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Abstract. This paper is a continuation of [5], where k-homogeneous and k-set-homogene-
ous algebras were defined. The definitions are analogous to those introduced by Fräıssé [2]
and Droste, Giraudet, Macpherson, Sauer [1] for relational structures. In [5] we found
all 2-homogeneous and all 2-set-homogeneous monounary algebras when the homogenity
is considered with respect to subalgebras, to connected subalgebras and with respect to
connected partial subalgebras, respectively. The results of [3], where all homogeneous mo-
nounary algebras were characterized, were applied in [4] for 1-homogeneity.
The aim of the present paper is to describe all monounary algebras which are 2-homoge-

neous and 2-set-homogeneous with respect to partial subalgebras, respectively; we will say
that they are partially-2-homogeneous and partially-2-set-homogeneous.

Keywords: monounary algebra, 2-homogeneous, 2-set-homogeneous, partially-2-homoge-
neous, partially-2-set-homogeneous

MSC 2000 : 08A60

1. Preliminaries

We will apply notions and definitions from [5]; let us recall some of them.
Let A = (A, f) be a monounary algebra. Let ∅ 6= B ⊆ A and let B = (B, fB) be

a partial monounary algebra such that whenever b ∈ B, then b ∈ dom fB if and only
if f(b) ∈ B, and then fB(b) = f(b). We will say that B is a partial subalgebra of A.
The system of all 2-element partial subalgebras of A is denoted by the symbol P2(A).
The algebra A is said to be 2-set-homogeneous with respect to partial subalgebras

or partially-2-set-homogeneous if, whenever U, V ∈ P2(A), U ∼= V , then there is an
automorphism ϕ ofA with ϕ(U) = V . Also, A is called 2-homogeneous with respect to
partial subalgebras or partially-2-homogeneous if every isomorphism between U, V ∈
P2(A) can be extended to an automorphism of A.
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Let us denote byH2(P ) the class of all monounary algebras which are partially-2-
homogeneous and byS h2(P ) the class of all partially-2-set-homogeneousmonounary
algebras.
The following assertion is obvious:

1.1. Lemma. H2(P ) ⊆ S h2(P ).

1.2. Notation. Let λ, α be cardinals, λ > 0. We denote by Mλα = (Mλα, f) a
fixed monounary algebra such that

(a) there is c ∈Mλα with f(c) = c,

(b) if x ∈Mλα, then f2(x) = c,

(c) card f−1(c)− {c} = λ,

(d) if a ∈ f−1(c)− {c}, then cardf−1(a) = α.

We will write also Mλ instead of Mλ0.

1.3. Notation. For α ∈ � let Zα = (Zα, f) be a monounary algebra such that
Zα = {0, 1, . . . , α− 1}, f(i) ≡ i+ 1 (mod α) for each i ∈ Zα.

2. The class S h2(P )—necessary conditions

In this section let A = (A, f) be a monounary algebra belonging to S h2(P ).

2.1. Lemma. There do not exist distinct elements a, b, c, d ∈ A such that

f(a) = b, f(b) = c, f(c) = d and f(d) 6= a 6= f 2(d).
���������

. Assume that such elements exist. First suppose that f(d) 6= b. Take
U = {b, d}, V = {a, d}. Then U, V ∈ P2(A), U ∼= V , thus there is ϕ ∈ AutA with
ϕ(U) = V . If ϕ(b) = a, then

ϕ(d) = ϕ(f2(b)) = f2(ϕ(b)) = f2(a) = c 6= d,

a contradiction. If ϕ(b) = d, then

a = ϕ(d) = ϕ(f2(b)) = f2(ϕ(b)) = f2(a) = c 6= a,

which is a contradiction, too.
Now let f(d) = b. Then the partial monounary algebras defined on {d, b} and on

{a, b} are isomorphic, but there is no automorphism ψ of A with ψ({d, b}) = {a, b},
since if ψ(b) = b, then

a = ψ(d) = ψ(f2(b)) = f2(ψ(b)) = f2(b) = d
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and if ψ(b) = a, then

b = ψ(d) = ψ(f2(b)) = f2(a) = c.

�

2.2. Corollary. Each connected component of A contains a cycle and each cycle
has at most 5 elements.

2.3. Corollary. If C is a cycle of A, cardC > 2, then f−1(C)− C = ∅.

2.4. Corollary. If C is a cycle of A, cardC = 2, then f−1(f−1(C)− C) = ∅.

2.5. Corollary. If C is a cycle of A, cardC = 1, then f−2(f−1(C)− C) = ∅.

2.6. Lemma. If B is a connected component of A and a, b, c are distinct elements
of B such that f(a) = b, f(b) = c = f(c), then B ∼= M1α for some α > 1.
���������

. Let the assumption hold and suppose that B is not isomorphic to M1α

for any α > 1. In view of 2.5 there is d ∈ B − {b, c} such that f(d) = c. Take

U = {b, d}, V = {a, d}. Then U, V ∈ P2(A), U ∼= V , thus there is ϕ ∈ AutA with
ϕ(U) = V . Then either ϕ(d) = a or ϕ(b) = a, which implies either

ϕ(c) = ϕ(f(d)) = f(ϕ(d)) = f(a) = b

or

ϕ(c) = ϕ(f(b)) = f(ϕ(b)) = f(a) = b,

i.e., ϕ(c) = b, which is a contradiction. �

2.7. Lemma. Let there be distinct elements a, b, c ∈ A such that f(a) = f(c) = b,

f(b) = c. Then A = {a, b, c}.
���������

. Let d ∈ A− {a, b, c}. By 2.4, f(d) 6= a.

First suppose that f(d) 6= d. Put U = {a, d}, V = {a, c}. Then U, V ∈ P2(A),
U ∼= V and there is ϕ ∈ AutA such that either ϕ(a) = a, ϕ(d) = c or ϕ(a) = c,
ϕ(d) = a. In the first case,

ϕ(d) = c = f2(a) = f2(ϕ(a)) = ϕ(f2(a)) = ϕ(c),
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and in the second case,

ϕ(a) = c = f2(a) = f2(ϕ(a)) = ϕ(f2(a)) = ϕ(c),

thus ϕ is not bijective, which is a contradiction.

Now suppose that f(d) = d. Take U = {b, d}, V = {a, d}. Then U, V ∈ P2(A),
U ∼= V , thus there is ϕ ∈ AutA with ϕ(U) = V . Since b belongs to a 2-element

cycle and d to a 1-element cycle, we obtain ϕ(b) 6= d. Hence ϕ(b) = a, which is a
contradiction as well. �

2.8. Lemma. Let C be a 3-element cycle of A. Further, let B be a connected
component of A such that B has a cycle with less than 3 elements. Then cardB 6 2.
���������

. Suppose that cardB > 2. Then the cycle of B has only 1 element
according to 2.7. Therefore there exist distinct elements b1, b2 ∈ B such that either

b1 6= f(b1) = f(b2) 6= b2(1)

or

f(b1) = b2, f(b2) /∈ {b1, b2}.(2)

Let c ∈ C. First let (1) hold. Take U = {c, b1}, V = {b1, b2}. Then U, V ∈ P2(A),
U ∼= V , but there is no ϕ ∈ AutA with ϕ(c) ∈ {b1, b2}, which is a contradiction,
since a 3-element cycle would be mapped into a 1-element cycle.
Suppose that (2) is valid. Put U = {c, f(c)}, V = {b1, b2}. Then U, V ∈ P2(A),

U ∼= V and there is ϕ ∈ AutA with ϕ(U) = V . Thus ϕ(c) ∈ {b1, b2}, a contradiction.
�

2.9. Lemma. Let a, b, c ∈ A be distinct, f(a) = b, f(b) = c = f(c). Then A is
connected.
���������

. Suppose that A is not connected, i.e., there is d ∈ A such that c and d
do not belong to the same connected components of A.
First suppose that that f(d) 6= d. Take U = {d, c}, V = {a, c}. Then U, V ∈

P2(A), U ∼= V and there is ϕ ∈ AutA with ϕ(U) = V . If ϕ(d) = c, then

ϕ(c) = c = f2(a) = f2(ϕ(d)) = ϕ(f2(d)),

thus c = f2(d), a contradiction. The case ϕ(d) = c, ϕ(c) = a yields a contradiction
as well.

Now suppose that f(d) = d. Let U = {b, d}, V = {a, d}. Then U, V ∈ P2(A),
U ∼= V , thus there is ϕ ∈ AutA such that ϕ(U) = V . Obviously, ϕ(d) 6= a, therefore

ϕ(d) = d, ϕ(b) = a, which is a contradiction. �
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2.10. Lemma. Let C be a cycle of A, cardC > 3. Then f(x) = x for each

x ∈ A− C.
���������

. There exist distinct elements a, b, c ∈ C with f(a) = b, f(b) = c.

By 2.3, C is a connected component of A. Suppose that there is d ∈ A − C such
that f(d) 6= d. If we take U = {d, c}, V = {a, c}, then U, V ∈ P2(A), U ∼= V and

there is ϕ ∈ AutA with ϕ(U) = V . Thus ϕ(d) ∈ C and ϕ(C) = C, therefore ϕ is
not bijective, which is a contradiction. �

2.11. Lemma. Let a, b, c ∈ A be distinct, f(a) = f(b) = f(c) = c. If B is a

connected component, c /∈ B, then cardB = 1.
���������

. Assume that c /∈ B and that there are e, d ∈ B, e 6= d such that

f(e) = d. Let U = {a, b}, V = {a, e}. Then U, V ∈ P2(A), U ∼= V and there is
ϕ ∈ AutA with ϕ(U) = V . If ϕ(a) = a, ϕ(b) = e, then

d = f(e) = f(ϕ(b)) = ϕ(f(b)) = ϕ(c) = ϕ(f(a)) = f(ϕ(a)) = f(a) = c,

which is a contradiction. If ϕ(a) = e, ϕ(b) = a, then

c = f(a) = f(ϕ(b)) = ϕ(f(b)) = ϕ(c) = ϕ(f(a)) = f(ϕ(a)) = f(e) = d,

a contradiction. �

2.12. Lemma. Let B1, B2, B3 be distinct connected components of A which

have more than 1 element. Then B1
∼= B2

∼= B3.
���������

. There are a ∈ B1, b ∈ B2, c ∈ B3 with f(a) 6= a, f(b) 6= b, f(c) 6= c.

Suppose that e.g. B1 is not isomorphic to B2. Take U = {a, b}, V = {b, c}. Then
U, V ∈ P2(A), U ∼= V and there is ϕ ∈ AutA with ϕ(U) = V . Since B1 is not

isomorphic to B2, ϕ(a) 6= b, thus ϕ(a) = c, ϕ(b) = b. The relation ϕ(a) = c implies
B1

∼= B3. Let U ′ = {a, b}, V ′ = {a, c}. Then U ′, V ′ ∈ P2(A), U ′ ∼= V ′. Hence there

is ψ ∈ AutA with ψ(U) = V . We have either ψ(b) = a or ψ(b) = c, which yields
that either B1

∼= B2 or B2
∼= B3. But B3

∼= B1, therefore B1
∼= B2, which is a

contradiction. �

2.13. Lemma. Let a, b, c ∈ A be distinct, f(a) = f(b) = f(c) = c. If p, q ∈ A,

f(p) = p, f(q) = q, then card{c, p, q} 6 2.
���������

. Assume that c, p, q are distinct elements of A and that f(p) = p,
f(q) = q. By 2.11, {p} and {q} are connected components of A. Consider U =
{c, p}, V = {p, q}. Then U, V ∈ P2(A), U ∼= V and there is ϕ ∈ AutA with
ϕ(U) = V . We obtain ϕ(c) ∈ {p, q}, which yields a contradiction, since the connected
component containing c has more than one element and cannot be embedded into a
component {p} or {q}. �
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2.14. Lemma. Let a, b, c, d ∈ A be distinct and f(a) = f(b) = b, f(d) = f(c) = c.

Then there is no one-element connected component of A.

���������
. Suppose that there is p ∈ A such that {p} is a connected component

of A. Let U = {p, c}, V = {b, c}. Then U, V ∈ P2(A), U ∼= V and there is ϕ ∈ AutA
with ϕ(U) = V , which implies ϕ(p) ∈ {c, b}, and this is a contradiction. �

2.15. Lemma. Let c, d be distinct elements of A such that f(d) = f(c) = c.

Then there is at most one 1-element connected component of A.

���������
. Suppose that there are a, b ∈ A such that a 6= b and {a}, {b} are

1-element connected components of A. If we take U = {a, c}, V = {a, b}, then
U, V ∈ P2(A), U ∼= V and there is ϕ ∈ AutA with ϕ(c) ∈ {a, b}, a contradiction. �

2.16. Lemma. Let a, b, c, d ∈ A be distinct and f(a) = f(b) = b, f(d) = c,

f(c) = d. Then there is no one-element connected component of A.

���������
. Suppose that {p} is a connected component and put U = {p, a}, V =

{p, c}. Then U ∼= V . If ϕ ∈ AutA, then ϕ(a) 6= c. Further, the relation ϕ(a) = p

implies ϕ(b) = p = ϕ(a), a contradiction. �

In 2.17 and 2.18 we can repeat the steps of the proof of 2.14; therefore we have:

2.17. Lemma. Let a, b, c, d, e be distinct elements of A, f(a) = b, f(b) = d,

f(d) = a, f(c) = e, f(e) = c. Then there is no one-element connected component

of A.

2.18. Lemma. Let a, b, c, d, e be distinct elements of A, f(a) = b, f(b) = d,

f(d) = a, f(c) = f(e) = e. Then there is no one-element connected component of A.

3. The class H2(P )—auxiliary results

In this section we will give some sufficient conditions under which a monounary
algebra belongs to the class H2(P ).

Let A = (A, f) be a monounary algebra.
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3.1.1. Lemma. Let A be a cycle with 4 elements. Then A ∈ H2(P ).

���������
. Assume that A = {c1, c2, c3, c4}, f(c1) = c2, . . ., f(c4) = c1. Consider

U, V ∈ P2(A) such that U ∼= V . Without loss of generality, one of the following

conditions is satisfied:

(1) U = {c1, c3}, V = {c2, c4},
(2) U = {c1, c2}, V = {c2, c3},
(3) U = {c1, c2}, V = {c3, c4},
(4) U = {c1, c3} = V ,

(5) U = {c1, c2} = V .

Let ϕ be an isomorphism of U onto V , ϕ 6= idU . Then (5) fails to hold.

First let (1) be valid. If ϕ(c1) = c2, ϕ(c3) = c4, then ϕ = f is an extension of ϕ

and ϕ ∈ AutA. If ϕ(c1) = c4, ϕ(c3) = c2, then we can take ϕ = f3; then ϕ ∈ AutA
and ϕ is an extension of ϕ.

Assume that (2) is satisfied. Then ϕ(c1) = c2, ϕ(c2) = c4 and ϕ can be extended
by putting ϕ = f . If (3) holds, then ϕ(c1) = c3, ϕ(c2) = c4 and we can put ϕ = f2.

Let (4) be valid. Then ϕ(c1) = c3, ϕ(c3) = c1 and ϕ = f2 ∈ AutA is an extension
of ϕ. Therefore A ∈ H2(P ). �

3.1.2. Lemma. Let C be a cycle of A such that cardC = 4 and f(x) = x for

each x ∈ A− C. Then A ∈ H2(P ).

���������
. Assume that C = {c1, c2, c3, c4}, f(c1) = c2, . . . , f(c4) = c1. Further

suppose that U , V are elements of P2(A) such that U ∼= V . One of the following
cases occurs:

(1) U, V ⊆ C,

(2) U, V ⊆ A− C,

(3) U = {a, ci}, V = {b, cj}, where a, b ∈ A− C, ci, cj ∈ C.
Let ϕ be an isomorphism of U onto V , ϕ 6= idU . If (1) is valid, then ϕ can be
extended analogously as in 3.1.1. Let (2) hold. Then U = {u1, u2}, V = {v1, v2}
and ϕ(u1) = v1, ϕ(u2) = v2. If u1 = v1, then ϕ 6= idU implies u2 6= v2 6= v1; put

ϕ(x) =





v2 if x = u2,

u2 if x = v2,

x otherwise.

Then ϕ is an extension of ϕ and ϕ ∈ AutA. The case u1 6= v1, u2 = v2 is analogous.
If v2 = u1, v1 = u2, then it is obvious that we can define ϕ as above. If u1, u2, v1,
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v2 are mutually distinct, then we set

ϕ(x) =





v1 if x = u1,

u1 if x = v1,

v2 if x = u2,

u2 if x = v2,

x otherwise

and we obtain an extension ϕ of ϕ such that ϕ ∈ AutA.
Now suppose that (3) is valid. Then clearly ϕ(a) 6= cj , whence ϕ(a) = b, ϕ(ci) =

cj . Put

ϕ(x) =





a if x = b,

b if x = a,

fk(cj) if x = fk(ci), k ∈ � ,
x otherwise.

Then ϕ is an extension of ϕ and ϕ ∈ AutA. Thus we have proved that A ∈ H2(P ).
�

3.2.1. Lemma. If A is connected and cardA 6 3, then A ∈ S h2(P ).
���������

. Let A be connected. The assertion is obvious if cardA = 2, thus
assume that card A = 3. Then either A is a 3-element cycle or A contains a cycle
with less than 3 elements. Let U, V ∈ P2(A) and let ϕ 6= idU be an isomorphism of U

onto V . Then A is a 3-element cycle and there is u ∈ A such that U = {u, f(u)},
V = {f(u), f2(u)} or U = {u, f(u)}, V = {f 2(u), u}. Then either ϕ = f or ϕ = f 2

is an automorphism of A which is an extension of ϕ. Therefore A ∈ S h2(P ). �

3.2.2. Lemma. Let A consist of k 2-element cycles and of m 1-element cycles,
(k,m) 6= (0, 0), k > 0, m > 0. Then A ∈ H2(P ).
���������

. Consider U, V ∈ P2(A) such that U ∼= V . One of the following condi-
tions is satisfied:

(1) U, V are 2-element cycles,
(2) U = {u1, u2}, V = {v1, v2}, where u1, u2, v1, v2 are 1-element cycles,

(3) U = {a, u}, V = {b, v}, where f(a) 6= a, f(u) = u, f(b) 6= b, f(v) = v.
Let ϕ 6= idU be an isomorphism of U onto V . First assume that (1) is valid. Then

ϕ defined by the formula

ϕ(x) =





ϕ(x) if x ∈ U,
ϕ−1(x) if x ∈ V,
x otherwise
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belongs to AutA and it is an extension of ϕ. If (2) is valid, then we proceed analo-
gously as in 3.1.2, case (2). Let (3) hold. Then ϕ(a) = b, ϕ(u) = v; let us put

ϕ(x) =





f i(b) if x = f i(a), i ∈ {0, 1},
f i(a) if x = f i(b), i ∈ {0, 1},
u if x = v,

v if x = u,

x otherwise.

Then ϕ is an extension of ϕ and ϕ ∈ AutA. Therefore A ∈ H2(P ). �

3.2.3. Lemma. Let A consist of k 3-element cycles and of m 1-element cycles,
k > 0, m > 0. Then A ∈ H2(P ).
���������

. Let U, V ∈ P2(A), U ∼= V . One of the following cases occurs:

(1) U , V are subsets of one 3-element cycle,

(2) U = {a, f(a)}, V = {b, f(b)}, a, b belong to distinct 3-element cycles,
(3) U = {u1, u2}, V = {v1, v2}, where u1, u2, v1, v2 are 1-element cycles,

(4) U = {a, u}, V = {b, v}, where f(a) 6= a, f(u) = u, f(b) 6= b, f(v) = v.

Let ϕ 6= idU be an isomorphism of U onto V . If (1) is valid, then ϕ can be extended

analogously as in 3.2.1. If (2), (3) or (4) holds, then ϕ can be extended analogously
as in 3.2.2, cases (1), (2) or (3), respectively. Thus we obtain that A ∈ H2(P ). �

3.3. Lemma. Let A ∼= Mα, α > 1. Then A ∈ H2(P ).
���������

. We assume that there is c ∈ A with f(x) = c for each x ∈ A, cardA > 2.
Let U, V ∈ P2(A) be such that U ∼= V . One of the following two conditions is

satisfied:

(1) U = {a, c}, V = {b, c} for some a, b ∈ A− {c},
(2) U = {u1, u2}, V = {v1, v2}, u1, u2, v1, v2 ∈ A− {c}.
Let ϕ 6= idU be an isomorphism of U onto V . If (1) is valid, then put

ϕ(x) =





b if x = a,

a if x = b,

x otherwise;

we obtain that ϕ is an extension of ϕ and ϕ ∈ AutA. If (2) is satisfied, then we
proceed analogously as in the proof of 3.1.2, case (2). Therefore A ∈ H2(P ). �
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3.4. Lemma. Suppose that A ∼= M1α for some α > 1. Then A ∈ H2(P ).

���������
. By the assumption, there are distinct b, c ∈ A with f(b) = f(c) = c and

f(x) = b for each x ∈ A − {b, c}. Let U, V ∈ P2(A), U ∼= V . Then we have one of
the following possibilities:

(1) U = {a, b}, V = {d, b}, a, d ∈ A− {b, c},
(2) U = {a, c}, V = {d, c}, a, d ∈ A− {b, c},
(3) U = {u1, u2}, V = {v1, v2}, {u1, u2, v1, v2} ⊆ A− {b, c}.
Then each isomorphism ϕ of U onto V can be extended to ϕ ∈ AutA, thus A ∈
H2(P ). �

3.5. Lemma. Suppose that each connected component of A has 2 elements and
it is not a cycle. Then A ∈ H2(P ).

���������
. Let U, V ∈ P2(A), U ∼= V . Let C be the set of all x ∈ A with f(x) = x,

B = A− C. One of the following conditions is satisfied:

(1) U = {a, f(a)}, V = {b, f(b)}, {a, b} ⊆ B,

(2) U = {u1, u2}, V = {v1, v2} and
either {u1, u2, v1, v2} ⊆ B or {u1, u2, v1, v2} ⊆ C,

(3) U = {a1, c1}, V = {a2, c2}, {a1, a2} ⊆ B, {c1, c2} ⊆ C, f(a1) 6= c1, f(a2) 6= c2.

Let ϕ 6= idU be an isomorphism of U onto V . If (1) is valid, then it is obvious that
ϕ can be extended to ϕ ∈ AutA. In the case (2) we denote by u′1, u

′
2, v

′
1, v

′
2 the

elements of the connected components of A which contain the elements u1, u2, v1,
v2, respectively, such that u′1 6= u1, u′2 6= u2, v′1 6= v1, v′2 6= v2. Let ϕ(u1) = v1,

ϕ(u2) = v2. Then we proceed analogously as in 3.1.2, e.g., if u1 = v1, u2 6= v2, then
we can put

ϕ(x) =





u2 if x = v2,

u′2 if x = v′2,

v2 if x = u2,

v′2 if x = u′2,

x otherwise;

then ϕ is an extension of ϕ and ϕ ∈ AutA.
Suppose that (3) holds. Then ϕ(a1) = a2, ϕ(c1) = c2. If either a1 = a2 or c1 = c2,

then it is obvious that ϕ can be extended to ϕ ∈ AutA. Let a1 6= a2, c1 6= c2.
Denote by b1, b2 ∈ A such that f(b1) = c1, f(b2) = c2. Let us define the mapping ϕ

as follows:

a) Let b1 = a2, b2 = a1. We put a1 → a2 → a1, c1 → c2 → c1 and for the other
elements, x→ x.
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b) Let b1 6= a2, b2 = a1. Then we put a2 → b1 → a1 → a2, f(a2) → c1 → c2 →
f(a2) and for the other elements, x→ x.
c) Let b1 = a2, b2 6= a1. Then we put a2 → b2 → a1 → a2, c1 → c2 → f(a1) → c1,

x→ x otherwise.

d) Let b1 6= a2, b2 6= a1. Then put a1 → a2 → a1, c1 → c2 → c1, b1 → b2 → b1,
x→ x otherwise.

In each of these cases, ϕ ∈ AutA and ϕ is an extension of ϕ. ThereforeA ∈ H2(P ).
�

4. Characterization of the classes S h2(P ) and H2(P )

The aim of this section is to prove necessary and sufficient conditions under which
a monounary algebra belongs to S h2(P ) or to H2(P ), respectively.

4.1. Lemma. Let α > 1. Then Mα + Z1 /∈ H2(P ).
���������

. Let A = Mα + Z1 and let c ∈ Mα be such that f(c) = c. We have
Z1 = {0}. Take U = {c, 0} = V , ϕ(c) = 0, ϕ(0) = c. Then U, V ∈ P2(A), ϕ is
an isomorphism of U onto V , but ϕ cannot be extended to an automorphism of A.
Therefore A /∈ H2(P ). �

4.2. Lemma. Let α > 1. Then Mα + Z1 ∈ S h2(P ).
���������

. Let A, c, 0 be as in the previous proof. Take U, V ∈ P2(A) such that
U ∼= V , U 6= V . We obtain one of the following cases:

(1) U = {a, c}, V = {b, c} for some a, b ∈ f−1(c)− {c},
(2) U = {u1, u2}, V = {v1, v2}, u1, u2, v1, v2 ∈ f−1(c)− {c},
(3) U = {a, 0}, V = {b, 0} for some a, b ∈ f−1(c)− {c}.
It is easy to see that in each of the cases there exists an automorphism ϕ of A

with ϕ(U) = V . Hence A ∈ S h2(P ). �

It is easy to show

4.3.1. Lemma. The algebras Z3 + Z2, Z3 +M1, Z2 +M1 belong to S h2(P ).

4.3.2. Lemma. The algebras Z3+Z2, Z3+M1, Z2+M1 do not belong toH2(P ).
���������

. Let us show e.g., that Z3 + Z2 /∈ H2(P ). Let A = {a, b, c, d, e}, where
{a, b, c}, {d, e} are 3-, 2-element cycles, respectively. Put U = {a, d}, V = {d, a},
ϕ(a) = d, ϕ(d) = a. Then ϕ is an isomorphism of U onto V , thus ϕ can be extended

to an automorphism ψ of A. For ψ ∈ AutA we have ψ(a) ∈ {a, b, c}, which is a
contradiction. �
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4.4.1. Lemma. If m > 0, then Z5 +m · Z1 /∈ H2(P ).
���������

. Take U = {0, 2}, V = {0, 3}, ϕ(0) = 0, ϕ(2) = 3. Then ϕ is an
isomorphism of U onto V , but it cannot be extended to an automorphism of Z5 +
m · Z1. �

4.4.2. Lemma. If m > 0, then Z5 +m · Z1 ∈ S h2(P ).
���������

. Denote A = Z5 +m ·Z1, B = m ·Z1. Let U, V ∈ P2(A), U ∼= V , U 6= V .

Without loss of generality we obtain one of the following cases:

(1) U ⊆ B, V ⊆ B,

(2) U ∩ B 6= ∅ 6= U ∩ Z5, V ∩B 6= ∅ 6= V ∩ Z5,

(3) U = {0, 1}, V = {v, f(v)}, v ∈ Z5,

(4) U = {0, 2}, V = {v, f2(v)}, v ∈ Z5.

It is obvious that in each of these cases we can find ϕ ∈ AutA with ϕ(U) = V ;
therefore A ∈ S h2(P ). �

4.5. Lemma. If a monounary algebraA belongs toS h2(P ), then A is isomorphic
to some of the following algebras:

(1) Z5 +m · Z1, m > 0,
(2) Z4 +m · Z1, m > 0,
(3) Z3 + Z2,

(4) Z3 +M1,

(5) k · Z3 +m · Z1, k > 0, m > 0,
(6) connected 3-element monounary algebra with a 2-element cycle,
(7) m · Z2 + k · Z1, m, k > 0, (m, k) 6= (0, 0),
(8) Z2 +M1,

(9) M1α, α > 0,
(10) Mα + Z1, α > 0,
(11) Mα, α > 0,
(12) m ·M1, m > 0.

���������
. Let A ∈ S h2(P ). By 2.2, each connected component of A contains a

cycle with at most 5 elements. If there is a cycle with 5 or with 4 elements, then
2.10 yields that A is isomorphic either to (1) or to (2). Thus suppose that each cycle

of A has at most 3 elements.

a) Assume that there exists a connected component containing a cycle C such that
cardC = 3. By 2.3, C is a connected component of A. Further, in view of 2.8 we
obtain that if D is a connected component of A, then either D ∼= C or cardD 6 2.
Thus either A is isomorphic to (5) or there is a connected component D of A with
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cardD = 2. If suchD exists, then 2.12 implies that f(x) = x for each x ∈ A−(C∪D)
and 2.17 yields that A is isomorphic either to (3) or to (4).
b) Now suppose that each connected component of A contains a cycle with at

most 2 elements. First assume that there is a cycle C0 of A with cardC0 = 2. If
C0 does not form a connected component, then we obtain according to 2.7 that A is
isomorphic to (6). Thus let each connected component containing a 2-element cycle

be a cycle. If there are two 2-element cycles in A, then A is isomorphic to (7) in view
of 2.12. Suppose that A is not isomorphic to (7). Therefore there is a connected

component D with cardD > 1 and such that D contains a 1-element cycle. By 2.12,
f(x) = x for each x ∈ A − (C0 ∪ D), but by 2.16, there is no 1-element connected
component of A. Thus A = C0 ∪ D. Further, 2.9 yields that cardD = 2, thus we
obtain that A is isomorphic to (8).

c) Assume that each connected component of A contains a cycle with one element.
If there is a cycle {c} such that f−2(c)−{c} 6= ∅, then 2.9 implies that A is connected
and by 2.6 we get that A is isomorphic to (9). Let f−2(c)−{c} = ∅ for each cycle {c}
of A. First let there exist a connected component C and distinct elements a, b, c ∈ C
with f(a) = f(b) = f(c) = c. By 2.11, f(x) = x for each x ∈ A − C and by 2.13,
card(A−C) 6 1. Then A ∼= Mα +Z1 or A ∼= Mα (i.e., (10) or (11) ). Now suppose

that such C does not exist. If a connected component of A has more than one
element, then it is isomorphic toM1. If there are at least two connected components

isomorphic to M1, then 2.14 implies that A is isomorphic to (12). If there is only
one connected component isomorphic to M1, then A ∼= M1 + k · Z1, k > 0 and we
obtain in view of 2.15 that A ∼= M1 + Z1 or A ∼= M1, i.e., A is isomorphic either
to (10) or to (11). If there are only one-element connected components in A, then

A is isomorphic to (7) for m = 0. �

4.6. Lemma. If A is isomorphic to some of the algebras (2), (5), (7), (9), (11),
(12), then A ∈ H2(P ).
���������

. If A is isomorphic to (2), then A ∈ H2(P ) according to 3.12. Similarly,
we will write the reasons why A ∈ H2(P ) in the remaining cases: 3.2.3—(5); 3.2.2—
(7); 3.4—(9); 3.3—(11); 3.5—(12). �

Now we can conclude with a characterization of the monounary algebras belonging
to the classes S h2(P ) and H2(P ), as follows:

4.7. Theorem. A monounary algebra A belongs to S h2(P ) if and only if A is
isomorphic to some of the algebras (1)–(12).
���������

. If A is isomorphic to (1), then A ∈ S h2(P ) in view of 4.4.2. Analo-
gously as above A ∈ S h2(P ) in the following cases: 4.3.1—(3), (4), (8); 3.2.1—(6);
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4.2—(10). In the remaining cases (2), (5), (7), (9), (11) and (12) we obtain by 4.6

that A ∈ H2(P ), thus A ∈ S h2(P ).
The converse implication was proved in 4.5. �

4.8. Theorem. A monounary algebra A belongs to H2(P ) if and only if A is
isomorphic to some of the algebras (2), (5), (7), (9), (11), (12).
���������

. Let A ∈ H2(P ). Then A is not isomorphic to (1) by 4.4.1, to (3), (4) or
(8) by 4.3.2, to (6) immediately, to (10) by 4.1. Since 1.1 yields that A ∈ S h2(P ),
we have according to 4.5 that A is isomorphic to some of the algebras (2), (5), (7),

(9), (11) and (12). Then 4.6 completes the proof. �
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