Czechoslovak Mathematical Journal

Božena Mihalíková
 Asymptotic behaviour of solutions of two-dimensional neutral differential systems

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 3, 735-741
Persistent URL: http://dml.cz/dmlcz/127835

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF TWO-DIMENSIONAL NEUTRAL DIFFERENTIAL SYSTEMS

Božena Mihalíková, Košice
(Received November 6, 2000)

Abstract. We study asymptotic properties of solutions of the system of differential equations of neutral type.

Keywords: neutral equation, oscillatory solution, bounded solution
MSC 2000: 34K15, 34K10

1. Introduction

We consider systems of neutral differential equations of the form

$$
\begin{align*}
\left(x_{1}(t)-p x_{1}(t-\tau)\right)^{\prime} & =a_{1}(t) f_{1}\left(x_{2}\left(g_{2}(t)\right)\right) \tag{A}\\
x_{2}^{\prime}(t) & =-a_{2}(t) f_{2}\left(x_{1}\left(g_{1}(t)\right)\right)
\end{align*}
$$

and the following conditions are assumed to hold without further notice:
(a) p, τ are positive numbers, $0<p \leqslant 1$;
(b) $a_{i} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), i=1,2$, are not identically zero on any subinterval $[T, \infty) \subset$ $(0, \infty)$ and

$$
\int^{\infty} a_{1}(s) \mathrm{d} s=\infty
$$

(c) $g_{i} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), \lim _{t \rightarrow \infty} g_{i}(t)=\infty, \quad i=1,2$;
(d) $f_{i} \in C(\mathbb{R}, \mathbb{R}), f_{i}(u) u>0$ for $u \neq 0$ and there exist positive constants K, L such that $\left|f_{1}(u)\right| \geqslant L|u|,\left|f_{2}(v)\right| \geqslant K|v|$ for $u, v \in \mathbb{R}$.
The problem of oscillation of neutral functional differential equations has received considerable attention in the last few years (see for example [3] and the references
cited therein). However, very little has been published on systems of neutral differential equations [1], [6]-[10].

Our aim in the present paper is to establish sufficient conditions under which all proper solutions of (A) are oscillatory. By a proper solution of (A) we mean a continuous vector function $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ on $\left[t_{x}, \infty\right)$ such that $x_{1}(t)-p x_{1}(t-\tau), x_{2}(t)$ are continuously differentiable, \boldsymbol{x} satisfies system (A) for all sufficiently large $t \geqslant t_{x}$ and $\sup \left\{\left|x_{1}(t)\right|+\left|x_{2}(t)\right|: t \geqslant T\right\}>0$ for any $T \geqslant t_{x}$. Such a solution is called nonoscillatory if there exists a $T_{0} \geqslant t_{x}$ such that its every component is different from zero for all $t \geqslant T_{0}$, and it is called oscillatory otherwise.

2. Properties of nonoscillatory solutions

Let $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of the system (A). For any $x_{1}(t)$ we define $u_{1}(t)$ by

$$
\begin{equation*}
u_{1}(t)=x_{1}(t)-p x_{1}(t-\tau) \tag{1}
\end{equation*}
$$

It follows from (A) that the function $u_{1}(t)$ is eventually monotone, so that $u_{1}(t)$ has to be of constant sign. Therefore, either

$$
\begin{equation*}
x_{1}(t) u_{1}(t)>0, \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}(t) u_{1}(t)<0 \tag{3}
\end{equation*}
$$

for all sufficiently large t. Denote by N^{+}or N^{-}respectively the set of all nonoscillatory solutions $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ of system (A) such that (2) or (3) is satisfied. Denoting by N the set of all nonoscillatory solutions of (A) we have $N=N^{+} \cup N^{-}$.

If $\boldsymbol{x} \in N^{+}$then for every $T \geqslant t_{0}$ and every integer $n>0$ there exists $T_{n} \geqslant T$ such that $t-n \tau \geqslant T$ and

$$
\begin{equation*}
\left|x_{1}(t)\right| \geqslant \sum_{j=0}^{n} p^{j}\left|u_{1}(t-j \tau)\right| \quad \text { for } t \geqslant T_{n} \tag{4}
\end{equation*}
$$

Similarly, if $\boldsymbol{x} \in N^{-}$then for every $T \geqslant t_{0}$ and every integer $m>0$ there exists $T_{m} \geqslant T$ such that

$$
\begin{equation*}
\left|x_{1}(t)\right| \geqslant \sum_{j=1}^{m} \frac{\left|u_{1}(t+j \tau)\right|}{p^{j}} \quad \text { for } t \geqslant T_{m} . \tag{5}
\end{equation*}
$$

A simple known lemma given below indicates that an additional restriction upon p may lead to some properties of the nonoscillatory solutions. (See for example [6].)

Lemma 1. Let $0<p<1$ hold and $\boldsymbol{x} \in N^{-}$. Then $\lim _{t \rightarrow \infty} x_{1}(t)=0, \lim _{t \rightarrow \infty} u_{1}(t)=0$.

3. Main Results

Theorem 1. Let $0<p<1$ and let the following assumptions hold:
(i) $g_{1}^{\prime}(t)>0, t \geqslant t_{0}$;
(ii) there exist an integer number $n \geqslant 0$ and $T \geqslant t_{0}$ such that $g_{2}\left(g_{1}(t)-i \tau\right) \leqslant t$ for $t \geqslant T, i=0, \ldots, n$.
If

$$
\begin{equation*}
\int_{T}^{\infty}\left(a_{2}(s) g_{1}(s)-\frac{g_{1}^{\prime}(s)}{4 K L g_{1}(s) \sum_{i=0}^{n} p^{i} a_{1}\left(g_{1}(s)-i \tau\right)}\right) \mathrm{d} s=\infty \tag{6}
\end{equation*}
$$

then for every nonoscillatory solution $\left(x_{1}, x_{2}\right)$ of (A) its both components tend to zero for $t \rightarrow \infty$.

Proof. Let $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of (A) and let $x_{1}(t)>0$ for $t \geqslant t_{0}$. It follows from the system (A) that $x_{2}(t)$ is decreasing and hence there exists such a $t_{1} \geqslant t_{0}$ that there are two possibilities for $x_{2}(t)$:

1. $x_{2}(t)<0$ for $t \geqslant t_{1}$,
2. $x_{2}(t)>0$ for $t \geqslant t_{1}$.

Assume that 1 holds. Then there exist a constant $c<0$ and $t_{2} \geqslant t_{1}$ such that $x_{2}(t) \leqslant c, x_{2}\left(g_{2}(t)\right) \leqslant c$ for $t \geqslant t_{2}$. Using (d) and the first equation of the system (A) we get

$$
u_{1}(t)-u_{1}\left(t_{2}\right) \leqslant L c \int_{t_{2}}^{t} a_{1}(s) \mathrm{d} s
$$

Letting $t \rightarrow \infty$, in view of (b) we have $\lim _{t \rightarrow \infty} u_{1}(t)=-\infty$. This means that $\boldsymbol{x} \in N^{-}$, which contradicts Lemma 1.

We assume now that 2 holds and consider the following cases:
a) Let $\boldsymbol{x} \in N^{-}$. The function $x_{2}(t)$ is positive, decreasing and so there exists $\lim _{t \rightarrow \infty} x_{2}(t)=d \geqslant 0$. We shall show that $d=0$. Suppose the contrary. Then there exists $t_{2} \geqslant t_{1}$ such that $x_{2}(t) \geqslant d, x_{2}\left(g_{2}(t)\right) \geqslant d$ for $t \geqslant t_{2}$. Using (d) we obtain from the first equation of (A)

$$
u_{1}(t)-u_{1}\left(t_{2}\right) \geqslant L d \int_{t_{2}}^{t} a_{1}(s) \mathrm{d} s
$$

With regard to (b), letting $t \rightarrow \infty$ we have $\lim _{t \rightarrow \infty} u_{1}(t)=\infty$, which contradicts the negativity of $u_{1}(t)$. Therefore $\lim _{t \rightarrow \infty} x_{2}(t)=0$. Because of $\boldsymbol{x} \in N^{-}$, using Lemma 1 we have $\lim _{t \rightarrow \infty} u_{1}(t)=0, \lim _{t \rightarrow \infty} x_{1}(t)=0$.
b) Let $\boldsymbol{x} \in N^{+}$. We define the function

$$
F(t)=\frac{x_{2}(t) g_{1}(t)}{\sum_{i=0}^{n} p^{i} u_{1}\left(g_{1}(t)-i \tau\right)}, \quad t \geqslant t_{1} .
$$

Then $F(t) \geqslant 0$ and using the first equation of (A) we have

$$
\begin{equation*}
F^{\prime}(t)=\frac{-a_{2}(t) f_{2}\left(x_{1}\left(g_{1}(t)\right)\right) g_{1}(t)}{\sum_{i=0}^{n} p^{i} u_{1}\left(g_{1}(t)-i \tau\right)}+\frac{g_{1}^{\prime}(t)}{g_{1}(t)}\left(F(t)-F^{2}(t) \frac{\sum_{i=0}^{n} p^{i} u_{1}^{\prime}\left(g_{1}(t)-i \tau\right)}{x_{2}(t)}\right) . \tag{7}
\end{equation*}
$$

In view of (4), (d) there exist an integer number $n \geqslant 0$ and $t_{2} \geqslant t_{1}$ such that

$$
\begin{equation*}
f_{2}\left(x_{1}\left(g_{1}(t)\right)\right) \geqslant K \sum_{i=0}^{n} p^{i} u_{1}\left(g_{1}(t)-i \tau\right), \quad t \geqslant t_{2} \tag{8}
\end{equation*}
$$

Taking into account the monotonicity of x_{2}, (ii), (d) we obtain from the first equation of the system (A)

$$
\begin{align*}
u_{1}^{\prime}\left(g_{1}(t)-i \tau\right) & =a_{1}\left(g_{1}(t)-i \tau\right) f_{1}\left(x_{2}\left(g_{2}\left(g_{1}(t)-i \tau\right)\right)\right) \\
& \geqslant L a_{1}\left(g_{1}(t)-i \tau\right) x_{2}(t), \quad t \geqslant t_{2} \tag{9}
\end{align*}
$$

Combining (7), (8), (9) we get

$$
\begin{aligned}
F^{\prime}(t) \leqslant & -K a_{2}(t) g_{1}(t) \\
& +L \sum_{i=0}^{n} p^{i} a_{1}\left(g_{1}(t)-i \tau\right) \frac{g_{1}^{\prime}(t)}{g_{1}(t)}\left(\frac{F(t)}{L \sum_{i=0}^{n} p^{i} a_{1}\left(g_{1}(t)-i \tau\right)}-F^{2}(t)\right) \\
\leqslant & -K a_{2}(t) g_{1}(t)+\frac{g_{1}^{\prime}(t)}{4 L g_{1}(t) \sum_{i=0}^{n} p^{i} a_{1}\left(g_{1}(t)-i \tau\right)}, \quad t \geqslant t_{2} .
\end{aligned}
$$

Integration of the last inequality from t_{2} to t yields

$$
\begin{equation*}
F(t) \leqslant F\left(t_{3}\right)-K \int_{t_{2}}^{t}\left(a_{2}(s) g_{1}(s)-\frac{g_{1}^{\prime}(s)}{4 L K g_{1}(s) \sum_{i=0}^{n} p^{i} a_{1}\left(g_{1}(s)-i \tau\right)}\right) \mathrm{d} s \tag{10}
\end{equation*}
$$

Letting $t \rightarrow \infty$ then by virtue of (6) we have $F(t) \rightarrow-\infty$, which contradicts the positivity of $F(t)$.

The conclusion of Theorem 1 can by strengthened as follows.

Theorem 2. In addition to the conditions of Theorem 1, assume that
(i) $g_{2}(t) \leqslant t$,
(ii) there exists an integer number $m \geqslant 1$ such that $g_{1}(t)+m \tau<t$. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{g_{1}(t)+m \tau}^{t} a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u \mathrm{~d} s>\frac{1}{K L} \frac{p^{m}(1-p)}{1-p^{m}} \tag{11}
\end{equation*}
$$

then every proper solution of (A) is oscillatory.
Proof. Taking the proof of Theorem 1 into account, it is sufficient to show the impossibility of the case 2 a).

Suppose the contrary. Let the system (A) have a solution with the properties $x_{2}(t)>0, x_{1}(t)>0, u_{1}(t)<0$ for $t \geqslant T, T$ sufficiently large. With regard to (A) $x_{2}(t)$ is a decreasing function and $u_{1}(t)$ is an increasing function and from (5) we get

$$
\begin{equation*}
x_{1}\left(g_{1}(t)\right) \geqslant-A u_{1}\left(g_{1}(t)+m \tau\right), \quad t \geqslant T, \tag{12}
\end{equation*}
$$

where $A=\sum_{j=1}^{m} 1 / p^{j}$. Integrating the second equation of (A) from $s \geqslant T$ to $t>s$ and using the monotonicity of $u_{1}(t), g_{1}(t),(\mathrm{d})$ and (12) we have

$$
-x_{2}(s) \leqslant x_{2}(t)-x_{2}(s) \leqslant K A u_{1}\left(g_{1}(t)+m \tau\right) \int_{s}^{t} a_{2}(u) \mathrm{d} u
$$

Putting this inequality into the first equation of (A) we get

$$
u_{1}^{\prime}(s) \geqslant-K L A u_{1}\left(g_{1}(t)+m \tau\right) a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u
$$

and integration from $g_{1}(t)+m \tau$ to t yields

$$
\begin{aligned}
-u_{1}\left(g_{1}(t)+m \tau\right) & \geqslant u_{1}(t)-u_{1}\left(g_{1}(t)+m \tau\right) \\
& \geqslant-K L A u_{1}\left(g_{1}(t)+m \tau\right) \int_{g_{1}(t)+m \tau}^{t} a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u \mathrm{~d} s
\end{aligned}
$$

and so

$$
1 \geqslant K L A \int_{g_{1}(t)+m \tau_{1}}^{t} a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u \mathrm{~d} s
$$

which contradicts (11).

Remark 1. If the system (A) is equivalent to the differential equation

$$
(x(t)-p x(t-\tau))^{\prime \prime}+a(t) x(g(t))=0
$$

then Theorems 1, 2 generalize the results for this equation given in the paper [2].

Theorem 3. Let $p=1$ and let the assumptions (i), (ii) and (11) of Theorem 1 hold. Then first component of every nonoscillatory solution $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ of (A) is bounded.

Proof. Let $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of (A) and let $x_{1}(t)>0$ for $t \geqslant t_{0}$. Then $x_{2}(t)$ is a decreasing function and there exists such a $t_{1} \geqslant t_{0}$ that there are two possibilities for $x_{2}(t)$:

1. $x_{2}(t)<0$ for $t \geqslant t_{1}$,
2. $x_{2}(t)>0$ for $t \geqslant t_{1}$.

We consider the case 1 . Then $x_{2}(t)<x_{2}\left(t_{1}\right)=c<0$ and the first equation of (A) and (d) imply

$$
u_{1}(t)-u_{1}\left(t_{2}\right) \leqslant L c \int_{t_{2}}^{t} a_{1}(s) \mathrm{d} s, \quad t \geqslant t_{2} \geqslant t_{1}
$$

In view of (b) we see that $u_{1}(t)<0, \lim _{t \rightarrow \infty} u_{1}(t)=-\infty$. Therefore $x_{1}(t)<x_{1}(t-\tau)$ for all large t. This implies that $x_{1}(t)$ is bounded, which contradicts $\lim _{t \rightarrow \infty} u_{1}(t)=-\infty$.

Now we assume that 2 holds and we consider the following cases:
a) Let $\boldsymbol{x} \in N^{+}$. Then $u_{1}(t)$ is a decreasing function and by (4), (A), (d) the inequalities

$$
\begin{align*}
x_{1}\left(g_{1}(t)\right) & \geqslant \sum_{i=0}^{n} u_{1}\left(g_{1}(t)-i \tau\right), \tag{13}\\
x_{2}^{\prime}(t) & \leqslant-K a_{1}(t) \sum_{i=0}^{n} u_{1}\left(g_{1}(t)-i \tau\right), \\
u_{1}^{\prime}\left(g_{1}(t)-i \tau\right) & \geqslant L a_{1}\left(g_{1}(t)-i \tau\right) x_{2}(t)
\end{align*}
$$

hold for $t \geqslant T$. Analogously as in the proof of Theorem 1 we define the function

$$
F(t)=\frac{x_{2}(t) g_{1}(t)}{\sum_{i=0}^{n} u_{1}\left(g_{1}(t)-i \tau\right)} \geqslant 0
$$

In a similar manner as in the proof of Theorem 1 in the case 2 b), using the inequalities (13) we get (10), which leads to contradicion.
b) Let $\boldsymbol{x} \in N^{-}$. Then $x_{1}(t)<x_{1}(t-\tau)$, which implies that $x_{1}(t)$ is bounded.

Theorem 4. In addition to the conditions of Theorem 3 assume that
(i) $g_{2}(t) \leqslant t$,
(ii) there exists an integer number $m \geqslant 1$ such that $g_{1}(t)+m \tau<t$. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{g_{1}(t)+m \tau}^{t} a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u \mathrm{~d} s>\frac{1}{m K L} \tag{14}
\end{equation*}
$$

then every proper solution of (A) is oscillatory.
Proof. Let $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ be a nonoscillatory solution of (A) and let $x_{1}(t)>0$ for $t \geqslant t_{0}$. Taking the proof of Theorem 3 into account, it is sufficient to show that the case 2 b) is impossible. On the contrary we suppose that $x_{1}(t)>0, u_{1}(t)<0$, $x_{2}(t)>0$ for $t \geqslant T \geqslant t_{0}$. By virtue of (5) and the monotonicity of u_{1} we get inequality (12) from the proof of Theorem 2 in the form

$$
x_{1}\left(g_{1}(t)\right) \geqslant-m u_{1}\left(g_{1}(t)+m \tau\right) .
$$

Repeating the corresponding part of the proof of Theorem 2 we obtain

$$
m K L \int_{g_{1}(t)+m \tau}^{t} a_{1}(s) \int_{g_{2}(s)}^{t} a_{2}(u) \mathrm{d} u \mathrm{~d} s \leqslant 1
$$

which contradicts (14).

References

[1] O. Arino and I. Györi: Neccesary and sufficient conditions for oscillation of a neutral differential system with several delays. J. Differential Equations 81 (1989), 98-105.
[2] J. Džurina and B. Mihalíková: Oscillation criteria for second order neutral differential equations. Math. Bohem. 2 (2000), 145-153.
[3] J. Džurina: On the unstable neutral differential equations of the second order. Czechoslovak Math. J 52(127) (2002), 739-747.
[4] L. H. Erbe, Q. Kong and B. G. Zhang: Oscillation Theory for Functional Differential Equations. Dekker, New York, 1995.
[5] S. Kulcsár: On the asymptotic behavior of solutions of the second order neutral differential equations. Publ. Math. Debrecen 57 (2000), 153-161.
[6] P. Marušiak: Oscillatory properties of functional differential systems of neutral type. Czechoslovak Math. J. 43(118) (1993), 649-662.
[7] A.F. Ivanov and P. Marušiak: Oscillatory properties of systems of neutral differential equations. Hiroshima Math. J. 24 (1994), 423-434.
[8] P. Marušiak and R. Olach: Functional Equations. EDIS ŽU, Žilina, 2000. (In Slovak.)
[9] E. Špániková: Oscillatory properties of the solutions of differential system of neutral type. Arch. Math. 29 (1993), 177-185.
[10] E. Špániková: Oscillatory properties of the solutions of three-dimensional differential systems of neutral type. Czechoslovak Math. J. 50(125) (2000), 879-887.

Author's address: Department of Mathematical Analysis, Faculty of Sciences, Šafárik University, Jesenná 5, 04154 Košice, Slovakia, e-mail: mihaliko@duro.science.upjs.sk.

