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Abstract. We define various ring sequential convergences on � and � . We describe their
properties and properties of their convergence completions. In particular, we define a con-
vergence � 1 on � by means of a nonprincipal ultrafilter on the positive prime numbers such
that the underlying set of the completion is the ultraproduct of the prime finite fields � /(p).
Further, we show that ( � , � ∗1 ) is sequentially precompact but fails to be strongly sequentially
precompact; this solves a problem posed by D. Dikranjan.
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1. Introduction

We introduce some ring sequential convergences on
�
and � . Our main result is a

ring convergence � 1 on
�
such that the completion of (

�
, � 1) is a field which consists

of an ultraproduct of prime finite fields
�
/(p). We extend this convergence to some

ring convergences on � . These convergences are not given by any ring topology.
We recall Ostrowski’s theorem: Every nontrivial absolute value on � is equivalent

to a p-adic absolute value or to the usual absolute value. As a counterpoint, one
can desire a ring topology on

�
or � for which there exists an infinite set of primes

D = {q1, q2, . . . , qn, . . .} such that

(1) lim
n→∞

(q1q2 . . . qn) = 0.

We get this by means of the filter of ideals

(q1) ⊃ (q1q2) ⊃ . . . ⊃ (q1q2 . . . qn) ⊃ . . .
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as a basis of zero neighborhoods for a ring topology on
�
. However, the completion

of
�
with this ring topology has zero divisors. The idea is to use an ultrafilter in the

set of prime numbers to define a ring convergence that also satisfies (1), but now the
completion of

�
is a field. In the last section we present a completion of

�
which is

an ultraproduct of the rings of p-adic integers.

In some situations the topologies are not suitable, and then one can employ sequen-
tial convergences fruitfully. For instance, in spaces of functions with the pointwise
convergence it was done in [2].

1.1. Basic definitions and properties.
Information about sequential convergences, L0-groups and L0-rings can be found

in the papers [7], [9], [10], [11], [15] and in the book [14, § 20]. All rings and fields
considered are commutative. The set of all strictly increasing mappings from �
into � is denoted by MON. Let X be a set. For each sequence S = 〈S(n)〉 ∈ X �
and each s ∈ MON, the composite S ◦ s = 〈S(s(n))〉 denotes the subsequence that
corresponds to s. If X is equipped with an algebraic structure, then the operations
in X � are defined pointwise. For each x ∈ X , the corresponding constant sequence
is denoted by 〈x〉.
A sequential convergence, or simply a convergence, � in X is a collection � ⊆

X � × X of sequences and their limits. The expression (S, x) ∈ � , or S ∈ � ← (x),
means that the sequence S converges to x. We always assume the following axioms:

(F) if S ∈ � ← (x), then S ◦ s ∈ � ← (x) for each subsequence S ◦ s,

(S) 〈x〉 ∈ � ← (x) for each constant sequence 〈x〉,
(H) the uniqueness of limits, i.e., if S ∈ � ← (x) and S ∈ � ← (y), then x = y.

A convergence fulfilling these axioms is called an L0-convergence. The pair (X, � )
is called an L0-space. We do not usually assume the Urysohn axiom:

(U) given S ∈ X � and x ∈ X , if for each s ∈ MON there exists t ∈ MON such that
(S ◦ s ◦ t, x) ∈ � , then (S, x) ∈ � .

If this axiom is satisfied we call the convergence an L ∗
0 -convergence.

If X is a ring, the algebraic operations are sequentially continuous if the following
axiom is fulfilled:

(Lr) if (S, x), (T, y) ∈ � , then (S − T, x− y) ∈ � and (ST, xy) ∈ � .
That is, the convergence and the ring operations are compatible. In this case,

(X, � ) is called an L0-ring. If X is a field we consider the following axiom:

(Lf) if (S, x), (T, y) ∈ � , then (S − T, x− y) ∈ � and (ST, xy) ∈ � , and if x 6= 0 and
S(n) 6= 0 for all n ∈ � , then (S−1, x−1) ∈ � .

In case it is satisfied, we call (X, � ) an L0-field.

If (X, � ) is an L0-space, then the Urysohn modification � ∗ of � is defined as
follows: (S, x) ∈ � ∗ whenever each subsequence of S contains another subsequence
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� -converging to x. In this situation (X, � ∗ ) is an L ∗0 -space. If (X, � ) is an L0-ring
(field), then the Urysohn modification preserves the continuity of algebraic oper-
ations. In an L0-ring (field) the convergence is homogeneous and the set of zero
sequences � ← (0) determines the convergence.
Let (X, � ) be an L0-space. For each subset A ⊆ X we define its closure cl A to

be the set of all limits of convergent sequences ranging in A. This closure operator
is not necessarily idempotent, and consequently need not produce a topology. For
every ordinal number α and for every subset A we define α-cl A as follows:
• 1-clA = clA,
• α-cl A = cl(β-cl A) if α = β + 1,
• α-cl A = ∪β<α(β-cl A) if α is a limit ordinal.

Then each α-clA is a closure operator for X (see [8]). Let ω1 be the first uncountable
ordinal number. For each subset A ⊆ X we have cl(ω1-cl A) = ω1-clA; therefore
ω1-clA is idempotent and hence topological. The sequential order of (X, � ) is the
least ordinal number σ > 1 such that cl(σ-cl A) = σ-cl A for each subset A ⊆ X .
Clearly 1 6 σ 6 ω1. If X = cl A, then A is said to be closure dense, and if X = ω1-
cl A, then A is said to be topologically dense.

Let (X, � ) be an L0-ring; a sequence S in X is said to be � -Cauchy if S◦t−S◦s ∈
� ← (0) for all s, t ∈ MON. This is equivalent to saying that S − S ◦ s ∈ � ← (0) for
all s ∈ MON. As usual, if all � -Cauchy sequences in X converge, then (X, � ) is said
to be complete.

Let (X ′, � ′ ) be an L0-ring, let X be a subring of X ′ and let � = � ′ |X . Then
(X ′, � ′ ) is said to be an extension of (X, � ).
Let (X, � ) be an L0-ring. Then its completion is an extension (X ′, � ′ ) which is

complete and such that X is topologically dense in (X ′, � ′ ). If X is closure dense
in (X ′, � ′ ), we call it a dense completion. The completion, in case it exists, is far
from being unique. The following condition is necessary for an L0-ring to have a
completion:

(Cr) S, T ∈ X � , if S is � -Cauchy and T ∈ � ← (0), then ST ∈ � ← (0).
We consider a stronger condition: An L0-ring (X, � ) is bounded if ST ∈ � ← (0)

whenever S ∈ X � and T ∈ � ← (0). A field cannot be bounded.
We say that a completion

(
X̂, �̂ )

of anL0-ring (X, � ) is its categorical ring comple-
tion (in the category of L0-rings) if the following universal property holds: for each
continuous homomorphism f from (X, � ) into a complete L0-ring (Y, � ) there exists
a unique continuous homomorphism f̂ from

(
X̂, �̂ ) into (Y, � ) such that f(x) = f̂(x)

for all x ∈ X . We have the same concept in the category of L ∗
0 -rings. In [2] it was

shown that, if an L ∗
0 -ring has a completion, then it has the categorical one.

Let X be a set with two L0-convergences � 1 ⊆ � 2 . We say that � 1 is finer than
� 2 , and � 2 is coarser than � 1 .
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Let X be a ring; an L0-ring convergence � in X is coarse if there is no L0-ring
convergence strictly larger than � . In this case � satisfies the Urysohn axiom, that
is, � = � ∗ . The concept of the coarse ring convergence is the counterpart of the
concept of the minimal ring topology in the theory of topological rings.
The following results are easy to prove (cf. [6], [11]).

Lemma 1. Let X be a ring and let � be an L0-ring convergence on X . Then
A = � ← (0) has the following properties:
(i) A is a subring (without unit) of the ring X � .
(ii) If S ∈ A then S ◦ s ∈ A for each s ∈ MON.
(iii) 〈x〉A ⊆ A for each x ∈ X .
(iv) 〈x〉 6∈ A whenever x 6= 0.
(v) � ← (x) = A + 〈x〉 for each x ∈ X .

Lemma 2. Let X be a ring and let A be a subset of X � satisfying condi-
tions (i)–(iv). Then there is an L0-ring convergence � on X such that � ← (0) = A .

Lemma 3. Let X be a field and let � be an L0-ring convergence on X . Then
� is an L0-field convergence if and only if the following condition is satisfied:
(vi) If each S ∈ � ← (0) with S(n) 6= −1 for all n ∈ � , then S(n)/(1+S(n)) ∈ � ← (0).

In some articles a different terminology is used: An L0-convergence is called an
FSH-convergence, an L ∗0 -convergence is called an FUSH-convergence, an L ∗

0 -ring is
called an FLUSH-ring, . . .

2. The ring convergence on
�

The expression “almost all n ∈ � ” means all natural numbers, except possibly a
finite number of them.
Let � be the set of positive prime numbers. Let U be a nonprincipal ultrafilter

in � . We define an L0-ring convergence � 1 on
�
: a sequence (an)n∈ � converges to

zero if the set of primes p ∈ � such that p divides an for almost all n ∈ � belongs
to U . It is easy to check that � ←1 (0) satisfies conditions (i)–(iv) in Lemma 2. It
is obvious that � 1 is a bounded ring convergence on

�
, and consequently, fulfils the

condition (Cr).
We will use the following elementary result:

Lemma 4. Let S ∈ � � be any sequence of integers. Then it has a subsequence β

that satisfies the following condition: each prime p which divides infinitely many
terms β(n) divides almost all of them.
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���������
. We shall construct successive subsequences of S, from which we get the

required subsequence β. Let q1, . . . , qi be the prime numbers that divide S(1). We
define a subsequence S1,1 as follows: S1,1(1) = S(1). If q1 divides only finitely many
terms S(n), then S1,1(n) = S(n) for all n. If q1 divides infinitely many terms S(n),
then we define S1,1 to be the subsequence consisting just of these terms. Now we
define another subsequence S1,2 as follows: S1,2(1) = S(1). If q2 divides only finitely
many terms S1,1(n), then S1,2(n) = S1,1(n) for all n. If q2 divides infinitely many
terms S1,1(n), then we define S1,2 to be the subsequence consisting just of these
terms. We proceed analogously with q3, . . . , qi. After i steps we have defined S1,i.

Now let p1, . . . , pj be the primes that divide S1,i(2). We define a subsequence S2,1

as follows: S2,1(1) = S(1), S2,1(2) = S1,i(2). If p1 divides only finitely many terms
S1,i(n), then S2,1(n) = S1,i(n) for all n. If p1 divides infinitely many terms S1,i(n),
then we define S2,1 to be the subsequence consisting just of these terms. We continue
in the same way and, after j steps, we get S2,j . Now let t1, . . . , tk be the primes
which divide S2,j(3). In the same manner we get the subsequences S3,1, . . . , S3,t, and
so on.

Finally, we define β, a subsequence of S, as follows: β(n) = Sn,1(n) for all n. It
satisfies the required condition. �

It is easy to check that a sequence (an)n∈ � ∈ � � is � 1 -Cauchy if and only if the
following condition is satisfied: the set of primes p for which there exists kp such
that p | an − am for all n, m > kp belongs to U .

According to [4], a convergence group (G, L0) is sequentially precompact if each
sequence has a Cauchy subsequence. A convergence group (G, L0) is strongly sequen-
tially precompact if there exists a sequentially compact group containing (G, L0) as
a convergence subgroup. (In [17] the expression “sequentially precompact” means
the latter of the two concepts).

Lemma 5. The L0-ring (
�
, � 1) is sequentially precompact.

���������
. Let S = (S(n))n∈ � be any sequence of integers. We take a set of

primes B = {q1, q2, . . .} ∈ U . We are taking successive subsequences S1, S2, . . . of S,
with Sm being a subsequence of Sm−1, in the following manner:

Let S1(1) = S(1). There exists i ∈ {0, 1, . . . , q1 − 1} and an infinite subset T1 ⊆
� \ {1} such that

S(n) ≡ i mod(q1) for all n ∈ T1.

Let t ∈ MON be defined by t(1) = 1 and {t(n) : n > 2} = T1. Put S1 = S ◦ t.
If we have constructed Sm−1, we define Sm as follows: Sm(n) = Sm−1(n) for n =
1, 2, . . . , m. There exist i ∈ {0, 1, . . . , qm − 1} and an infinite subset Tm ⊆ � \
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{1, . . . , m} such that

Sm−1(n) ≡ i mod(qm) for all n ∈ Tm.

Let v ∈ MON be defined by v(n) = n for n = 1, . . . , m and {v(n) : n > m+1} = Tm.
Put Sm = Sm−1 ◦v. Finally, let Y be the subsequence of S defined by Y (n) = Sm(n)
for n 6 m. It is also a subsequence of each Sm. Each qn ∈ B satisfies that qn |
Y (j)− Y (k) for all j, k > n. Consequently, Y is an � 1 -Cauchy sequence. �

Lemma 6. Let α, β ∈ � � . There exists v ∈ MON such that both α ◦ v and β ◦ v

are Cauchy sequences in (
�
, � 1).���������

. There exists s ∈ MON such that α ◦ s is � 1 -Cauchy. For β ◦ s there
exists t ∈ MON such that β ◦ s ◦ t is � 1 -Cauchy. Thus both α ◦ (s ◦ t) and β ◦ (s ◦ t)
are � 1 -Cauchy. �

Lemma 7. Each nonzero ideal (a) ⊆ �
is closure dense in

�
.���������

. Let b ∈ � \ (a). Let A = {q1, q2, . . .} ∈ U be the set of primes which
do not divide a. We choose a sequence (bn)n∈ � that satisfies

bn ≡ 0 mod(a), bn ≡ b mod(q1 . . . qn) for all n ∈ � .

The sequence (bn)n∈ � ⊆ (a) converges to b. Therefore cl(a) =
�
. �

Lemma 8. Let (an)n∈ � be an � 1 -Cauchy sequence not converging to zero. Then
there exists another � 1 -Cauchy sequence (bn)n∈ � such that (anbn)n∈ � converges to 1.���������

. We consider the sets

B = {p ∈ � : p | an for almost all n ∈ � } 6∈ U ,

E = {p ∈ � : p | an − am for all n, m > kp} ∈ U .

Let F = E ∩ ( � \ B) ∈ U ; we write F = {q1, q2, . . .}. For each qi ∈ F there exists
ni ∈ � such that qi � an and qi | an − am for all n, m > ni. We choose a sequence
(bn)n∈ � which satisfies the following conditions:

bn = 1 for n < n1,

anbn ≡ 1 mod(q1) for n1 6 n < n2,

...

anbn ≡ 1 mod(q1q2 . . . qi) for ni 6 n < ni+1.

It is clear that (bn)n∈ � is an � 1 -Cauchy sequence and that (anbn)n∈ � converges
to 1. �
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We extend the L0-ring convergence � 1 from
�
to an L0-ring convergence � 2 on �

in the following easy way:
A sequence (αn)n∈ � ∈ � � � 2 -converges to zero if there exists (an)n∈ � ∈ � ←1 (0) ⊆� � and c ∈ � such that αn = an/c for all n ∈ � . The following result is an obvious

consequence of Lemmas 2 and 3.

Lemma 9. � 2 is an L0-ring convergence on � . It is not a field convergence.
Further, � 2 |  = � 1 . Any other L0-ring convergence � b on � that satisfies � b |  = � 1
is coarser than � 2 , i.e., � 2 ⊆ � b .

We will construct a dense completion of (
�
, � 1). We denote the ring of � 1 -Cauchy

sequences by C1. Two Cauchy sequences S, T ∈ C1 are equivalent if S−T ∈ � ←1 (0).
Algebraically, the completion

�̂
is the ring of classes of equivalent Cauchy sequences.

That is,
�̂
is the quotient ring of the ring C1 by the ideal of null sequences � ←1 (0).

This quotient exists since (
�
, � 1) satisfies the condition (Cr).

Lemma 10. The completion ring
�̂
is a field of zero characteristic.

���������
. It is enough to consider Lemma 8 and the fact that

� ⊆ �̂
. �

We will use an ultraproduct of prime finite fields. The reader may consult [3], [13],
[18]. Let U be the ultrafilter on � used for defining � 1 . For each prime p ∈ � we
take the corresponding prime finite field ! p =

�
/(p) = GF (p). We take the product∏

p∈ " ! p of all of them. In this product we consider the equivalence relation

(ap)p∈ " ∼ (bp)p∈ " def⇐⇒ {p ∈ � : ap = bp} ∈ U .

The ultraproduct is the quotient ring of equivalence classes by this relation. It is a
field, which we denote by

! =

∏
p∈ " ! p
U

.

We can also take the maximal ideal M = {(ap)p∈ " : {p ∈ � : ap = 0} ∈ U } in∏
p∈ " ! p , and then the ultraproduct is the quotient

! =

∏
p∈ " ! p
M

.

This field has the cardinality of continuum.

Theorem 11. The completion ring
�̂
is isomorphic to the field ultraproduct

! =
∏

p∈ " ! p/U .
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���������
. Let C1 be the ring of � 1 -Cauchy sequences. We define a ring homo-

morphism

f : C1 −→
∏

p∈ " ! p
U

as follows: for α = (an)n∈ � ∈ C1 there exists B ∈ U such that each p ∈ B satisfies
p | an − am for all n, m > kp for a certain constant kp. We choose β = [bp]p∈ " ∈ !
fulfilling the following condition: if p ∈ B, then bp = an, the class of an mod(p) for
n > kp; if p 6∈ B, then bp = 0. We set f(α) = β. It is easy to check that f is a
homomorphism, f is onto, and ker(f) = � ←1 (0). Therefore

�̂
=

C1

� ←1 (0)
∼= ! .

�

Now, we have to define an L0-ring convergence on
�̂
. We follow a process similar

to that used in [9], [10], [12] to construct % � , the categorical L ∗
0 -ring completion

of � .
Let (αn) be an � 2 -Cauchy sequence. It is easy to see that there exist an � 1 -Cauchy

sequence and c ∈ � such that αn = an/c for all n. The � 2 -limit of (αn) is the class
[an]c−1 in

�̂
. Let {1}∪B be a basis of

�̂
as a linear space over � . Let � 3 be the set

of all pairs (S, x) ∈ �̂ � × �̂
such that S is of the form

(2) S(n) = S0(n) + S1(n)b1 + . . . + Sk(n)bk for all n ∈ � ,

where k ∈ � , b1, . . . , bk ∈ B, Si is a Cauchy sequence in ( � , � 2 ) for i = 0, 1, . . . , k,
and x = x0 + x1b1 + . . . + xkbk, where xi is the � 2 -limit of the Cauchy sequence Si,
i =, 0, 1, . . . , k. The following result is easy to prove:

Lemma 12. � 3 does not depend on the choice of the basis {1} ∪ B. � 3 is an
L0-ring convergence on

�̂
. Further, � 3 | # = � 2 and � 3 |  = � 1 .

This leads to our main result.

Theorem 13. The L0-ring
( �̂

, � 3)
is the categorical L0-ring completion of the

convergence rings (
�
, � 1) and ( � , � 2 ).���������

. First, we prove that
( �̂

, � 3

)
is complete. Let S be an � 3 -Cauchy

sequence in
�̂
. There exists a finite set {b1, . . . , bk} ⊂ B such that S(n) belongs

to the � -linear subspace 〈1, b1, . . . , bk〉 for all n ∈ � . Otherwise, we could find a
subsequence S ◦ s such that {S(n)− S(s(n)) : n ∈ � } would not be included in any
finite linear subspace of

�̂
, and hence S − S ◦ s 6∈ � ←3 (0). Therefore S is of the form

S(n) = S0(n) + S1(n)b1 + . . . + Sk(n)bk for all n ∈ � ,
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where each Si, i = 0, 1, . . . , k is an � 2 -Cauchy sequence. Thus S has a limit in( �̂
, � 3

)
. Consequently,

( �̂
, � 3

)
is complete.

As
� ⊂ � ⊂ �̂

and both � 3 | # = � 2 , � 3 |  = � 1 , we have proved that ( �̂
, � 3)

is a
dense completion of the convergence rings (

�
, � 1) and ( � , � 2 ).

Finally, since � 2 is the finest L0-ring convergence on � such that � 2 |  = � 1 , it
suffices to prove that

( �̂
, � 3)

is the categorical L0-ring completion of ( � , � 2 ). Let
(K, � ) be a complete L0-ring, and let f : � −→ K be a continuous ring homomor-
phism. Then K contains a field isomorphic to

�̂
. We identify

( �̂
, � 3)

with its image
under f . Since � 2 ⊆ � | # , it is clear that each sequence of the form (2) converges in
(K, � ). That is, � 3 ⊆ � |ˆ . �

3. The Urysohn modification of � 1

In this section, we shall see that the L0-ring convergence � 1 does not satisfy
the Urysohn axiom (U); hence we shall study its Urysohn modification. First, we
enunciate two easy properties of (

�
, � 1).

Lemma 14. The L0-ring (
�
, � 1) possesses the following two properties:

• Let s, t ∈ MON such that � is the disjoint union of {s(n) : n ∈ � } and {t(n) :
n ∈ � } and let S ∈ � � . If both S ◦ s, S ◦ t ∈ � ←1 (x), then S ∈ � ←1 (x).

• If (an)n∈ � ∈ � ←1 (x) and the sequence (bn)n∈ � is obtained from the se-
quence (an) by finite repetition of its elements, then (bn) ∈ � ←1 (x).

If (X, � ) is an L ∗0 -space (it fulfils the Urysohn axiom), then it has the two prop-
erties from the above lemma. Nevertheless, (

�
, � 1) does not satisfy the Urysohn

axiom. Consider for each n ∈ � the set
An = {p ∈ � : p < n and pr 6= n for each r ∈ � }.

We define a sequence of integers T = (τn)n∈ � as
τn =

∏

p∈An

p.

For instance, τ9 = 2 · 5 · 7 = 70. For each prime p, there are infinitely many n ∈ �
such that p � τn. Therefore (τn) 6∈ � ←1 (0). Let us note that every subsequence of T
has a subsequence which � 1 -converges to zero. Let s ∈ MON and consider T ◦ s. If
there exists a prime p such that Bp = {pt : t ∈ � } ∩ {s(n) : n ∈ � } is an infinite
set, we take v ∈ MON satisfying Bp = {s(v(n)) : n ∈ � }. Then it is clear that
T ◦ s ◦ v ∈ � ←1 (0). If the set Bp is finite for every prime p, then each prime p divides
almost all terms of the sequence T ◦ s and T ◦ s ∈ � ←1 (0).
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We denote by � ∗1 the Urysohn modification of � 1 , which is anL ∗0 -ring convergence
in
�
.

Lemma 15. Let (R, � ) be a bounded L0-ring. Let � ∗ be the Urysohn modifi-
cation of � . Then (R, � ∗ ) is a bounded L ∗0 -ring.���������

. Let S ∈ R � and T ∈ � ∗← (0). For each s ∈ MON, there exists t ∈ MON
such that T ◦ s ◦ t ∈ � ← (0). Then (ST ) ◦ s ◦ t = (S ◦ s ◦ t)(T ◦ s ◦ t) ∈ � ← (0); hence
ST ∈ � ∗← (0). �

Therefore, (
�
, � ∗1) is bounded, and consequently, satisfies the condition (Cr). Since

� 1 ⊂ � ∗1 , hence (
�
, � ∗1) is also sequentially precompact, and each nonzero ideal in �

is closure dense. Now, we present a more characteristic property of � ∗1 .
Lemma 16. � ∗1 is a coarse convergence in the class of L0-ring convergences on

�
satisfying the condition (Cr).���������

. We reason by way of contradiction. We assume that there exists an
L0-ring convergence � on � which satisfies the condition (Cr) and � ∗1 $ � . Then
we have a sequence β ∈ � ← (0) \ � ∗←1 (0). There exists s ∈ MON such that no
subsequence of β ◦ s belongs to � ←1 (0). Applying Lemma 4, we get t ∈ MON such
that the subsequence β ◦ s ◦ t has the following property: each prime p which divides
infintely many terms of β ◦ s ◦ t, divides almost all the terms. Let B be the set of
those primes which divide infinitely many terms of β ◦ s ◦ t; clearly B 6∈ U . Thus
E = � \B ∈ U . It is easy to define a sequence α ∈ � � which satisfies that α(n) and
β(s(t(n))) are coprime for all n ∈ � , and E is the set of primes which divide almost
all terms of α. Hence α ∈ � ←1 (0). There are two sequences of integers γ and δ such
that

1 = γ(n)α(n) + δ(n)β(s(t(n))) for all n ∈ � .

Since (
�
, � 1) is sequentially precompact, there exists v ∈ MON such that δ ◦ v is

� 1 -Cauchy, and so � -Cauchy. By hypothesis � satisfies the condition (Cr), hence

(δ ◦ v)(β ◦ s ◦ t ◦ v) ∈ � ← (0).

Further,
(γ ◦ v)(α ◦ v) ∈ � ←1 (0) ⊂ � ← (0).

Finally, we get the contradiction

〈1〉 = (γ ◦ v)(α ◦ v) + (δ ◦ v)(β ◦ s ◦ t ◦ v) ∈ � ← (0).

�
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Corollary 17. The convergence � ∗1 is coarse in the class of bounded L0-ring
convergences on

�
.

We denote by C1 the ring of � 1 -Cauchy sequences and by C∗1 the ring of � ∗1 -
Cauchy sequences. We are going to describe the relationship between C1 and C∗1 ,
and between the corresponding completions

�̂
and

�̂ ∗. The following result is covered
by Proposition 3 in [9].

Lemma 18.
(a) � ←1 (0) = C1 ∩ � ∗←1 (0).
(b) C1 + � ∗←1 (0) = C∗1 .

(c) The respective completion rings
�̂
and

�̂ ∗ are (algebraically) isomorphic.
���������

. (a) The inclusion � ←1 (0) ⊆ C1 ∩ � ∗←1 (0) is obvious. We prove the other
inclusion: let α ∈ � ∗←1 (0)∩C1, then there exists s ∈ MON such that α ◦ s ∈ � ←1 (0).
Besides, α− α ◦ s ∈ � ←1 (0). Therefore α = (α− α ◦ s) + α ◦ s ∈ � ←1 (0).
(b) The inclusion C1 + � ∗←1 (0) ⊆ C∗1 is obvious. We check the other inclusion. Let

β ∈ C∗1 . There exists s ∈ MON such that β ◦ s ∈ C1 (by virtue of Lemma 5). Since
β − β ◦ s ∈ � ∗←1 (0), we conclude that β = β ◦ s + (β − β ◦ s) ∈ C1 + � ∗←1 (0).
(c) (

�
, � ∗1) satisfies the condition (Cr). We have the ring homomorphism

f : C1 −→
C∗1� ∗←1 (0)

,

S −→ S + � ∗←1 (0).

Using parts (a) and (b), we conclude that f is onto and ker(f) = � ←1 (0). Therefore

�̂
=

C1

� ←1 (0)
∼= C∗1� ∗←1 (0)

=
�̂ ∗.

�

In what follows we identify
�̂

=
�̂ ∗ = ! . The L ∗0 -convergence � ∗1 is coarse in the

class of L0-ring convergences in
�
satisfying the condition (Cr). In addition, every

nonzero ideal is dense in (
�
, � ∗1). There is an analogous situation [1, Theorem 3.5.3]

in the theory of topological rings:
“Let (R, τ) be a Hausdorff topological commutative domain, and let the topology τ

be minimal in the class of all Hausdorff ring topologies. For the completion
(
R̂, τ̂

)

of the topological ring (R, τ) to be a topological field it is necessary and sufficient
that all the non-zero ideals of R be totally dense.”
Let � ∗2 be the Urysohn modification of the convergence � 2 defined on � . It is

clear that a sequence α belongs to � ∗←2 (0) if and only if there exist a sequence
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(an)n∈ � ∈ � ∗←1 (0) and c ∈ � such that α(n) = an/c for all n ∈ � . Consequently,
� ∗2 |  = � ∗1 , and � ∗2 is the finest L ∗0 -ring convergence in � which satisfies � ∗2 |  = � ∗1 .
Let us quote a result from [9] by Koutník and Novák:
“Let K be a field. Let (K, � ) be an L ∗

0 -ring which satisfies the condition (Cr)
and also the following condition:
(Cq) Let α be a sequence no subsequence of which is � -Cauchy; then there exist

s, t ∈ MON such that no subsequence of the sequence α ◦ s− α ◦ t is � -Cauchy.
Then (K, � ) has the categorical completion in the category of L ∗

0 -rings.”

Lemma 19. The L ∗
0 -ring ( � , � ∗2 ) satisfies the condition (Cq).���������

. Let α = (an/bn) be a sequence no subsequence of which is � ∗2 -Cauchy
(neither it is � 2 -Cauchy). We assume that an/bn is a reduced fraction and bn ∈ �
for all n. Since (

�
, � 1) is sequentially precompact, the subset {a/c : a ∈ � } ⊂ � is

also sequentially precompact for each c ∈ � . Thus, the set {n ∈ � : bn = c} is finite
for all c ∈ � . Hence there exist s, t ∈ MON such that nbs(n) < bt(n) for all n. It is
clear that no subsequence of (α ◦ s− α ◦ t) is � ∗2 -Cauchy. �

Now, we proceed in a way similar to [9], [10], [12]. The categorical L ∗
0 -ring

completion of ( � , � ∗2 ) is the following: Let C∗2 be the ring of � ∗2 -Cauchy sequences.
Then ! ∼= C∗2/ � ∗←2 (0). Let {1} ∪ B be a basis of ! as a linear space over � . Let �̃ ∗2
be the set of all pairs (S, x) ∈ ! � × ! such that S is of the form

S(n) = S0(n) + S1(n)b1 + . . . + Sk(n)bk for all n ∈ � ,

where k ∈ � , b1, . . . , bk ∈ B, Si is a Cauchy sequence in ( � , � ∗2 ) for i = 0, 1, . . . , k,
and x = x0 + x1b1 + . . . + xkbk, where xi is the � ∗2 -limit of the Cauchy sequence Si,
i = 0, 1, . . . , k. Now we take the Urysohn modification of this convergence, i.e.,

( �̃ ∗2)∗
.

The completion is
( ! , ( �̃ ∗2)∗)

.
We quote Proposition 3 in [9] which clarifies the above:
“LetK be a field. Let (K, � ) be anL0-ring satisfying the condition (Cr), such that

the L ∗0 -ring (K, � ∗ ) satisfies the condition (Cq) and every � ∗ -Cauchy sequence has a
subsequence which is � -Cauchy. Let (

K̃, �̃ )
be the categoricalL0-ring completion of

(K, � ), and let (
K̃,

( �̃ ∗)∗) be the categorical L ∗0 -ring completion of (K, � ∗ ). Then(
K̃,

( �̃ ∗)∗) is the Urysohn modification of (K̃, �̃ ).”
We apply this result to the convergences described above.

Corollary 20. The convergence
( �̃ ∗2)∗

on ! is the Urysohn modification of � 3 .
(Hence we denote it by � ∗3 ).
Lemma 21. ( ! , � ∗3 ) is the categorical L ∗0 -ring completion of (

�
, � ∗1).
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���������
. It suffices to notice that, if a complete L ∗0 -ring is an extension of

(
�
, � ∗1), then it is also an extension of ( � , � ∗2 ). �

Lemma 22. The L ∗
0 -ring (

�
, � ∗1) is not strongly sequentially precompact.���������

. It is enough to show that its categorical L ∗
0 -ring completion

( �̂
, � ∗3)

is
not sequentially compact.

�̂
is a field. Let (an) be a sequence of nonzero elements

which converges to zero in
( �

, � ∗1), then (1/an) has no convergent subsequence in( �̂
, � ∗3)

. �

Since (
�
, � ∗1) is sequentially precompact, we have a negative answer in the category

of L ∗0 -rings to the question 4.4 posed by Dikranjan [4] for L ∗
0 -groups:

“Is every sequentially precompact group strongly sequentially precompact?”

4. L0-field convergences on �
In this section we present two L0-field convergences on � obtained from the ring

convergences in the previous sections.
Let R be an integral domain, and letK be its field of fractions. Let � be anL0-ring

convergence on R. Let C be the set of � -Cauchy sequences. We assume that if two
sequences satisfy α, β ∈ C and α, β 6∈ � ← (0), then their product αβ 6∈ � ← (0). Let A
be the set of sequences (an/bn) ∈ K � such that an, bn ∈ R for all n, (an) ∈ � ← (0),
(bn) ∈ C, (bn) 6∈ � ← (0).

Lemma 23. Under the above assumptions, if (R, � ) fulfils the condition (Cr),
then there exists an L0-field convergence � on K such that � ← (0) = A . In
addition, � ⊆ � |R .���������

. It is easy to check that A possesses properties (i)–(iv) and (vi) from
Lemmas 2 and 3. The inclusion is obvious. �

Note that, if (R, � ) is complete, then � ← (0) consists of the sequences (an/bn)n∈ �
such that an, bn ∈ R, (an) ∈ � ← (0), (bn) ∈ � ← (x) with x 6= 0. If, in addition,
R is a field, then � is the field convergence constructed in [6, Lemma 1.2.5], [10,
Theorem 5.6].
We apply the above construction to (

�
, � 1) and we get the L0-field ( � , � 1 ).

Lemma 24. Under the above assumptions we have � 1 |  = � 1 .���������
. The inclusion � 1 ⊆ � 1 |  is obvious. We show the other one. We take

a sequence (an/bn) ∈ � ←1 (0) such that an/bn ∈ �
for all n. We reason by way of

contradiction. We assume that (an/bn) 6∈ � ←1 (0). There exists D ∈ U such that, for
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each prime p ∈ D, there exists an infinite subset Sp ⊆ � such that p does not divide
an/bn for all n ∈ Sp. Since (an) ∈ � ←1 (0) and (bn) ∈ C1, we have A = {p ∈ � : p |
an for almost all n} ∈ U and B = {p ∈ � : p | bn − bm for all n, m > kp} ∈ U .
Note that D∩A∩B ∈ U . For each p ∈ D∩A∩B and for each n ∈ Sp we have p | an

and p � (an/bn), hence p | bn for all n ∈ Sp. If p ∈ B divides infinitely many bn, then
it divides almost all bn. Therefore, each p ∈ D ∩A ∩B divides almost all bn, and so
(bn) ∈ � ←1 (0). We have arrived at a contradiction. �
It is obvious that � 2 $ � 1 . We shall consider another L ∗0 -field convergence �

on � .
Definition 25. Let (R, � ) be an L0-ring. We say that a sequence (an)n∈ � is

bounded away from zero if an 6= 0 for all n, and no subsequence of (an) converges to
zero.

There is an analogous concept in the theory of topological rings; see [16, p. 72]
and [19, p. 125].

Lemma 26. If two sequences β = (bn) and δ = (dn) in (
�
, � ∗1) are bounded

away from zero, then their product βδ = (bndn) is also bounded away from zero.���������
. We reason by way of contradiction. We suppose that there exists

s ∈ MON such that (βδ) ◦ s ∈ � ∗←1 (0). We apply Lemma 6 and get v ∈ MON such
that β◦s◦v, δ◦s◦v ∈ C1 ⊂ C∗1 . We have β◦s◦v, δ◦s◦v 6∈ � ∗←1 (0), and their product
satisfies (β ◦ s ◦ v)(δ ◦ s ◦ v) = (βδ) ◦ s ◦ v ∈ � ∗←1 (0), which is a contradiction. �
Let B be the set of rational sequences (an/bn)n∈ � ∈ � � such that an, bn ∈

�
for

all n, (an) ∈ � ∗←1 (0), and (bn) is bounded away from zero. The following result is
easy to prove:

Lemma 27. Let an, bn ∈ �
, and let an/bn be a reduced fraction for all n. If

(an)n∈ � ∈ � ∗←1 (0), then (an/bn)n∈ � ∈ B.

Lemma 28. Let an, bn ∈ �
such that (an/bn)n∈ � ∈ B. If for each n we have

dn ∈
�
that divides an and bn, then

(an/dn

bn/dn

)
n∈ � ∈ B.

���������
. Both sequences (bn/dn) and (dn) are bounded away from zero. We

check that (an/dn) ∈ L∗←1 (0). Let (an/dn) ◦ u be a subsequence of (an/dn). There
exists s ∈ MON such that (an) ◦ u ◦ s ∈ L←1 (0). We apply Lemma 4 to the sequence
(dn) ◦ u ◦ s and get a subsequence (dn) ◦ u ◦ s ◦ t such that each prime which divides
infinitely many terms of (dn) ◦ u ◦ s ◦ t divides almost all of them. Therefore the
subsequence (an/dn) ◦ u ◦ s ◦ t ∈ L←1 (0). �

702



Theorem 29. There exists an L ∗
0 -field convergence � on � such that

� ← (0) = B. Besides, � |  = � ∗1 . Further � is the Urysohn modification of
� 1 (that is, � = � ∗1 ).���������

. Using Lemma 26 and the fact that (
�
, � ∗1) is bounded, we easily check

that B satisfies conditions (i)–(iv) and (vi) in Lemmas 2 and 3. Hence � is an
L0-field convergence on � .
It is obvious that � ∗1 ⊆ � |  . We show the other inclusion: We reason by way

of contradiction. Let γ = (an/bn)n∈ � ∈ � ← (0) with an/bn ∈ �
for all n. We

denote α = (an)n∈ � , β = (bn)n∈ � ∈ � � . Then α ∈ � ∗←1 (0) and β is bounded away
from zero. We suppose that γ 6∈ � ∗←1 (0). Hence there exists a sequence s ∈ MON
such that γ ◦ s 6∈ � ←1 (0), neither do its subsequences, but α ◦ s ∈ � ←1 (0). We recall
Lemma 4; there exists v ∈ MON such that, if a prime p divides infinitely many terms
of γ ◦ s ◦ v, then it divides almost all of them. Since γ ◦ s ◦ v 6∈ � ←1 (0), we have

D = {p ∈ � : p | γ(s(v(n))) for almost all n} 6∈ U .

As α ◦ s ◦ v ∈ � ←1 (0), we have

A = {p ∈ � : p | α(s(v(n))) for almost all n} ∈ U .

Taking into account that β ◦ s ◦ v 6∈ � ←1 (0), we have

B = {p ∈ � : p | β(s(v(n))) for almost all n} 6∈ U .

But B ⊇ A ∩ ( � \D) ∈ U ; we have a contradiction.
Let us show that � is the Urysohn modification of � 1 . Obviously � 1 ⊆ � . Let

γ = (an/bn) ∈ � ← (0), where an, bn ∈ �
for all n. Let α = (an) and β = (bn).

For each s ∈ MON there exists t ∈ MON such that β ◦ s ◦ t ∈ C1 ⊂ C∗1 (consider
Lemma 5) and β ◦ s ◦ t 6∈ � ←1 (0); therefore γ ◦ s ◦ t ∈ � ←1 (0). We have proved that
� ⊆ � ∗1 . Let us show the other inclusion: let γ = (an/bn) ∈ � ∗←1 (0), where an/bn

is a reduced fraction for all n. It is easy to check that (an) ∈ � ∗←1 (0) and that (bn) is
bounded away from zero. Consequently γ ∈ � ← (0), hence � ∗1 ⊆ � . �

Since the condition (Cr) is necessary for an L0-ring to have a completion, the
following result is significant.

Lemma 30. The L ∗
0 -ring ( � , � ) does not satisfy the condition (Cr).���������

. We are going to construct a sequence γ = (dnbn)n∈ � ∈ � � such that
γ ∈ � ←1 (0) ⊂ � ← (0) and 1/γ = (1/(dnbn))n∈ � is � -Cauchy. As their product
〈1〉 6∈ � ← (0), the lemma is proved.
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We consider a set of primes D = {q1, . . . , qn, . . .} ∈ U , and let bn = q1 . . . qn for
all n. Then (bn)n∈ � ∈ � ←1 (0) ⊂ � ← (0). We will define inductively another sequence
(dn)n∈ � ∈ � � such that (1/(dnbn)) is � -Cauchy. Since (

�
, � 1) is bounded, we have

(dnbn) ∈ � ←1 (0) ⊂ � ← (0).
We set d1 = 1. We assume, by induction hypothesis, that we have defined

d1, . . . , dn satisfying

qi � dn for i = 1, . . . , n,

qn . . . qi+1dn ≡ di mod(q2
1 . . . q2

i ) for i = 1, . . . , n− 1.

At the next step we define dn+1 such that

qn+1 � dn+1,

qn+1dn+1 ≡ dn mod(q2
1 . . . q2

n).

As a consequence, dn+1 also satisfies

qi � dn+1 for i = 1, . . . , n + 1,

qn+1 . . . qi+1dn+1 ≡ di mod(q2
1 . . . q2

i ) for i = 1, . . . , n.

Now, for i < n, we compute

(3)
1

dibi
− 1

dnbn
=

qn . . . qi+1dn − di

bndidn
=

(qn . . . qi+1dn − di)/(q1 . . . qi)
(qi+1 . . . qn)didn

.

In the last fraction the numerator and denominator are integers. We note that
qj does not divide the denominator (qi+1 . . . qn)didn for j = 1, . . . , i. On the other
hand, q1 . . . qi divides the numerator of (3). Consequently, as i and n increase, the
numerator of (3) converges to zero in (

�
, � 1), and the denominator becames bounded

away from zero. Hence γ − γ ◦ s ∈ � ← (0) for each s ∈ MON. Therefore γ is an
� -Cauchy sequence. �

Corollary 31. The L ∗0 -ring ( � , � ) has no completion.

In [5, § 2] it is proved that each coarser L0-ring convergence in � coarse than the
usual metric convergence does not satisfy the condition (Cr).
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5. The convergence � ∗1 is not topological
Consider the natural functor from the category of topological spaces into the

category of sequential convergence spaces. Let (X, T ) be a topological space. Define
(S, x) ∈ L (T ) ⊆ X � × X whenever S converges in (X, T ) to x. Then L (T ) is
a sequential convergence satisfying the Urysohn axiom. Therefore there is no ring
topology T on

�
such that � 1 = L (T ). In addition, we shall prove that there is

no ring topology T on
�
such that � ∗1 = L (T ).

Let (X, T1) be a first countable topological space. A set B ⊆ X is closed if and
only if every sequence (bn)n∈ � ⊆ B which converges to b ∈ X has its limit b ∈ B.
Consequently, if T2 is another topology on X such that L (T1) ⊆ L (T2), then
T1 ⊇ T2.

Lemma 32. There is no ring topology T on
�
such that L (T ) = � ∗1 .���������

. We reason by way of contradiction. We suppose that there exists a ring
topology T on

�
such that L (T ) = � ∗1 . We take a set D in the ultrafilter U ,

D = {q1, q2, . . . , qn, . . .} ∈ U .

We consider the ring topology TD on
�
given by the filter of ideals

(q1) ⊃ (q1q2) ⊃ . . . ⊃ (q1q2 . . . qn) ⊃ . . .

as a fundamental system of zero neighborhoods. It is clear that the L0-ring conver-
gence corresponding to TD satisfies L (TD) $ � ∗1 . Since TD is first countable we
have TD % T . It is easy to prove that the infimum of the topologies TD in the
lattice of ring topologies on

�
is the trivial one. We get that {∅, � } ⊇ T , which is

absurd. �

In a similar manner we can prove that the other L ∗
0 -ring convergences in this

article, � ∗2 , � , are not given by any ring topology on � .

6. A completion of
�
is an ultraproduct of p-adic rings

Finally, we mention briefly another L0-ring convergence on
�
which we call � a .

For each prime p ∈ � , let | |p be the corresponding p-adic valuation on
�
. Let U be

a nonprincipal ultrafilter in � . A sequence (an)n∈ � ∈ � � belongs to � ←a (0) if and
only if the set of primes p ∈ � such that

lim
n→∞

|an|p = 0
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belongs to U . The completion of (
�
, � a) is isomorphic to an ultraproduct of the

rings of p-adic integers
�

p. That is,

�̂ ∼=
∏

p∈ " � p

U
.

Similarly, there is a completion of � that is an ultraproduct of the fields of p-adic
numbers � p .
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