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Abstract. We study asymptotic properties of solutions of the system of differential equa-
tions of neutral type.
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1. Introduction

We consider systems of neutral differential equations of the form

(x1(t)− px1(t− τ))′ = a1(t)f1(x2(g2(t))),(A)

x′2(t) = − a2(t)f2(x1(g1(t)))

and the following conditions are assumed to hold without further notice:
(a) p, τ are positive numbers, 0 < p 6 1;
(b) ai ∈ C( � + , � + ), i = 1, 2, are not identically zero on any subinterval [T,∞) ⊂

(0,∞) and ∫ ∞
a1(s) ds = ∞;

(c) gi ∈ C( � + , � + ), lim
t→∞

gi(t) = ∞, i = 1, 2;

(d) fi ∈ C( � , � ), fi(u)u > 0 for u 6= 0 and there exist positive constants K, L such
that |f1(u)| > L|u|, |f2(v)| > K|v| for u, v ∈ � .

The problem of oscillation of neutral functional differential equations has received
considerable attention in the last few years (see for example [3] and the references

The paper has been supported by the VEGA grant No. 1/7466/20.

735



cited therein). However, very little has been published on systems of neutral differ-

ential equations [1], [6]–[10].
Our aim in the present paper is to establish sufficient conditions under which

all proper solutions of (A) are oscillatory. By a proper solution of (A) we mean a

continuous vector function x = (x1, x2) on [tx,∞) such that x1(t)−px1(t− τ), x2(t)
are continuously differentiable, x satisfies system (A) for all sufficiently large t > tx

and sup{|x1(t)| + |x2(t)| : t > T} > 0 for any T > tx. Such a solution is called
nonoscillatory if there exists a T0 > tx such that its every component is different

from zero for all t > T0, and it is called oscillatory otherwise.

2. Properties of nonoscillatory solutions

Let x = (x1, x2) be a nonoscillatory solution of the system (A). For any x1(t) we
define u1(t) by

(1) u1(t) = x1(t)− px1(t− τ).

It follows from (A) that the function u1(t) is eventually monotone, so that u1(t) has
to be of constant sign. Therefore, either

x1(t)u1(t) > 0,(2)

or

x1(t)u1(t) < 0(3)

for all sufficiently large t. Denote by N+ or N− respectively the set of all nonoscil-
latory solutions x = (x1, x2) of system (A) such that (2) or (3) is satisfied. Denoting
by N the set of all nonoscillatory solutions of (A) we have N = N+ ∪N−.
If x ∈ N+ then for every T > t0 and every integer n > 0 there exists Tn > T such

that t− nτ > T and

(4) |x1(t)| >
n∑

j=0

pj |u1(t− jτ)| for t > Tn.

Similarly, if x ∈ N− then for every T > t0 and every integer m > 0 there exists
Tm > T such that

(5) |x1(t)| >
m∑

j=1

|u1(t + jτ)|
pj

for t > Tm.
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A simple known lemma given below indicates that an additional restriction upon p

may lead to some properties of the nonoscillatory solutions. (See for example [6].)

Lemma 1. Let 0 < p < 1 hold and x ∈ N−. Then lim
t→∞

x1(t) = 0, lim
t→∞

u1(t) = 0.

3. Main results

Theorem 1. Let 0 < p < 1 and let the following assumptions hold:
(i) g′1(t) > 0, t > t0;

(ii) there exist an integer number n > 0 and T > t0 such that g2(g1(t)− iτ) 6 t for

t > T , i = 0, . . . , n.

If

(6)
∫ ∞

T

(
a2(s)g1(s)−

g′1(s)
4KLg1(s)

∑n
i=0 pia1(g1(s)− iτ)

)
ds = ∞

then for every nonoscillatory solution (x1, x2) of (A) its both components tend to
zero for t →∞.
���������

. Let x = (x1, x2) be a nonoscillatory solution of (A) and let x1(t) > 0
for t > t0. It follows from the system (A) that x2(t) is decreasing and hence there
exists such a t1 > t0 that there are two possibilities for x2(t):
1. x2(t) < 0 for t > t1,

2. x2(t) > 0 for t > t1.

Assume that 1 holds. Then there exist a constant c < 0 and t2 > t1 such that
x2(t) 6 c, x2(g2(t)) 6 c for t > t2. Using (d) and the first equation of the system (A)

we get

u1(t)− u1(t2) 6 Lc

∫ t

t2

a1(s) ds.

Letting t →∞, in view of (b) we have lim
t→∞

u1(t) = −∞. This means that x ∈ N− ,

which contradicts Lemma 1.

We assume now that 2 holds and consider the following cases:

a) Let x ∈ N−. The function x2(t) is positive, decreasing and so there exists
lim

t→∞
x2(t) = d > 0. We shall show that d = 0. Suppose the contrary. Then there

exists t2 > t1 such that x2(t) > d, x2(g2(t)) > d for t > t2. Using (d) we obtain from
the first equation of (A)

u1(t)− u1(t2) > Ld

∫ t

t2

a1(s) ds.
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With regard to (b), letting t → ∞ we have lim
t→∞

u1(t) = ∞, which contradicts the
negativity of u1(t). Therefore lim

t→∞
x2(t) = 0. Because of x ∈ N− , using Lemma 1

we have lim
t→∞

u1(t) = 0, lim
t→∞

x1(t) = 0.

b) Let x ∈ N+. We define the function

F (t) =
x2(t)g1(t)

n∑
i=0

piu1(g1(t)− iτ)
, t > t1.

Then F (t) > 0 and using the first equation of (A) we have

(7) F ′(t) =
−a2(t)f2(x1(g1(t)))g1(t)∑n

i=0 piu1(g1(t)− iτ)
+

g′1(t)
g1(t)

(
F (t)−F 2(t)

∑n
i=0 piu′1(g1(t)− iτ)

x2(t)

)
.

In view of (4), (d) there exist an integer number n > 0 and t2 > t1 such that

(8) f2(x1(g1(t))) > K

n∑

i=0

piu1(g1(t)− iτ), t > t2.

Taking into account the monotonicity of x2, (ii), (d) we obtain from the first equation
of the system (A)

u′1(g1(t)− iτ) = a1(g1(t)− iτ)f1(x2(g2(g1(t)− iτ)))

> La1(g1(t)− iτ)x2(t), t > t2.(9)

Combining (7), (8), (9) we get

F ′(t) 6 −Ka2(t)g1(t)

+ L

n∑

i=0

pia1(g1(t)− iτ)
g′1(t)
g1(t)

(
F (t)

L
∑n

i=0 pia1(g1(t)− iτ)
− F 2(t)

)

6 −Ka2(t)g1(t) +
g′1(t)

4Lg1(t)
∑n

i=0 pia1(g1(t)− iτ)
, t > t2.

Integration of the last inequality from t2 to t yields

(10) F (t) 6 F (t3)−K

∫ t

t2

(
a2(s)g1(s)−

g′1(s)
4LKg1(s)

∑n
i=0 pia1(g1(s)− iτ)

)
ds.

Letting t → ∞ then by virtue of (6) we have F (t) → −∞, which contradicts the
positivity of F (t). �
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The conclusion of Theorem 1 can by strengthened as follows.

Theorem 2. In addition to the conditions of Theorem 1, assume that
(i) g2(t) 6 t,

(ii) there exists an integer number m > 1 such that g1(t) + mτ < t.

If

(11) lim sup
t→∞

∫ t

g1(t)+mτ

a1(s)
∫ t

g2(s)

a2(u) du ds >
1

KL

pm(1− p)
1− pm

then every proper solution of (A) is oscillatory.
���������

. Taking the proof of Theorem 1 into account, it is sufficient to show the
impossibility of the case 2a).

Suppose the contrary. Let the system (A) have a solution with the properties
x2(t) > 0, x1(t) > 0, u1(t) < 0 for t > T , T sufficiently large. With regard to (A)

x2(t) is a decreasing function and u1(t) is an increasing function and from (5) we get

(12) x1(g1(t)) > −Au1(g1(t) + mτ), t > T,

where A =
m∑

j=1

1/pj . Integrating the second equation of (A) from s > T to t > s and

using the monotonicity of u1(t), g1(t), (d) and (12) we have

−x2(s) 6 x2(t)− x2(s) 6 KAu1(g1(t) + mτ)
∫ t

s

a2(u) du.

Putting this inequality into the first equation of (A) we get

u′1(s) > −KLAu1(g1(t) + mτ)a1(s)
∫ t

g2(s)

a2(u) du

and integration from g1(t) + mτ to t yields

−u1(g1(t) + mτ) > u1(t)− u1(g1(t) + mτ)

> −KLAu1(g1(t) + mτ)
∫ t

g1(t)+mτ

a1(s)
∫ t

g2(s)

a2(u) du ds

and so

1 > KLA

∫ t

g1(t)+mτ1

a1(s)
∫ t

g2(s)

a2(u) du ds,

which contradicts (11). �
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Remark 1. If the system (A) is equivalent to the differential equation

(x(t)− px(t− τ))′′ + a(t)x(g(t)) = 0

then Theorems 1, 2 generalize the results for this equation given in the paper [2].

Theorem 3. Let p = 1 and let the assumptions (i), (ii) and (11) of Theorem 1
hold. Then first component of every nonoscillatory solution x = (x1, x2) of (A) is
bounded.

���������
. Let x = (x1, x2) be a nonoscillatory solution of (A) and let x1(t) > 0

for t > t0. Then x2(t) is a decreasing function and there exists such a t1 > t0 that

there are two possibilities for x2(t):
1. x2(t) < 0 for t > t1,

2. x2(t) > 0 for t > t1.

We consider the case 1. Then x2(t) < x2(t1) = c < 0 and the first equation of (A)
and (d) imply

u1(t)− u1(t2) 6 Lc

∫ t

t2

a1(s) ds, t > t2 > t1.

In view of (b) we see that u1(t) < 0, lim
t→∞

u1(t) = −∞. Therefore x1(t) < x1(t−τ) for

all large t. This implies that x1(t) is bounded, which contradicts lim
t→∞

u1(t) = −∞.
Now we assume that 2 holds and we consider the following cases:

a) Let x ∈ N+. Then u1(t) is a decreasing function and by (4), (A), (d) the
inequalities

x1(g1(t)) >
n∑

i=0

u1(g1(t)− iτ),(13)

x′2(t) 6 −Ka1(t)
n∑

i=0

u1(g1(t)− iτ),

u′1(g1(t)− iτ) > La1(g1(t)− iτ)x2(t)

hold for t > T . Analogously as in the proof of Theorem 1 we define the function

F (t) =
x2(t)g1(t)∑n

i=0 u1(g1(t)− iτ)
> 0.

In a similar manner as in the proof of Theorem 1 in the case 2b), using the inequal-
ities (13) we get (10), which leads to contradicion.

b) Let x ∈ N−. Then x1(t) < x1(t− τ), which implies that x1(t) is bounded. �
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Theorem 4. In addition to the conditions of Theorem 3 assume that
(i) g2(t) 6 t,

(ii) there exists an integer number m > 1 such that g1(t) + mτ < t.

If

(14) lim sup
t→∞

∫ t

g1(t)+mτ

a1(s)
∫ t

g2(s)

a2(u) du ds >
1

mKL

then every proper solution of (A) is oscillatory.
���������

. Let x = (x1, x2) be a nonoscillatory solution of (A) and let x1(t) > 0
for t > t0. Taking the proof of Theorem 3 into account, it is sufficient to show that

the case 2b) is impossible. On the contrary we suppose that x1(t) > 0, u1(t) < 0,
x2(t) > 0 for t > T > t0. By virtue of (5) and the monotonicity of u1 we get

inequality (12) from the proof of Theorem 2 in the form

x1(g1(t)) > −mu1(g1(t) + mτ).

Repeating the corresponding part of the proof of Theorem 2 we obtain

mKL

∫ t

g1(t)+mτ

a1(s)
∫ t

g2(s)

a2(u) du ds 6 1,

which contradicts (14). �
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