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Abstract. The main subject of our study are spherical (weakly spherical) graphs, i.e. con-
nected graphs fulfilling the condition that in each interval to each vertex there is exactly
one (at least one, respectively) antipodal vertex. Our analysis concerns properties of these
graphs especially in connection with convexity and also with hypercube graphs. We deal
e.g. with the problem under what conditions all intervals of a spherical graph induce hyper-
cubes and find a new characterization of hypercubes: G is a hypercube if and only if G is
spherical and bipartite.

Keywords: spherical graph, hypercube, antipodal vertex, interval

MSC 2000 : 05C75, 05C12

1. Introduction

A hypercube graph looks like a sphere in the following sense: each of its vertices
has an antipodal vertex, i.e. a vertex at maximal distance. To carry this metaphor

one step further: all of its subcubes are sphere-like as well. On the other hand,
a hypercube is nothing else than the interval between two of its antipodal vertices,

where an interval is the collection of all geodesics between its ends. So in a hypercube
all intervals are spherical. This salient property defines the class of spherical graphs,

the focus of the paper. Amongst the spherical graphs are such nice distance-regular
graphs as the hypercubes, the Johnson graphs, the Schläfli graph and the Gosset

graph. But in general, spherical graphs need not be distance-regular, since the
Cartesian product of two spherical graphs is again spherical. Thus the spherical

∗ Ivan Havel died November 28, 1999. This paper is dedicated to his memory.
∗∗ Corresponding author.
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graphs and the weakly spherical graphs, which are defined quite naturally in terms

of just two basic graph functions—the distance function and the interval function—
seem to constitute an interesting and highly non-trivial class of graphs.

The second key notion we are interested in is that of an interval monotone graph,

or, more exactly, that of convexity. We introduce certain modifications of it (clock-
wise convexity etc.) trying to better understand the role it plays when dealing with

spherical graphs. The paper may also be looked upon as a part of the research area
investigating interval properties of certain specific classes of graphs (cf. [8] and [9]),

namely those that contain the hypercubes as a subclass; the main goal is then to
obtain—by adding suitable conditions—new characterizations of hypercubes and to

describe the role hypercubes play when describing the graphs under consideration.

2. Definitions and notation

Our graphs will be finite, undirected, connected, and without loops or multiple

edges. We will use several well-known notions and symbols in their usual meaning:
e.g. if G is a graph, then V denotes its vertex-set and E its edge-set, d(u, v) is the
distance between u and v in V and N(u) is the set of neighbors of u, i.e.

N(u) = {v ∈ V : uv ∈ E}.

The maximum distance in G is the diameter of G, and two vertices of G are di-
ametrical if their distance equals the diameter of G. The concepts, notation and
basic facts concerning intervals are used in accordance with [8], e.g. for u, v in V the

interval I(u, v) is defined as:

I(u, v) = {w ∈ V : d(u, v) = d(u, w) + d(w, v)}.

Furthermore, for 0 6 i 6 d(u, v), we denote

Ni(u, v) = {w ∈ I(u, v) : d(u, w) = i}.

Note that Ni(u, v) = Nd(u,v)−i(v, u) for 0 6 i 6 d(u, v). The sets Ni(u, v) are the
levels of the interval I(u, v).
We introduce the following notions, see also [5]. Let u, v be vertices of G, and

let w, w be vertices in I(u, v). We say that w is an antipodal vertex of w within

I(u, v) if d(w, w) = d(u, v). Clearly, if w is an antipodal vertex of w, then w is

an antipodal vertex of w. The following facts easily follow from basic properties of
intervals: if w, w ∈ I(u, v) and w is an antipodal vertex of w, then
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(i) d(u, w) = d(v, w); especially, if w ∈ N(u), then w ∈ N(v),
(ii) if u 6= w 6= v, then I(u, w) ∩ I(v, w) = ∅.
We call an interval I(u, v) weakly spherical, if every vertex of I(u, v) has at least one

antipodal vertex within I(u, v). We call an interval I(u, v) spherical, if every vertex
of I(u, v) has exactly one antipodal vertex within I(u, v). A connected graph G is

called (weakly) spherical if each of its intervals is (weakly) spherical. Note that there
is no relation between our notion of spherical graphs and that of antipodal graphs,

see e.g. Berman and Kotzig [1], or that of diametrical graphs, see [8].

A subset W of the set of vertices V is convex if I(x, y) ⊆ W for all x, y in W .

A graph G is interval monotone, see [8], if every interval of G is convex. See [7] for
the latest results on interval monotone graphs. We call an interval I(u, v) clockwise
convex, if the following holds: whenever w ∈ N1(u, v) and w is an antipodal vertex
of w within I(u, v), then I(w, w) ⊆ I(u, v). A graph G is called clockwise convex, if

every interval of G is clockwise convex. We call a graph clockwise spherical, if it is
both clockwise convex and spherical.

Let u, v be vertices of a clockwise convex graph G. If w is an antipodal vertex of w
within I(u, v) with w in N1(u, v), then, by definition, I(w, w) ⊆ I(u, v). It is easy
to verify that in this case u lies in N1(w, w) and that v is an antipodal vertex of u
within I(w, w). Hence I(u, v) ⊆ I(w, w) and I(u, v) = I(w, w). Loosely speaking, in
a clockwise convex graph we can shift intervals clockwise.

Similarly, if u, v are vertices of an interval monotone graph G and w and w are

antipodal vertices within I(u, v), then I(u, v) = I(w, w).
We say that an interval I(u, v) has the quadrangle property, if for any two different

non-adjacent vertices x, y from N1(u, v) there is a common neighbor z of x and y such
that d(z, v) = d(u, v)− 2, see Fig. 1a. Note that z lies in I(x, v) ∩ I(y, v) ⊆ I(u, v).
Calling the graph K1,1,2 a kite, we say that an interval I(u, v) has the kite prop-

erty, if for any two different adjacent vertices x, y from N1(u, v) there is a common
neighbor z of x and y in I(u, v) such that d(z, v) = d(u, v) − 2, see Fig. 1b. A
graph G is said to have the quadrangle (kite) property, if every interval of G has the

quadrangle (kite) property.

Finally, recall that the Cartesian product G � H of two graphs G = (V, E) and
H = (V ′, E′) has V × V ′ as its vertex-set, where (u, u′) and (v, v′) are adjacent if
and only if either u = v and u′v′ ∈ E′ or uv ∈ E and u′ = v′. Note that the interval

between (u, u′) and (v, v′) in G � H is just the Cartesian product of the sets IG(u, v)
and IH (u′, v′).
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a. The quadrangle property b. The kite property

Fig. 1

3. Examples

It is easy to see that both the class of weakly spherical graphs and that of spherical

graphs are closed under the operation of Cartesian product.
Every complete k-partite graph Km1,...,mk

for k, m1, . . . , mk > 2 is weakly spheri-
cal. If, furthermore, max(m1, . . . , mk) > 2, then Km1,...,mk

is not spherical.
Clearly, complete graphs Kn and hyperoctahedra are simple examples of spherical

graphs. Here a hyperoctahedron is a K2m minus a perfect matching, m > 3 or,
equivalently, K2,2,...,2. Hypercubes Qn with n > 1, as another example of spherical
graphs, are Cartesian products of n copies of K2.

A less trivial example of spherical graphs are the so-called extended odd graphs Ek

for k > 2, see [8], which are also called Laborde-Mulder graphs [4]. Write N2k−1 =
{1, . . . , 2k− 1}. The vertex-set of Ek is {A ⊆ N2k−1 | 0 6 |A| 6 k − 1}, two vertices
being adjacent if their symmetric difference consists either of 1 or 2k − 2 elements.
Clearly, E2 is K4 and Ek may be obtained in either of the following two ways:
– take Q2k−1 and identify every two diametrical vertices of it; therefore they are

also called folded (2k − 1)-cubes, see [3];
– take Q2k−2 and add to it 22k−3 “diagonals” (i.e. new edges, joining diametrical

vertices of Q2k−2).
As still another example of spherical graphs consider the second powers of hyper-

cubes Q2
n for n > 2. They belong to the class of the so called cube-like graphs, see

below. The graph Q2
n arises from Qn by adding 2n−1

(
n
2

)
new edges, joining any two

vertices whose Hamming distance is 2. It is easy to see what are the intervals of Q2
n

and that all of its intervals are spherical.
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We can supply still other examples of spherical graphs. For k > 0 and 0 6 d 6 k

the Johnson graph J(k, d) [3] has as its vertex-set the set of all 0, 1-vectors of length k

containing d ones and k − d zeros; two vertices are adjacent if they differ in exactly
2 coordinates. For m > 1, a folded Johnson graph J ′′(2m, m) is obtained from
J(2m, m) by identifying every pair of its diametrical vertices. It is not difficult to
verify that both the Johnson graphs and the folded Johnson graphs are spherical.

The Gosset graph ([3]) has as vertices the vectors of length 8, either consisting of
two 1’s and six 0’s, or consisting of six + 1

2 and two − 1
2 ; e.g. (1, 1, 0, 0, 0, 0, 0, 0),

(+ 1
2 , + 1

2 ,− 1
2 ,− 1

2 , + 1
2 , + 1

2 , + 1
2 , + 1

2 ), and (+
1
2 ,− 1

2 ,− 1
2 , + 1

2 , + 1
2 , + 1

2 , + 1
2 , + 1

2 ) are ver-
tices of the Gosset graph. Two vertices are adjacent if and only if their inner product

is exactly +1 (so the first and the second, as well as the second and the third vec-
tor of the above three are adjacent). The Schläfli graph [3] is the subgraph of the

Gosset graph consisting of the 0, 1-vectors with one 1 at the last two places and the
(+ 1

2 ,− 1
2 )-vectors with minus signs at the first six places only. It is straightforward

to verify that the Gosset graph and the Schläfli graph are spherical as well.
An example of a class of weakly spherical graphs is provided by the cube-like

graphs. These are defined as follows, see [6]. Let V be the set of all 0, 1-vectors of
length n > 1, and let σ be a nonempty subset of V . Then the cube-like graph Qn(σ)
has V as its vertex-set, and two vectors u and v are adjacent whenever there exists
a vector e in σ such that v = u ⊕ e, where ⊕ denotes the coordinate-wise addition
modulo 2. Note that Qn(σ) is just the n-dimensional hypercube if σ consists of all
0, 1-vectors of weight one. To verify that Qn(σ) is weakly spherical we first observe
that this is trivially true if n = 1. Let n > 2, let u and v be vertices of Qn(σ) with
d(u, v) = k > 2. Then there exist vectors e1, e2, . . . , ek in σ such that

v = u⊕ e1 ⊕ e2 ⊕ . . .⊕ ek

and, for any f1, . . . , fl in σ with 1 6 l < k, we have

v 6= u⊕ f1 ⊕ . . .⊕ fl.

Choose any x in I(u, v) with u 6= x 6= v. Then there are vectors

g1, . . . , gp, gp+1, . . . , gk

in σ with 1 6 p < k such that

x = u⊕ g1 ⊕ . . .⊕ gp and v = x⊕ gp+1 ⊕ . . .⊕ gk.

It follows that for y = u⊕ gp+1 ⊕ . . .⊕ gk we have y ∈ I(u, v) and d(x, y) = k.
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We close this section with an operation which produces new weakly spherical

graphs from old ones. Let G be a graph and let u be a vertex of G. We say that
we split u into two vertices if we add a new vertex u′ and make it adjacent to all
neighbors of u. Recall that a vertex u is dominated by a vertex v if v is adjacent to u

and all its neighbors. Now let G be a (weakly) spherical graph, and let u be a vertex
of G. Then it is easily verified that splitting u results in a weakly spherical graph if

and only if u is a non-dominated vertex in G, see Fig. 2 for examples of splitting a
vertex.

u

w

v

u

w

v

a. Splitting a vertex of Q3 b. Splitting a vertex of Q4

Fig. 2

4. Basic facts

In this section we prove some basic facts on weakly spherical and spherical graphs.

Recall that a set W of vertices in a graph G is independent if the vertices of W are
mutually non-adjacent.

Lemma 1. Let G be weakly spherical, let u, v be vertices of G. Then

(i) if w ∈ N1(v, u), then |N1(u, v)| > |N1(u, w)|+ 1,
(ii) there are at least d(u, v) independent vertices in N1(u, v),
(iii) |N1(u, v)| > d(u, v),
(iv) if |N1(u, v)| = d(u, v), then |N1(u, w)| = d(u, w) for any w ∈ I(u, v),
(v) if |N1(u, v)| = d(u, v), then for any w ∈ N1(v, u) there is exactly one w ∈ I(u, v)
such that d(w, w) = d(u, v).

"$#&%'%)(
. (i) Let w be in N1(v, u). Then we have I(u, w) ⊆ I(u, v). Since

I(u, v) is weakly spherical, there is a vertex w in I(u, v) such that d(w, w) = d(u, v).
Obviously, w is in N1(u, v)− I(u, w).
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(ii) We use induction on d(u, v). The statement is trivial for d(u, v) = 1. Let
d(u, v) > 1, and let w be in N1(v, u). Then N1(u, w) ⊆ N1(u, v), and d(u, w) =
d(u, v)−1 whence by the induction hypothesis, there are at least d(u, w) independent
vertices in N1(u, w). Consider an antipodal vertex w of w within I(u, v). Then w lies

in N1(u, v) − I(u, w) and w is not adjacent to any vertex of N1(u, w), for otherwise
d(w, w) < d(u, v).
(iii) This follows trivially from (ii).

(iv) Assume that |N1(u, w)| > d(u, w) for some w in I(u, v). Then, by induction
and using (i), we have

|N1(u, v))| > |N1(u, w)|+ d(w, v) > d(u, v),

which yields a contradiction.
(v) Let w be in N1(v, u). By (iv), we have

|N1(u, w)| = d(u, w) = d(u, v)− 1.

Furthermore, from

w ∈ I(u, v) and d(w, w) = d(u, v)

we deduce

w ∈ N1(u, v)− I(u, w),

and hence (v) follows. �

The example of the weakly spherical graph from Fig. 2.a, arising by splitting a

vertex of Q3, shows in contrast to (v) that the antipodal vertex w of w need not be
determined uniquely for w not in N1(v, u). We cannot guarantee sphericity of I(u, v)
(that is, uniqueness of the antipodal vertex within I(u, v) for every vertex of I(u, v))
even by asking

(∗) |N1(u, v)| = |N1(v, u)| = d(u, v).

As an example consider a weakly spherical graph arising by splitting a vertex of Q4,

see Fig. 2.b.

This example also answers in the negative the following question posed by
Bezrukov [2]. “Is it true that, if G is weakly spherical and (∗) holds for u, v

in V , then I(u, v) induces a hypercube Qd(u,v)?”

In the case of spherical graphs the question is answered in the following section.

Lemma 2. Let G be spherical. Then
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(i) |Nk(u, v)| = |Nd(u,v)−k(u, v)| for any two vertices u and v of G and for 0 6 k 6
d(u, v);

(ii) G is regular.
"$#&%'%)(

. (i) In Section 2 we have already observed that the antipodal vertex w

of w in Nk(u, v) within I(u, v) lies in Nd(u,v)−k(u, v). Equality follows from the
unicity of antipodes.

(ii) Let u and v be adjacent vertices of G. Take any vertex x in N(u)−N(v). Then
d(x, v) = 2, so by sphericity, there is a unique vertex y in I(x, v) that is not adjacent
to u. Note that y is in N(v)−N(u). This establishes an injection of N(u)−N(v) into
N(v)−N(u). Similarly, we can obtain an injection of N(v)−N(u) into N(u)−N(v).
Hence |N(u)| = |N(v)|, so that G is regular, being a connected graph. �

Note that regularity of spherical graphs was proved independently by No-

mura ([10]).

Theorem 3. Let G be a spherical graph. Then the vertex connectivity of G

equals the degree of G.
"$#&%'%)(

. Let κ be the vertex connectivity of G and let δ be the degree of G.
Then, by definition, we have κ 6 δ.

Let S be a vertex cutset of minimum size, separating G into two parts A and B.
Since S is of minimum size, every vertex in S has neighbors in A as well as in B.

Let x be any vertex in S with, say, a neighbors in A and b neighbors in B. Then
x has s = δ − a − b neighbors in S. Without loss of generality, we may assume
that 1 6 a 6 b. Consider any neighbor u of x in A and any neighbor v of x in B.

Then we have d(u, v) = 2. Hence, by sphericity of G, there is a unique common
neighbor yuv of u and v distinct from x and not adjacent to x. Clearly, yuv lies in S.

Now, d(x, yuv) = 2, and u and v are non-adjacent vertices in I(x, yuv). So x and
yuv cannot have any other common neighbor in A or B. This implies that, for two

distinct pairs u, v and u′, v′ of neighbors of x with u, u′ in A and v, v′ in B, the
vertices yuv and yu′v′ are distinct. Let T be the set of vertices of type yuv. Then it

follows that |T | = ab and, moreover, N(x) ∩ T = ∅. Since [N(x) ∩ S] ∪ {x} ∪ T is a
subset of S, we have the inequality

(∗∗) s + 1 + ab 6 κ 6 δ = s + a + b.

Hence we have ab 6 a + b− 1. Since 1 6 a 6 b, we infer that a = 1, so that we have
equality in (∗∗). �
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5. Spherical graphs and hypercubes

As promised, we will address the question where the hypercubes are located within

the commonwealth of spherical graphs. We will use Theorem 2.2.1 from [8]. A (0, 2)-
graph is a connected graph G such that |N(u)∩N(v)| = 0 or 2 for any two vertices u,
v of G.

Theorem 4 (Mulder, 1980). Let H be a bipartite (0, 2)-graph of diameter D,

and let u, v be vertices of H with d(u, v) = n. If, for any w of H

|N1(w, u)| = d(w, u) and |N1(w, v)| = d(w, v),

then H is isomorphic to QD.

The main part of the proof of this theorem consists in showing, by induction

on m, that
⋃

k6m

Nk(u, v) induces a subgraph isomorphic to the subgraph induced by

the m + 1 “lower levels” of QD.

Proposition 5. Let G be spherical. Then, for any u, v in V with

|N1(u, v)| = d(u, v),

the subgraph of G induced by I(u, v) is isomorphic to Qd(u,v).
"$#&%'%)(

. Let |N1(u, v)| = d(u, v) = n, and let H be the subgraph of G induced

by I(u, v).
First, it follows from Lemma 1 (iv) and Lemma 2 that, for any w in I(u, v), we

have
|N1(w, u)| = d(w, u), and |N1(w, v)| = d(w, v).

Assume thatH is not bipartite, and let n be as small as possible under this condition.

Note that an odd cycle in H cannot consist only of edges between levels of I(u, v).
Hence there exists an edge xy in some Nk(u, v). By minimality of n we have

I(u, x) ∩ I(u, y) = {u} and I(x, v) ∩ I(y, v) = {v}.

Note that we have

|N1(u, x)| = |N1(u, y)| = k, and |N1(v, x)| = |N1(v, y)| = n− k.

Now any vertex w in N1(v, x) must have its antipodal vertex within I(u, v) in
N1(u, v)− [N1(u, x)∪N1(u, y)]. So N1(u, v) contains at least 2k +n− k = n+ k > n

vertices, which is impossible. So H is bipartite.

303



Finally, let x and y be vertices in H having a common neighbor in H . Since H is

bipartite, we have either that x and y are in the same level Nk(u, v), or that they
are in different non-consecutive levels Nk−2(u, v) and Nk(u, v). In the latter case
I(x, y) ⊆ I(u, v), so, by sphericity, x and y have exactly two common neighbors

in H . So assume x and y are in Nk(u, v) and have a common neighbor, say, z in
Nk+1(u, v). By the first observation in the proof, we know that |Nk−1(u, x)| =
k = |Nk(u, z) − {x}|. By sphericity, each vertex in Nk−1(u, x) must have a unique
neighbor in Nk(u, z)− {x}. In particular, x and y have a second common neighbor

in Nk−1(u, x).
Thus we have shown that H satisfies the conditions of Theorem 2.2.1 from [8],

whence H induces a Qd(u,v). �

Theorem 6. A graph G is a hypercube if and only if G is bipartite and spherical.
"$#&%'%)(

. Let G be bipartite and spherical of degree δ. By induction on d(u, v)
we prove that |N1(u, v)| = d(u, v). For d(u, v) 6 2, this is obvious. So assume
d(u, v) = n > 2, and let w be in N1(v, u). Then d(u, w) = n− 1 and, by induction,
|N1(u, w)| = n − 1. Clearly, the antipodal vertex of w lies in N1(u, v) − N1(u, w).
Take any y in N1(u, v) −N1(u, w). Then d(y, w) > n− 2, so, G being bipartite, we
infer that d(y, w) = n. Therefore |N1(u, v)−N1(u, w)| = 1, so that |N1(u, v)| = n.
Now let x and y be vertices of G with d(x, y) equal to the diameter of G. Since

G is bipartite, the set of neighbors of x is precisely N1(x, y). Therefore the diameter
of G equals δ. By Proposition 3 and the regularity of spherical graphs we conclude

that G is a hypercube of dimension δ. �

6. Spherical graphs and clockwise convexity

All examples of spherical graphs that we have presented so far are interval mono-
tone (i.e. have convex intervals). Whether it is true for spherical graphs in general

remains to be seen. Note that in the class of weakly spherical graphs there are graphs
that are not interval monotone. These are first of all the complete k-partite graphs

Km1,...,mk
for k, m1, . . . , mk > 2 and max(m1, . . . , mk) > 2. But there are more

interesting examples, like the cross product of the icosahedron with K2, and the
cross product of the Shrikhande graph with K2, see [3] and [8] for the Shrikhande

graph. To get a better understanding of what it means that intervals are convex in
a spherical graph, we present the following two theorems.

Theorem 7. Let G = (V, E) be a spherical graph. Then the following conditions
are equivalent:
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(i) G is clockwise convex,

(ii) G is interval monotone,

(iii) G has the quadrangle property.

"$#&%'%)(
. (i) ⇒ (ii) Take any interval I(u, v) and any two vertices x, y in I(u, v).

Let x be the antipode of x within I(u, v). We will show that I(x, x) = I(u, v). This
suffices, since, by the basic properties of intervals, I(x, y) ⊆ I(x, x). Let d(u, x) = k.

If k = 0, then we are trivially done. So let k > 1, and let u = x0, x1, . . . , xk = x be
the consecutive vertices of a shortest path between u and x in I(u, x) ⊆ I(u, v), and
let xi be the antipode of xi within I(u, v) for 1 6 i 6 k. Note that x1 is adjacent
to x0 = v. By clockwise convexity, we have I(xi, xi) = I(xi−1, xi−1), so that xi+1

and xi+1 are antipodes within I(xi, xi). Furthermore, xi+1 is adjacent to xi for

i = 1, 2, . . . k − 1. In particular, it follows that I(x, x) = I(u, v), and we are done.
(ii) ⇒ (iii) Let I(u, v) be any interval and let x, y be non-adjacent neighbors

of v in I(u, v). Then, by sphericity, there must be a common neighbor z of x and
y which is not adjacent to v. By interval monotonicity, z lies in I(u, v), whence
d(u, z) = d(u, v)− 2.

(iii) ⇒ (i) Assume the contrary. Let u and v be vertices of G, with n = d(u, v)
as small as possible, such that there are antipodal vertices within I(u, v) with w in

N1(u, v), with w in Nn−1(u, v), and with I(w, w) − I(u, v) 6= ∅. In the proof we
will use the quadrangle property over and over again, in most cases to construct an
interval of length 2 which is not spherical. We use the following format: we apply the

quadrangle property to non-adjacent vertices p and q in N1(a, b) to find a common
neighbor r of p and q in I(p, b) with

d(r, b) = d(p, b)− 1 = d(a, b)− 2.

We use the interval I(p, b) to decide where r is located with respect to I(u, v) or
I(w, w).
Choose any x in I(w, w)− I(u, v) with k = d(w, x) as small as possible. Note that

u and v are in I(w, w), so that

I(u, w) ∪ I(w, v) ⊆ I(u, v) ∩ I(w, w).

Hence x does not lie in I(u, w) ∪ I(w, v). This implies that

k 6 (u, x) 6 k + 1,

n− k 6 d(x, v) 6 n− k + 1,

n + 1 6 d(u, x) + d(x, v) 6 n + 2.
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First assume that k = 1. If x were adjacent to u, then the above inequalities would

imply that d(x, v) = n. But then v would have u and x as distinct antipodes in
I(w, w). So we have d(u, x) = 2. By the quadrangle property applied to u and x

in N1(w, w), we find a common neighbor p in I(u, w) ⊆ I(u, v) of x and u with

d(p, w) = n − 2. Then we have d(p, w) = 2 and d(v, p) = n − 1. Now we apply the
quadrangle property to p and w in N1(u, v) and find a common neighbor q of p and

w with d(v, q) = n−2. But now u has q and x as distinct antipodes in I(p, w), which
is impossible. So k > 2.
By Lemma 1 (ii) we find two non-adjacent vertices y and z in N1(x, w). By the

quadrangle property, we find a common neighbor s of y and z with d(w, s) = k − 2.
Note that, by minimality of k, all of y, z, s are in I(u, v). Since d(u, x) > k and
d(w, s) + 1 = d(w, y) = d(w, z) = k − 1, we have

k − 1 6 d(u, y) 6 k,

k − 1 6 d(u, z) 6 k,

k − 2 6 d(u, s) 6 k − 1.

We now show that d(u, y) 6= d(u, z). First assume that d(u, y) = d(u, z) = k, so
that d(u, s) = k − 1. Then, the vertices y, z, s being in I(u, v), we have d(v, y) =
d(v, z) = n − k and d(v, s) = n − k + 1. We apply the quadrangle property to y

and z in N1(s, v) and find a common neighbor t of y and z in I(y, v) ⊆ I(u, v) with
d(v, t) = d(v, s)−2 = n−k−1. Now s has x and t as distinct antipodes in I(u, z). So
we cannot have d(u, y) and d(u, z) both equal to k. If d(u, y) = d(u, z) = k− 1, then
we have d(u, x) = k. We apply the quadrangle property to y and z in N1(x, y) and
find a common neighbor s′ of y and z in I(u, y) ⊆ I(u, v) with d(u, s′) = k−2, so that
d(v, s′) = n−k+2. Now we apply the quadrangle property to y and z in N1(s′v) and
find a common neighbor t′ in I(y, v) ⊆ I(u, v) of y and z with d(v, t′) = d(v, s′)− 2.
But now s′ has t′ and x as distinct antipodes in I(y, z). Thus we have shown that
d(u, y) and d(u, z) are unequal. Without loss of generality, we may assume that

d(u, y) = k,

d(u, z) = k − 1.

This implies that we have

d(u, s) = k − 1,

d(u, x) = k,

d(v, x) = d(v, z) = d(v, s) = n− k + 1,

d(v, y) = n− k.
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Note that s and y are in I(w, v), so I(w, s) ⊆ I(w, y) ⊆ I(w, v). Recall that I(w, s) ⊆
I(w, x) ⊆ I(w, w). We consider two cases.
Case 1. k > 3.
Let w1 be a neighbor of w in I(w, s). Then w1 is not adjacent to u. We apply

the quadrangle property to u and w1 in N1(w, w) and find a common neighbor u1

in I(u, w) of u and w1 with d(u1, w) = n− 2. Then we have the following situation:
d(w1, w) = n − 1 and x is in I(w1, w), whereas x is not in I(u1, v) ⊆ I(u, v) and,
finally, w1 and w are antipodes in I(u1, v). This is in conflict with the minimality
of n, by which the Case 1 is settled.
Case 2. k = 2.
Now we have the following situation: w = s and w is adjacent to y and z, and u is

adjacent to z, and

d(u, y) = d(u, x) = 2,

d(v, y) = n− 2,

d(v, x) = n− 1,

d(y, w) = d(z, w) = d(u, w) = n− 1,

d(x, w) = n− 2.

We apply the quadrangle property to u and y in N1(w, w) and find a common
neighbor u′ in I(u, w) ⊆ I(u, v) of u and y with d(u′, w) = n− 2 = d(u′, v)− 1. Note
that u′ is distinct from x and z. If u′ were adjacent to z, then w would have x and
u′ as distinct antipodes in I(z, y), so u′ is not adjacent to z.

Suppose u′ is adjacent to x. By the quadrangle property applied to u′ and z

in N1(u, v) we find a common neighbor z′ in I(u′, v) ⊆ I(u, v) of u′ and z with

d(v, z′) = n− 2. Then u has x and z′ as distinct antipodes in I(u′, z). So u′ is not
adjacent to x.

We apply the quadrangle property to u′ and x in N1(y, w) and find a common
neighbor x′ in I(u′, w) ⊆ I(u, w) of u′ and x with d(x′, w) = n − 3. Then we also
have d(v, x′) = n − 2 = d(v, y) = d(v, x) − 1. Observe that, since d(y, w) = n − 1,
the vertices x′ and y are not adjacent. We apply the quadrangle property to x′ and

y in N1(x, v) and find a common neighbor y′ in I(y, v) ⊆ I(u, v) of x′ and y with
d(y′, v) = n− 3. Since y′ is in I(u, v), we have I(u, y′) ⊆ I(u, v) so that x is not in

I(u, y′). Now we have

d(u, y) = d(u, x′) = 2 = d(u, y′)− 1.

We apply the quadrangle property to x′ and y in N1(y′, u) and find a common
neighbor r in I(y, u) ⊆ I(u, v) of x′ and y with d(u, r) = 1. Then y′ has x and r as
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distinct antipodes in I(x′, y). This is impossible, by which Case 2 is settled and the
proof is complete. �

The next theorem provides some extra information on clockwise spherical graphs.

Theorem 8. Let G be a clockwise spherical graph. Then

(i) G has the kite property,

(ii) if u, v are vertices of G, then the maximum independent set in N1(u, v) has size
d(u, v).

"$#&%'%)(
. (i) Let x, y be adjacent neighbors of v in the interval I(u, v). Assume

that x and y have no common neighbor at distance d(u, v) − 2 from u. Let d(u, v)
be as small as possible under this condition. Then we have

I(u, x) ∩ I(u, y) = {u},

and d(u, v) > 3. Let z be any neighbor of y in I(u, y), so that z is not adjacent to x.
By sphericity there is a common neighbor p of z and v, which is not adjacent to y.
Note that now v and z are non-adjacent vertices in the interval I(p, y). Hence p

cannot be adjacent to x. By the quadrangle property, we find a common neighbor q

of x and p at distance d(u, v) − 2 from u. Now, either by the quadrangle property

or by the minimality of d(u, v), there must be a vertex adjacent to q as well as z at
distance d(u, v)−3 from u. Since I(u, x)∩I(u, y) = {u}, this vertex must be u itself.

Consider the antipode p of p within I(u, v). By clockwise convexity, I(p, p) = I(u, v).
Since d(p, x) = d(p, y) = 2, it follows that x and y are adjacent to p. This contradicts

our choice of u, v, x, y, whence the kite property is established.
(ii) Let G be clockwise spherical, let u, v be vertices of G. Because of (ii) of

Lemma 1, it suffices to prove that every independent subset A of N1(u, v) has at
most d(u, v) elements. We prove it by induction on d(u, v). The statement is trivial
for d(u, v) 6 1. Hence assume d(u, v) = n > 2, and let A be an independent subset
of N1(u, v). Choose w in A arbitrarily and let w be the antipodal vertex of w within

I(u, v). Now it is easy to check that

x ∈ N1(u, v)− I(u, w) & x 6= w → xw ∈ E.

In fact, for such a vertex x we easily verify d(w, x) = n− 1 (because d(w, x) 6 n− 2
would imply x ∈ I(u, w) whereas d(w, x) = n would mean that x is a second antipodal

vertex of w within I(u, v), a contradiction). From clockwise sphericity of G we
have I(u, v) = I(w, w), hence x ∈ I(w, w), therefore d(x, w) = 1. So, all vertices
of A different from w belong to N1(u, w) and, by the induction hypothesis, we have
|A| − 1 6 d(u, w) = n− 1. �
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Corollary 9. Let G be a kite-free and clockwise spherical graph. Then each

interval in G induces a hypercube.
"$#&%'%)(

. In view of Proposition 4, we only need to prove that |N1(u, v)| = d(u, v)
for any two vertices u and v of G. This is accomplished by induction on d(u, v). For
d(u, v) 6 2 it is obvious. So let d(u, v) = n > 3. Take any vertex w in N1(u, v) with
its antipode w within I(u, v). By induction, we have |N1(u, w)| = n − 1. If there
were another vertex z besides w in N1(u, v)−N1(u, w) then, by clockwise sphericity,
z would be in I(w, w). Hence d(z, w) = n − 1, which implies that z is adjacent
to w. By the kite property applied to w, u, z in I(w, w) we produce a kite. This
contradiction settles the proof. �

We would like to conclude this paper by two open problems. First there is a

question whether all spherical graphs are interval monotone or not. In view of the
rather complex proof of (iii) ⇒ (i) in Theorem 6 we expect that this is not the case.
But so far we have no examples of spherical graphs that are not interval monotone.
Concerning to Corollary 8, we ask whether it is possible to replace it by a stronger

statement. We suggest the following conjecture: if G is spherical and triangle-free,

then all intervals of G induce hypercubes.

References

[1] A. Berman and A. Kotzig: Cross-cloning and antipodal graphs. Discrete Math. 69
(1988), 107–114.

[2] S.L. Bezrukov: Private communication.
[3] A.E. Brouwer, A.M. Cohen and A. Neumaier: Distance-regular graphs. A Series of
Modern Surveys in Mathematics. Springer Verlag, Berlin-Heidelberg-New York, 1989.

[4] G. Burosch: Hasse Graphen spezieller Ordnungen. In: K. Wagner, R. Bodendiek:
Graphentheorie I. Anwendungen auf Topologie, Gruppentheorie und Verbandstheorie,
B. I. Wissenschaftsverlag, Mannheim-Wien-Zurich, 1989, pp. 157–235.

[5] G. Burosch, I. Havel and J.-M. Laborde: Distance monotone graphs and a new charac-
terization of hypercubes. Discrete Math. 110 (1992), 9–16.

[6] F. Harary: Four difficult unsolved problems in graph theory. Recent Advances in Graph
Theory (M. Fiedler, ed.). Academia, Praha, 1974, pp. 249–256.

[7] M. Mollard: Interval-regularity does not lead to interval monotonicity. Discrete Math.
118 (1993), 233–237.

[8] H.M. Mulder: The interval function of a graph. Mathematical Centre Tracts 132. Math-
ematisch Centrum Amsterdam, 1980.

[9] H.M. Mulder: Interval-regular graphs. Discrete Math. 44 (1982), 253–269.
[10] K. Nomura: Private communication.

Authors’ addresses: * + , -�.�.0/21 3 - 4 5 , Institut de mathématiques, USTHB, BP 32,
Alger, Algérie, e-mail: hmmulder@few.eur.nl; 6 72/ 8 9 /&7:-�; , Mathematical Institute,
Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic;
9 + < + < = ; 4 ->. , Econometrisch Instituut, Erasmus Universiteit, P.O. Box 1738, 3000 DR
Rotterdam, Netherlands, e-mail: hmm@few.eur.nl.

309


		webmaster@dml.cz
	2020-07-03T14:04:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




