the proof we apply a theorem from [7] dealing
with direct product decompositions of pseudo MV -algebras.
The main result of Section 6.4.3 in [3] is the following theorem:

(A) Let A be a pseudo MV -algebra such that

Supported by VEGA grant 2/6087/99.

113



(i) the lattice `(A ) is a chain;
(ii) A is Archimedean.
Then A is an MV -algebra.

By applying [7], we sharpen Theorem (A) in proving that the condition (i) can be

replaced by the weaker condition
(i1) the lattice `(A ) is a direct product ot chains.

The substance of the assertion (A) consists in the fact that the operation ⊕ in A

is commutative.

We prove the following result (for the terminology, cf. Section 2):
(B) LetX be a maximal convex chain in a pseudoMV -algebra with 0 ∈ X . Suppose
that each pair of nonzero elements of X is archimedean. Then

x1 ⊕ x2 = x2 ⊕ x1 for each x1, x2 ∈ X.

If X is a maximal convex chain in a pseudo MV -algebra A , then either (i) X is

an underlying lattice of a pseudoMV -algebra, or (ii) X is a positive cone of a lattice
ordered group.

2. Preliminaries

We recall some basic definitions and facts concerning pseudoMV -algebras (cf. [3],

and also [5] (Chapter 6) or [7]).
Let A be a nonempty set and let A = (A,⊕,− ,∼ , 0, 1) be a structure of type

(2,1,1,0 0). For each x, y ∈ A we put

y � x = (x− ⊕ y−)∼.

Assume that for each x, y, z ∈ A the following axioms are satisfied:
(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;
(A4) 1∼ = 0; 1− = 0;
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(A6) x⊕ x∼ � y = y ⊕ y∼ � x = x� y− ⊕ y = y � x− ⊕ x;
(A7) x� (x− ⊕ y) = (x⊕ y∼)� y;

(A8) (x−)∼ = x.
Then the structure A is defined to be a pseudo MV -algebra.

With respect to (A6) we remark that the expression

x⊕ x∼ � y
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is to be understood in the sense that it is equal to

x⊕ (x∼ � y),

and similarly in further analogous situations.

In what follows we assume that A is a pseudo MV -algebra.

For x, y ∈ A we put x 6 y if x− ⊕ y = 1. Then the structure `(A ) = (A; 6) is a
distributive lattice with the least element 0 and with the greatest element 1.

We consider a partial binary operation + on A which is defined as follows (cf. [3],
p. 427):

2.1. Definition Let x, y ∈ A. Then x + y is defined if and only if x 6 y− and

in this case we put

x+ y = x⊕ y.

For lattice ordered groups we apply the notation as in [2]. In particular, the group

operation in a lattice ordered group is denoted by the symbol +, though it is not
assumed to be commutative.

The underlying lattice of a lattice ordered group G will be denoted by `(G).
Suppose that G is a lattice ordered group with a strong unit u. Consider the

interval [0, u] of G. We denote [0, u] = A1 and for x, y ∈ A1 we put

x⊕ y = (x+ y) ∧ u, x− = u− x, x∼ = −x+ u, 1 = u.

The algebraic structure (A1;⊕,− ,∼ , 0, 1) will be denoted by Γ(G, u).

2.2. Proposition (cf. [5]). If G is a lattice ordered group with a strong unit u,
then Γ(G, u) is a pseudo MV-algebra.

We have now the operation + in G; to avoid a confusion in the notation, let us
denote the binary operation from 2.1 by the symbol +p instead of +.
The notion of a subalgebra of a pseudo MV -algebra is defined in the usual way.

2.3. Proposition (cf. [3], p. 443, Exercise 7). Let A be a pseudo MV -algebra.

Then there exists a lattice ordered group G with a strong unit u such that A is a

subalgebra of Γ(G, u). Moreover, we have
(i) the lattice `(A ) is a sublattice of the lattice `(G);
(ii) let x, y ∈ A; then x+p y exists iff x+ y 6 u, and in this case x+p y = x+ y.

Below we again apply the phrase “x+ y is defined in A (or exists in A)” meaning
that x+ y 6 u. Further, G is always as in 2.3.
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Let g ∈ G, n ∈ 
 , gi = g for i = 1, 2, . . . , n. We denote

ng = g1 + g2 + . . .+ gn.

If a ∈ A and if na ∈ A (i.e., na 6 u), then we say that na exists in A .

A pseudo MV -algebra A is called Archimedean if, whenever a ∈ A and na exists
for each n ∈ 
 , then a = 0.
A pair (g, g′) of elements of A is called Archimedean if, whenever for each n ∈ 


the element ng exists and ng 6 g′, then g = 0.
It is easy to verify that the following conditions for A are equivalent:
(i) A is Archimedean.

(ii) Each pair of nonzero elements of A is Archimedean.

3. Auxiliary results

In this section we apply the notation as in Section 2 with one distinction. Namely,
for x, y ∈ A with x 6 y we put

[x, y] = {z ∈ A : x 6 z 6 y}.

In view of [3], p. 427 we have

3.1. Lemma. Let x, y ∈ A. Then x+ y is defined iff x 6 y− iff y 6 x∼.

3.2. Lemma (cf. [3], 6.4.5). Let x, y ∈ A. Then x 6 y if and only if there is an

element b ∈ A with x+ b = y. In that case, b is uniquely determined.

3.2.1. Lemma. Let x, y ∈ A. Then x 6 y if and only if there is an element

b1 ∈ A with b1 + x = y. In that case, b1 is uniquely determined.
�
�������

. The assertion ‘if’ is obvious. For proving the converse assertion it

suffices to use the method of the proof of 6.4.5 in [3] and to apply the Axiom (A6)
and 3.1. �

Under the notation as in G, we have

(1) b = −x+ y, b1 = y − x.

3.3. Lemma. Let a ∈ A. There exists c ∈ A such that c 6 a and a+ c = a⊕ a.
�
�������

. Since a ⊕ a = (a + a) ∧ u, the relation a 6 a⊕ a is valid in G. Hence
according to 2.3, this relation holds in the lattice `(A ) as well. Then 3.2 yields that
there is c ∈ A such that a + c = a ⊕ a. Thus in G we have a + c 6 a + a, whence
c 6 a, and this inequality holds also in `(A ). �
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3.4. Lemma. Let a and c be as in 3.3. Further, let t ∈ [0, c]. Then a+ t exists

in A and a+ t ∈ [a, a+ c].
�
�������

. Since t 6 c and a+ c exists in A , in view of 2.3 we conclude that a+ t

also exists in A . Further, we obviously have a+ t 6 a+ c. �

For each t ∈ [0, c] we put ϕ(t) = a+ t.

3.5. Lemma. ϕ is an isomorphism of the lattice [0, c] onto the lattice [a, a+ c].
�
�������

. It is obvious that ϕ is a mapping of the set [0, c] into the set [a, a+ c].
If t1, t2 ∈ [0, c] then

t1 6 t2 ⇔ ϕ(t1) 6 ϕ(t2).

Let z ∈ [a, a + c]. Hence in view of 3.2 there exists b ∈ A with a + b = z. Thus
a+ b 6 a+ c, whence b 6 c. Then ϕ(b) = z and so ϕ is an epimorphism. Therefore

ϕ is an isomorphism of [0, c] onto [a, a+ c]. �

3.6. Corollary. If an interval [0, a] is a chain, then the interval [a, a ⊕ a] is a
chain as well.

3.7. Lemma. If an interval [0, a] is a chain, then the interval [0, a⊕ a] is a chain
as well.
�
�������

. Assume that [0, a] is a chain. By way of contradiction, suppose that
the interval [0, a⊕ a] fails to be a chain. Then in view of 3.6 there exists an element
b ∈ A such that a and b are incomparable and b 6 a+ c. Put

(2) a ∧ b = u1, a ∨ b = v.

Hence v ∈ [a, a+ c]. In view of 3.5 there exists t ∈ A with t 6 c such that

v = a+ t 6 a+ c.

Hence t = −a+ v. The relations (2) yield

−a+ v = −u1 + b,

thus b = u1 + t.

Since t 6 a, according to 3.2.1 there exists u2 ∈ A with a = u2 + t.
Now, from the fact that a and b are incomparable we conclude that u1 and u2 are

incomparable. Both u1 and u2 belong to the interval [0, a], which is a chain; so we
have arrived at a contradiction. �
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3.8. Lemma. Let a, b ∈ A. Suppose that both [0, a] and [0, b] are chains. Then
either (i) a ∧ b = 0, or (ii) a and b are comparable.
�
�������

. Assume that a ∧ b = u1 > 0. In view of 3.2 there exist x, y ∈ A such

that
u1 + x = a, u1 + y = b.

Hence x = −u1 + a, y = −u1 + b and thus

x ∧ y = 0.

We have u1, x ∈ [0, a], hence

either x < u1, or u1 6 x.

Similarly we obtain that

either y < u1, or u1 6 y.

a) If u1 6 x and u1 6 y, then u1 6 x ∧ y = 0, which is a contradiction.
b) Assume that x < u1 and u1 6 y. Then both x and y belong to the interval

[0, b]. Hence they cannot be incomparable. Therefore some of them is equal to 0.
Then either a = u1 or b = u1. This yields that a and b are comparable.

c) The case y < u1 and u1 6 x is analogous to the case b).
d) Suppose that x < u1 and y < u1. Since [0, u1] is a chain, we conclude that

x and y are comparable. Then some of these elements must be equal to 0. Hence,
similarly as in b), the elements a and b are comparable. �

A chain X in `(A ) is convex if, whenever x1, x2 ∈ X , y ∈ A and x1 6 y 6 x2,
then y ∈ X . A convex chain X in `(A ) is called maximal convex if, whenever Y is
a convex chain in `(A ) with X ⊆ Y , then X = Y .
From Axiom of Choice we conclude that for each convex chain X in `(A ) there

exists a maximal convex chain Y in `(A ) with X ⊆ Y . From this and from 3.8 we
infer

3.9. Lemma. Let X be a chain in `(A ) with 0 ∈ X . Then there exists a unique
maximal convex chain Y in `(A ) such that X ⊆ Y .

3.10. Lemma. Let X be a maximal convex chain in `(A ) with 0 ∈ X . Then

X is closed with respect to the operation ⊕.
�
�������

. Let a, b ∈ X . Without loss of generality we can suppose that b 6 a. In
view of 3.6 and 3.9 we obtain a⊕ a ∈ X . Further, a⊕ b 6 a⊕ a, thus a⊕ b ∈ X . �
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We denote by Cm the set of all maximal convex chains in `(A ) containing the
element 0.

3.11. Lemma. Let X ∈ Cm and let x1 be the greatest element of X . Then

x1 ⊕ x1 = x1.

�
�������
. We have x1 6 x1 ⊕ x1. According to 3.10, x1 ⊕ x1 ∈ X , hence

x1 ⊕ x1 6 x1. Thus x1 ⊕ x1 = x1. �

4. Direct product decompositions

The notion of the direct product of pseudo MV -algebras is defined in the usual
way (cf., e.g., [6]). We apply the standard notation

A1 ×A2 × . . .×An or
∏

i∈I

Ai.

If ϕ is an isomorphism of a pseudo MV -algebra A onto
∏
i∈I

Ai, then we say that

the relation

(1) ϕ : A →
∏

i∈I

Ai

is a direct product decomposition of A .

An analogous terminology will be used for lattices.

Suppose that L is a distributive lattice with the least element 0 and the greatest

element u. Let a and b be complementary elements of L, i.e.,

a ∧ b = 0, x ∨ b = u.

The following assertion is well-known.

4.1. Lemma. For each x ∈ L let ϕ(x) = (x ∧ a, x ∧ b). Then

ϕ : L→ [0, a]× [0, b]

is a direct product decomposition of the lattice L.

Again, let A and G be as in the previous sections.
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4.2. Lemma (cf. [6], 4.2). Assume that e is an element of A which has a
complement in the lattice `(A ). Put Ae = [0, e] and

x−e = −x+ e, x∼e = e− x.

Then the algebraic structure Ae = (Ae;⊕,−e ,∼e , 0, e) is a pseudo MV -algebra.

4.3. Corollary. Let e be as in 4.2. Then e⊕ e = e.

4.4. Lemma. Let e be an element of A such that e ⊕ e = e. Then e has a

complement in the lattice `(A ).
�
�������

. Denote e ∧ e− = p. Thus p 6 e− and hence

e+ p = e⊕ p 6 e⊕ e = e.

Therefore p = 0. From the relation e ∧ e− = 0 and from [3], Proposition 1.20 we
infer that

u = e⊕ e− = e ∨ e−.

Hence e− is a complement of the element e in `(A ). �

Let a, b and ϕ be as in 4.1. Further, let Aa and Ab be defined analogously to Ae

in 4.2. Then we have

4.5. Proposition (cf. [7], 4.3). The relation

ϕ : A → Aa ×Ab

expresses a direct product decomposition of the pseudo MV -algebra A .

If Aa is as in 4.5, then it is called a direct factor of A .

Now let Cm be as in Section 3 and let X ∈ Cm. Assume that X has a greatest
element a. Then according to 3.11 and 4.4, the element a has a complement in the

lattice `(A ). Hence in view of 4.2 we can construct the pseudo MV -algebra Aa. If
we put Aa = Xa, then X is the underlying lattice of the pseudo MV -algebra Xa.

From 4.5 we conclude

4.6. Theorem. Let X ∈ Cm such that X has the greatest element a. Then the

pseudo MV -algebra Xa is a direct factor of the pseudo MV -algebra A .

It is obvious that each direct factor of a pseudo MV -algebra must have a greatest

element. Therefore 4.6 is a generalization of Theorem 2.4 in [8] concerning direct
product decompositions of MV -algebras.
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Now let us suppose that the lattice `(A ) is a direct product of chains. It means
that there are linearly ordered sets Li (i ∈ I) and a direct product decomposition

(1) ϕ1 : L→
∏

i∈I

Li,

where L = `(A ). Since the lattice L is bounded, all Li must be bounded; let us
denote by 0i and 1i the least element or the greatest element of Li, respectively.

For i ∈ I we denote by ui the element of L such that

ϕ1(ui)i = 1i and ϕ1(ui)j = 0j if j ∈ I, j 6= i.

Further, put Ai = [0, ui]. Then Ai is a lattice under the partial order induced by
that from L. It is obvious that Ai is isomorphic to Li.

Let x ∈ L. We put
ϕ(x) = (x ∧ ui)i∈I .

Applying (1) we obtain by simple steps

4.7. Lemma. The relation

(2) ϕ : L→
∏

i∈I

Ai

is a direct product decomposition of the lattice L.

For each i ∈ I , the element ui has a complement in the lattice L. Hence we can
construct the pseudoMV -algebraAui as in 4.2; the underlying lattice of Aui is equal

to Ai.

Let x, y, z ∈ Ai. Then the validity of the relation x 6 y in Ai is equivalent to the

validity of this relation in `(A ). Similarly, x ⊕ y = z holds in Aui iff this equality
holds in A .

In view of the definition of the Archimedean pseudo MV -algebra we conclude

4.8. Lemma. Suppose that the pseudo MV -algebra A is Archimedean. Then

all Aui are Archimedean.

4.9. Lemma. Suppose that A is Archimedean. Then all Aui are commutative.

�
�������
. This is a consequence of Theorem (A) (cf. Introduction) and of 4.8. �
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Further, from 4.7 and Theorem 6.4 of [7] we obtain

4.10. Lemma. The relation

ψ : A →
∏

i∈I

Aui

is a direct product decomposition of the pseudo MV -algebra A .

Summarizing, 4.9 and 4.10 yield

4.11. Theorem. Let A be a pseudo MV -algebra such that

(i1) the lattice `(A ) is a direct product of chains;
(ii1) A is archimedean. Then A is commutative (i.e., it is an MV -algebra).

This generalizes Theorem 6.4.3 in [3].

5. An alternative for elements of Cm

Let Cm be as in Section 3 and let X ∈ Cm. The investigation of the present section
would be trivial in the case X = {0}; thus let us suppose that X has more than one
element. Consider the following condition for X :
(α) There exists a ∈ X and a positive integer n such that na is not defined in A.
We will deal separately with the case when α is valid and with the case when

(α) does not hold.

a) First suppose that the condition (α) is satisfied. Then there exists the least
positive integer n such that n > 1 and na is not defined in A for some a ∈ X .
Hence (n− 1)a is defined in A; denote (n− 1)a = b. Then in G we have

b 6 b⊕ a < na.

Put

c1 = −b+ (b⊕ a), c2 = −(b⊕ a) + na.

Then c1 > 0, c2 > 0 and c1 ∈ A. Further,

c1 < −b+ na = a,

c1 + c2 = a.

From these relations we obtain that c2 belongs to A as well. Denote

z = (b⊕ a)−, p = (b⊕ a) ∧ z.
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Suppose that p > 0. Put q = p ∧ c2. Hence either q = p or q = c2 and thus

0 < q 6 c2. Moreover, q 6 z and hence the element

(b⊕ a) + q

is defined in A .

Since
(b⊕ a) + q 6 (b⊕ a) + c2 = na,

we obtain

b⊕ a < (b⊕ a) + q 6 na ∧ u = ((n− 1)a+ a) ∧ u = (b+ a) ∧ u = b⊕ a,

which is a contradiction.
Therefore we must have p = 0, hence

(b⊕ a) ∧ z = 0.

Then according to [5], Proposition 1.20 we have

(b⊕ a) ∨ z = (b⊕ a) + z = (b⊕ a)⊕ z = u.

If r ∈ A, b⊕ a < r, then the distributivity of `(A ) yields that the elements

b⊕ a, r ∧ z

are incomparable. Hence r cannot belong to X . We have proved

5.1. Lemma. Let (α) be valid and let n, a be as in the condition (α). Then the
element x0 = ((n− 1)a)⊕ a is the greatest element of X .

By applying 5.1 and 4.6 we conclude

5.2. Theorem. Let (α) be valid and let x0 be as in 5.1. Then X is the underlying
lattice of the pseudo MV -algebra Xx0 and this is a direct factor of the pseudo MV -

algebra A .

b) Now let us suppose that the condition (α) fails to be valid for the chain X .

Hence for each a ∈ X and each n ∈ 
 the element na is defined in A. Then we have

2a = a+ a = a⊕ a, 3a = a+ a+ a = a⊕ a⊕ a, . . .

Thus from 3.10 we infer
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5.3. Lemma. Assume that (α) does not hold for X . Then for a ∈ X , all elements
na belong to X .

5.4. Lemma. Assume that (α) does not hold for X . Let x1, x2 ∈ X . Then

x1 + x2 is defined in A and x1 + x2 ∈ X .
�
�������

. Without loss of generality we can suppose that x1 6 x2. Then in view
of 5.3, 2x2 exists in A and 2x2 ∈ X . Since x1 + x2 6 2x2 6 u, according to 2.3 we

get x1 + x2 ∈ A and x1 ⊕ x2 = x1 + x2. We know that X is closed with respect to
the operation ⊕; therefore x1 + x2 ∈ X . �

5.5. Corollary. Assume that (α) does not hold. Then X is a subsemigroup of
the group G.

Denote Y = X∪(−X). The set Y is partially ordered by the relation of partial or-
der induced from G. Then Y is linearly ordered. Applying 5.5, by simple calculation

we can verify that Y is closed with respect to the operation +. Thus we have

5.6. Lemma. Y is an `-subgroup of the lattice ordered group G.

Summarizing, we obtain

5.7. Theorem. Assume that the condition (α) does not hold for X . Then there
exist an `-subgroup Y of G such that Y is linearly ordered and Y + = X .

The following example shows that there exist a pseudoMV -algebraA and a chain

X ∈ Cm such that X does not satisfy the condition (α).

Example. Let X1 be the additive group of all reals with the natural linear order

and Y1 = X1. Put G = X1 ◦ Y1, where ◦ denotes the operation of lexicographic
product. Put u = (1, 0). Then u is a strong unit in G and hence we can construct
the pseudo MV -algebra A = Γ(G, u); in fact, A is an MV -algebra. Put

X = {(0, y) : 0 6 y ∈ Y }.

Then X is a maximal convex chain in `(A ) with 0 ∈ X , and X does not satisfy the
condition (α).

Let (B) be as in Section 1.
�
�������

of (B). Let X be as in the assumption of (B). We distinguish two cases.

a) Suppose that X satisfies the condition (α). We apply 5.2. Under the notation
from 5.2, X has the greatest element x0. Since `(Xx0) = X , in view of the remark
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at the end of Section 2 we conclude that the pseudoMV -algebra A is Archimedean.

Hence (A) yields that the operation ⊕ in X is Abelian.
b) Suppose that X does not satisfy the condition (α). Then we can apply 5.7.

The assumption of (B) implies that the linearly ordered group Y is Archimedean.

It is well-known that each Archimedean lattice ordered group is Abelian. Hence for
each x1, x2 ∈ X we have

x1 ⊕ x2 = x1 + x2 = x2 + x1 = x2 ⊕ x1.

�
������������� �
�������

. This is a correction concerning Section 3 of the au-
thor’s paper State homomorphisms on MV -algebras. Czechoslovak Math. J. 51(126)
(2001), 609–616. Lemma 3.2 of this paper is not correct; the author is indebted to

A. Di Nola and M. Navara for this observation. In Section 3 it should be added
the assumption that the state homomorphism m is, at the same time, an MV -

homomorphism of A into [0, 1], and that S is the set of all morphisms with the
mentioned properties.
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