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Abstract. In this paper, necessary and sufficient conditions are obtained for every
bounded solution of

(∗) [y(t)− p(t)y(t− τ )](n) +Q(t)G 
 y(t− σ) � = f(t), t > 0,

to oscillate or tend to zero as t → ∞ for different ranges of p(t). It is shown, under some
stronger conditions, that every solution of (∗) oscillates or tends to zero as t → ∞. Our
results hold for linear, a class of superlinear and other nonlinear equations and answer a
conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and
generalize some known results.
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1. Introduction

In recent years, a good deal of work has been done on the oscillation theory

of higher order neutral delay-differential equations. In [1]–[4], [11], [17], [18], [23],
[25], [26] the authors have considered oscillation of solutions of linear homogeneous

equations of the form

(1) [y(t)− p(t)y(t− τ)](n) + Q(t)y(t− σ) = 0

or some more general linear homogeneous equations with several delays or variable
delays. Sufficient conditions have been obtained under which every solution of (1)
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oscillates (see [1]–[4], [11], [23], [25]). Some authors (see [17], [18]) have obtained

conditions so that every solution of

[y(t)− p(t)y(t− τ)](n) + Q(t)y
(
σ(t)

)
= 0

or

[y(t)− py(t− τ)](n) +
m∑

i=1

Qi(t)y(t− σi(t)) = 0

oscillates or tends to zero as t → ∞. In [2]–[4], [11], the results are obtained un-
der the assumption

∫∞
0 Q(t) dt = ∞. However, in [1], [25], a weaker condition∫∞

0
tn−1Q(t) dt = ∞ is assumed. In [23], oscillation results are obtained under the

assumption
∫∞
0 Q(t) dt <∞. The oscillatory and asymptotic behaviour of solutions

of linear nonhomogeneous equations

[
y(t) +

l∑

i=1

pi(t)y(t− τi)
](n)

±
m∑

j=1

Qj(t)y(t− σj) = f(t)

are investigated in [16] under the assumption that f is a very rapidly oscillating

function in the sense that

∫ ∞

0

Qk(t)F±(t− σk) dt = ∞

for some k ∈ {1, 2, . . . , m}, where F is a real-valued n-times continuously differen-

tiable function such that F (n)(t) = f(t). Nonlinear homogeneous equations of the
form

(2) [y(t)− p(t)y(t− τ)](n) + Q(t)G
(
y(t− σ)

)
= 0

or more general equations of the type (2) are studied in [5], [14], [15], [24]. In [24],

sublinear cases satisfying lim
u→0

(G(u)/u) > λ > 0 are dealt with under strong assump-
tions on Q. Sublinear cases satisfying

(3)
∫ ±c

0

du

G(u)
< ∞ for every c > 0

are considered in [15] under the assumption

(4)
∫ ∞

0

Q(t)G
(
(t− σ)n−1

)
dt = ∞.
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On the other hand, superlinear cases satisfying

(5)
∫ ±∞

±c

du

G(u)
<∞ for every c > 0

are dealt with under the assumption

(6)
∫ ∞

0

(t− σ)n−1Q(t) dt = ∞

in [14]. It seems that not much work has been done on nonlinear nonhomogeneous

neutral equations of the form

(7) [y(t)− p(t)y(t− τ)](n) + Q(t)G
(
y(t− σ)

)
= f(t).

Equation (7) is studied under the assumptions (5) and (6) in [14] and under the
assumptions (3) and (4) in [15]. In both papers, f is small in some sense. In most

of these papers p(t) lies in the range −1 < p(t) 6 0 or 0 6 p(t) < 1.
In the literature, the conditions assumed differ from authors to authors due to

the different techniques they use and the different type of equations they consider.
Even the conditions assumed by different authors for similar type of equations are

often not comparable. While considering Eq. (7) for the study of oscillation of its
solutions, one is required to consider various ranges for p(t), whether n is even or

odd, Q(t) > 0 or < 0 or is oscillating, whether G is linear or sublinear or superlinear,
and whether f is small in some sense or f is a rapidly oscillating function.

In this paper, we consider equations of the form (7), with n > 2, where p and
f ∈ C

(
[0,∞), � ), Q ∈ C

(
[0,∞), [0,∞)

)
, G ∈ C( � , � ), τ > 0 and σ > 0. Following

assumptions are needed in the sequel:
(H1) G is nondecreasing and xG(x) > 0 for x 6= 0;
(H2) lim inf

|u|→∞
G(u)/u > α > 0;

(H3)
∫∞
0 tn−1Q(t) dt = ∞;

(H4)
∫∞
0

tn−2Q(t) dt = ∞;
(H5) There exists F ∈ C(n)

(
[0,∞), � ) such that F (n)(t) = f(t) and lim

t→∞
F (t) = 0.

We may note that (H4) implies (H3) and (H3) holds if and only if

∫ ∞

0

(t− γ)n−1Q(t) dt = ∞,

where γ is a real number. Further, lim inf
t→∞

Q(t) > λ > 0 implies that
∫∞
0

Q(t) dt = ∞
which is stronger than (H4). Some authors ([2]–[4], [11], [24]) have worked with these
strong conditions.
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We consider the following ranges for p(t):
(A1) 0 6 p(t) 6 p1 < 1,
(A2) −1 < p2 6 p(t) 6 0,
(A3) p4 6 p(t) 6 p3 < −1,
(A4) 1 < p5 6 p(t) 6 p6,

(A5) 1 6 p(t) 6 p7,

(A6) 0 6 p(t) 6 p8,

(A7) 0 6 p(t) 6 1,
(A8) −p 6 p(t) 6 0
where pi is a constant, 1 6 i 6 8, and p is a positive constant.

In earlier papers [19], [20], [21], the authors studied oscillatory and asymptotic
behaviour of solutions of (7) with n = 1, (H1), (H3) and (H5) and for the different

ranges of p(t). Both necessary and sufficient conditions were obtained. The present
study deals with Eq. (7) with n > 2 and superlinear assumption (H2). However,

some of the results in this paper also hold for sublinear cases. We may note that
(H2) includes the linear case. The prototype of G are

G(u) = |u|γ sgnu, γ > 1 and G(u) = uδ(β + |u|γ),

where β > 0, γ > 0, and δ > 1 is a ratio of odd integers. Our work also holds for
homogeneous neutral delay equations of order n.

By a solution of (7) we mean a real-valued continuous function y on [Ty − %,∞)
for some Ty > 0, where % = max{τ, σ}, such that y(t) − p(t)y(t − τ) is n-times

continuously differentiable and (7) is satisfied for t ∈ [Ty,∞). A solution of (7) is said
to be oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

In Section 2, some lemmas are given. Sufficient conditions are obtained in Section 3
for oscillation and asymptotic behaviour of solutions of (7). Section 4 deals with

necessary conditions.

2. Some lemmas

In this section we obtain some lemmas which are needed in Section 3.

Lemma 2.1. Let Q ∈ C
(
[0,∞), [0,∞)

)
and Q(t) 6≡ 0 on any interval of the form

[T,∞), T > 0, and G ∈ C( � , � ) with uG(u) > 0 for u 6= 0. Let y ∈ C
(
[0,∞), � )

with y(t) > 0 or y(t) < 0 for t > t0 > 0. If w ∈ C(n)
(
[0,∞), � ) with

(8) w(n)(t) = −Q(t)G
(
y(t− σ)

)
, t > t0 + σ, σ > 0,
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and there exists an integer n∗ ∈ {0, 1, 2 . . . , n− 1} such that lim
t→∞

w(n∗)(t) exists and

lim
t→∞

w(i)(t) = 0 for i ∈ {n∗ + 1, . . . , n− l}, then

w(n∗)(t) = w(n∗)(∞) − (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds

for large t.

Integrating (8) repeatedly (n− n∗)-times, the lemma is obtained.

Remark 1. Suppose that the conditions of Lemma 2.1 hold. If y(t) > 0 for t > t0
and

w(n)(t) 6 −Q(t)G
(
y(t− σ)

)
, t > t0 + σ,

with the remaining conditions same as in Lemma 2.1, then

w(n∗)(t) > w(n∗)(∞)− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds,

provided that n− n∗ is odd and

w(n∗)(t) 6 w(n∗)(∞) − (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds

provided that n− n∗ is even.

If y(t) < 0 for t > t0 and

w(n)(t) > −Q(t)G
(
y(t− σ)

)
, t > t0 + σ,

with other conditions same as Lemma 2.1, then

w(n∗)(t) 6 w(n∗)(∞)− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds,

provided that n− n∗ is odd. If n− n∗ is even then

w(n∗)(t) > w(n∗)(∞)− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds.

Lemma 2.2 ([9], [12, p. 193]). Let y ∈ Cn
(
[0,∞), � ) be of constant sign. Let

y(n)(t) be of constant sign and 6≡ 0 in any interval [T,∞), T > 0, and y(n)(t)y(t) 6 0.
Then there exists a number t0 > 0 such that the functions y(j)(t), j = 1, 2, . . . , n−1,
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are of constant sign on [t0,∞) and there exists a number k ∈ {1, 3, . . . , n− 1} when
n is even or k ∈ {0, 2, 4, . . . , n− 1} when n is odd such that

y(t)y(j)(t) >0 for j = 0, 1, 2, . . . , k, t > t0,

(−1)n+j−1y(t)y(j)(t) >0 for j = k + 1, k + 2, . . . n− 1, t > t0.

Lemma 2.3 ([7, p. 19]). Let F, G, p ∈ C
(
[t0,∞), � ), t0 > 0, be such that

F (t) = G(t)− p(t)G(t − τ), t > t0 + τ, τ > 0,

G(t) > 0 for t > t0, lim inf
t→∞

G(t) = 0 and lim
t→∞

F (t) = L exists. Let p(t) satisfy (A2)

or (A3) or (A6). Then L = 0. If G(t) < 0 for t > t0, then lim inf
t→∞

G(t) = 0 is replaced

by lim sup
t→∞

G(t) = 0 in the above statement.

Lemma 2.4. Suppose that (H1)–(H3) and (H5) hold. Let p(t) be in the range
(A5). Let y(t) be a solution of (7) such that y(t) > 0 for t > t0 > 0 and let

(9) w(t) = y(t)− p(t)y(t− τ)− F (t)

for t > t0+%, where % = max{τ, σ}. Then either lim
t→∞

w(t) = −∞ or lim
t→∞

w(i)(t) = 0,

i = 0, 1, 2, . . . , n−1 and (−1)n+kw(k)(t) < 0 for k = 0, 1, 2, . . . , n−1 and w(n)(t) 6 0
for large t. If y(t) < 0 for t > t0 > 0, then either lim

t→∞
w(t) = ∞ or lim

t→∞
w(i)(t) = 0,

i = 0, 1, 2, . . . , n− 1, (−1)n+kw(k)(t) > 0 for k = 0, 1, 2, . . . , n− 1 and w(n)(t) > 0 for
t > t0 + %.

��������

. Let y(t) > 0 for t > t0. From Eq. (7) we obtain

w(n)(t) = −Q(t)G
(
y(t− σ)

)
6 0

for t > t0 + % and w(n)(t) 6≡ 0 in any interval of the form [T,∞), T > 0. Hence each
of w(t), w′(t), . . . , w(n−1)(t) is monotonic in [t1,∞), t1 > t0 + %. If lim

t→∞
w(t) = l,

then −∞ 6 l 6 ∞. Assume that l = ∞. Then w(t) > 0 and w′(t) > 0 for t > t1.

Since w(n)(t) 6 0 for t > t1, then from Lemma 2.2 it follows that there exist t2 > t1
and an integer n∗ such that 0 6 n∗ 6 n− 1, n− n∗ is odd,

w(i)(t) > 0 for i = 0, 1, 2, . . . , n∗, t > t2,

and
(−1)n+i−1w(i)(t) > 0 for i = n∗ + 1, . . . , n− 1, t > t2.
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Hence lim
t→∞

w(n∗)(t) exists and lim
t→∞

w(i)(t) = 0 for i = n∗ + 1, n∗ + 2, . . . , n − 1. If
n∗ = 0, then 0 6 l < ∞, a contradiction. Hence 1 6 n∗ 6 n − 1. From Lemma 2.1
it follows that

w(n∗)(t) = L− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G
(
y(s− σ)

)
ds

for t > t3 > t2, where L is a constant. Hence

(11)
∫ ∞

t3

(s− t3)n−n∗−1Q(s)G
(
y(s− σ)

)
ds <∞.

From this it follows, due to (H3), that

lim inf
t→∞

(
G

(
y(t)

)
/tn

∗)
= 0.

Hence lim inf
t→∞

(y(t)/tn
∗
) = 0 by (H1) and (H2). We can choose M0 > 0 such that

w(t) > M0t
n∗−1 for t > t4 > t3. Hence, for 0 < M1 < M0, y(t) − p(t)y(t − τ) >

M1t
n∗−1, t > t5 > t4, by (H5), that is,

(12) y(t) > y(t− τ) + M1t
n∗−1, t > t5,

due to (A5). Let

T0 > max
{

(n∗ − 2)τ
3

, t5

}
, M = min{y(t) : T0 6 t 6 T0 + τ}

and

0 < β < min
{

M

(T0 + τ)n∗
,

M1

2n∗τ

}
.

Define, for t > T0,

H(t) =





(M1 − n∗βτ)tn
∗−1 + β

n∗∑

i=2

(−1)ic(n∗, i)τ itn
∗−i, n∗ > 2

M1 − βτ, n∗ = 1

where
c(n, i) =

n!
i!(n− i)!

.

If n∗ is odd, we may write

n∗∑

i=2

(−1)ic(n∗, i)τ itn
∗−i

=
(
c(n∗, 2)τ2tn

∗−2 − c(n∗, 3)τ3tn
∗−3

)

+
(
c(n∗, 4)τ4tn

∗−4 − c(n∗, 5)τ5tn
∗−5)

+ . . . + (−1)n∗−1(c(n∗, n∗ − 1)τn∗−1t− c(n∗, n∗)τn∗
)
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to obtain
n∗∑

i=2

(−1)ic(n∗, i)τ itn
∗−i > 0

because

c(n∗, i)τ itn
∗−i > c(n∗, i + 1)τ i+1tn

∗−i−1

if and only if

t >
c(n∗, i + 1)

c(n∗, i)
τ =

(n∗ − i)τ
i + 1

for i = 2, 4, . . . , n∗ − 1. Further, t > T0 implies that

t > T0 >
(n∗ − 2)τ

3
>

(n∗ − 4)τ
5

> . . . >
τ

n∗
.

If n∗ is even, then we put the terms in pair as above with the last positive term
(−1)n∗c(n∗, n∗)τn∗ . Thus H(t) > 0 for t > T0. Since y(t) > M for T0 6 t 6 T0 + τ

and β(T0 + τ)n∗ < M , then y(t) > βtn
∗
for T0 6 t 6 T0 + τ . Using (12) we obtain,

for t ∈ [T0 + τ, T0 + 2τ ],

y(t) > y(t− τ) + M1t
n∗−1 > β(t− τ)n∗ + M1t

n∗−1 > βtn
∗

because, for n∗ > 2,

βtn
∗

< H(t) + βtn
∗

= (M1 − n∗βτ)tn
∗−1 + β

[
(t− τ)n∗ − tn

∗
+ n∗τtn

∗−1
]
+ βtn

∗

= M1t
n∗−1 + β(t− τ)n∗

and, for n∗ = 1,
βt < H(t) + βt = M1 + β(t− τ).

Proceeding as above we have y(t) > βtn∗ for t > T0. Hence lim inf
t→∞

(y(t)/tn
∗
) >

β > 0, a contradiction. Consequently, −∞ 6 l < ∞. Suppose that −∞ < l <

∞. Then (−1)n+kw(k)(t) < 0 for k = 1, 2, . . . , n − 1 and hence lim
t→∞

w(i)(t) = 0,
i = 1, 2, . . . , n− 1. Whether n is odd or even, we take n∗ = 0 to obtain

w(t) = L1 +
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G
(
y(s− σ)

)
ds

for t > t1 by Lemma 2.1, where L1 is a constant. Hence

∫ ∞

t1

(s− t1)n−1Q(s)G
(
y(s− σ)

)
ds <∞.
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From this it follows, due to (H3), that lim inf
t→∞

G
(
y(t)

)
= 0 and hence lim inf

t→∞
y(t) = 0.

If z(t) = y(t) − p(t)y(t − τ), then lim
t→∞

z(t) = lim
t→∞

w(t) = l. Hence lim
t→∞

z(t) = 0 by

Lemma 2.3. Thus lim
t→∞

w(t) = 0. Consequently, lim
t→∞

w(i)(t) = 0, i = 0, 1, 2, . . . , n−1

and (−1)n+kw(k)(t) < 0 for k = 0, 1, 2, . . . , n− 1.
If y(t) < 0 for t > t0, then proceeding as above we obtain the necessary conclusion.

Thus the lemma is proved. �

Remark 2. The part of the proof of Lemma 2.4 following −∞ < l < ∞ is

independent of the range of p(t).

Lemma 2.5. Let (H1), (H2), (H4) and (H5) hold and let p(t) lie in the range (A2)

or (A7). If y(t) is a solution of (7) with y(t) > 0 for t > t0 > 0, then lim
t→∞

w(i)(t) = 0,

i = 0, 1, 2, . . . , n− 1, and (−1)n+kw(k)(t) < 0, k = 0, 1, 2, . . . , n− 1, and w(n)(t) 6 0
for large t, where w(t) is given by (10). If y(t) < 0 for t > t0, then lim

t→∞
w(i)(t) = 0,

i = 0, 1, 2, . . . , n−1, and (−1)n+kw(k)(t) > 0 for k = 0, 1, 2, . . . , n−1, and w(n)(t) > 0
for large t.

��������

. Let y(t) > 0 for t > t0. Then w(n)(t) 6 0 for t > t0 + % and w(n)(t) 6≡ 0
in any interval of the form [T,∞), T > 0. Hence each of w(t), w′(t), . . . w(n−1)(t)
is monotonic in [t1,∞), t1 > t0 + %. Let lim

t→∞
w(t) = l, −∞ 6 l 6 ∞. If l =

∞, then w(t) > 0 and w′(t) > 0 for t > t1. Proceeding as in Lemma 2.4, we

obtain n∗ > 1 and (11). Then (H4) implies that lim inf
t→∞

(
G

(
y(t)

)
/tn

∗−1
)

= 0. Hence

lim inf
t→∞

(y(t)/tn
∗−1) = 0 by (H1) and (H2). Since n∗ > 1, we can choose M0 > 0 such

that w(t) > M0t
n∗−1 for t > t4 > t5. Thus

(13) lim inf
t→∞

y(t)
w(t)

= 0.

Set, for t > t4,

p∗(t) = p(t)w(t − τ)/w(t).

Since w(t) is increasing, then 0 6 p∗(t) < p(t) 6 1 or −1 < p2 6 p(t) < p∗(t) 6 0,
respectively, when p(t) is in the range (A7) or (A2). As lim

t→∞

(
F (t)/w(t)

)
= 0, we

have

1 = lim
t→∞

w(t)
w(t)

= lim
t→∞

[
y(t)− p(t)y(t− τ) − F (t)

w(t)

]

= lim
t→∞

[
y(t)
w(t)

− p∗(t)y(t− τ)
w(t − τ)

− F (t)
w(t)

]

= lim
t→∞

[
y(t)
w(t)

− p∗(t)y(t− τ)
w(t − τ)

]
.
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Use of Lemma 2.3 yields, due to (13), that

lim
t→∞

[
y(t)
w(t)

− p∗(t)y(t− τ)
w(t − τ)

]
= 0,

a contradiction. Hence l 6= ∞. If possible, let l = −∞. For every β > 0, there exists
t5 > t1 such that w(t) < −β for t > t5. If p(t) is in the range (A7), then for t > t5,

y(t) < − β + p(t)y(t− τ) + F (t)

6 − β + y(t− τ) + F (t).

Hence, for t > t5 + kτ ,

y(t) < − 2β + y(t− 2τ) + F (t) + F (t− τ)
...

< − kβ + y(t− kτ) + F (t) + F (t− τ) + . . . + F (t− (k − 1)τ),

where k > 0 is an integer. For 0 < ε < β, there exists a t6 > t5 + kτ such that
|F (t)| < ε for t > t6. Hence, for t > t6 + kτ ,

y(t) < −kβ + y(t− kτ) + kε

implies that

y(t6 + kτ) < −k(β − ε) + y(t6).

Thus y(t6 + kτ) < 0 for large k, a contradiction. If p(t) is in the range (A2), then

y(t) < −β + F (t) < −(β − ε) < 0

for t > t6, a contradiction. Hence l 6= −∞. Thus −∞ < l < ∞. Then
(−1)n+kw(k)(t) < 0 for k = 1, 2, . . . , n − 1 and hence lim

t→∞
w(i)(t) = 0, i =

1, 2, . . . , n − 1. Proceeding as in Lemma 2.4, we may show that lim
t→∞

w(t) = 0.

Thus (−1)n+kw(k)(t) < 0 for k = 0, 1, 2, . . . , n− 1.
If y(t) < 0 for t > t0, then one may proceed as above to arrive at the conclusions.

Thus the proof of the lemma is complete. �

Lemma 2.6. Suppose that (H1), (H3) and (H5) hold and p(t) is in one of the
ranges (A2), (A3), and (A6). If y(t) is a bounded solution of (7) such that y(t) > 0
for t > t0 > 0, then lim

t→∞
w(i)(t) = 0, i = 0, 1, 2, . . . , n − 1 and (−1)n+kw(k)(t) < 0

for k = 0, 1, 2, . . . , n− 1 and w(n)(t) 6 0 for large t, where w(t) is given by (10). If
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y(t) < 0 for t > t0, then lim
t→∞

w(i)(t) = 0, i = 0, 1, 2, . . . , n−1 and (−1)n+kw(k)(t) > 0

for k = 0, 1, 2, . . . , n− 1 and w(n)(t) > 0 for large t.

��������

. Since y(t) is bounded, then w(t) is bounded. If y(t) > 0 for t > t0, then
w(n)(t) 6 0 for t > t0 + % but 6≡ 0. Hence −∞ < l < ∞, where l = lim

t→∞
w(t). The

rest of the proof is similar to that of Lemma 2.4. The proof for the case y(t) < 0 for
t > t0 is similar. Hence the lemma is proved. �

3. Sufficient conditions

In this section we study oscillatory and asymptotic behaviour of solutions of Eq. (7)
and the associated homogeneous equation

(14) [y(t)− p(t)y(t− τ)](n) + Q(t)G
(
y(t− σ)

)
= 0, t > 0.

Theorem 3.1. Let n be odd. Suppose that (H1)–(H3) hold. If p(t) is in the
range (A5), then every nonoscillatory solution of (14) tends to +∞ or −∞ as t →∞.

��������

. Let y(t) be a nonoscillatory solution of (14). Hence y(t) > 0 or < 0
for t > t0 > 0. Let y(t) > 0 for > t0. The case y(t) < 0 for t > t0 may be treated

similarly. Setting

(15) z(t) = y(t)− p(t)y(t− τ)

for t > t0 + %, we obtain from Lemma 2.4 that either lim
t→∞

z(t) = −∞ or

lim
t→∞

z(i)(t) = 0, i = 0, 1, 2, . . . , n− 1 and (−1)n+kz(k)(t) < 0, k = 0, 1, 2, .., n− 1 for

large t. If the latter holds, then z(t) > 0 for large t, because n is odd. We may take
n∗ = 0 to obtain, by Lemma 2.1,

z(t) = z(∞) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G
(
y(s− σ)

)
ds

for t > t1 > t0 + %. Hence
∫ ∞

t1

(s− t1)n−1Q(s)G
(
y(s− σ)

)
ds <∞.

Thus (H3) implies that lim inf
t→∞

G
(
y(t)

)
= 0. Consequently, lim inf

t→∞
y(t) = 0 by (H1).

On the other hand, z(t) > 0 for t > t2 > t1 implies that y(t) > p(t)y(t−τ) > y(t−τ)
by (A5). Hence lim inf

t→∞
y(t) > 0, a contradiction. Thus lim

t→∞
z(t) = −∞. Since

z(t) > −p(t)y(t−τ) > −p7y(t−τ), then lim
t→∞

y(t) =∞. Thus the theorem is proved.
�
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Remark 3. Theorem 3.1 extends Theorem 1(a) in [10] and Theorem 1(a) in [1].

Corollary 3.2. Let the conditions of Theorem 3.1 hold. Then every bounded
solution of (14) oscillates.

Example. The equation

(
y(t)− 2y(t− � ))′′′ + 3y

(
t− 3 �

2

)
= 0, t > 0,

admits a bounded oscillatory solution y(t) = sin t. This illustrates Corollary 3.2.

Theorem 3.3. Let (H1)–(H3) and (H5) hold. Let p(t) be in the range (A4). If

y(t) is a bounded nonoscillatory solution of (7), then y(t) → 0 as t →∞. If y(t) is an
unbounded nonoscillatory solution of (7), then lim

t→∞
|y(t)| =∞ or lim inf

t→∞
|y(t)| = 0.


��������
. If y(t) is a nonoscillatory solution of (7), then y(t) > 0 or < 0 for

t > t0 > 0. Let y(t) > 0 for t > t0. The proof for the case y(t) < 0 for t > t0

is similar. Set w(t) as in (10) and z(t) as in (15), for t > t0 + %. Hence either
lim

t→∞
w(t) = −∞ or lim

t→∞
w(i)(t) = 0, i = 0, 1, 2, . . . , n − 1, and (−1)n+kw(k)(t) < 0,

k = 0, 1, 2, . . . , n − 1, for large t, by Lemma 2.4. If y(t) is bounded, then w(t) is
bounded and hence lim

t→∞
w(t) 6= −∞. Thus, the latter holds. Then lim

t→∞
w(t) = 0

and hence lim
t→∞

z(t) = 0 by (H5). Further, z(t) 6 y(t)− p5y(t− τ) and lim
t→∞

z(t) = 0
imply that

0 6 lim inf
t→∞

[y(t)− p5y(t− τ)]

6 lim sup
t→∞

y(t) + lim inf
t→∞

[−p5y(t− τ)]

= (1− p5) lim sup
t→∞

y(t).

Hence lim sup
t→∞

y(t) = 0. Thus lim
t→∞

y(t) = 0. Next suppose that y(t) is unbounded.

If lim
t→∞

w(t) = −∞, then lim
t→∞

y(t) = ∞. If lim
t→∞

w(i)(t) = 0, i = 0, 1, 2, . . . , n− 1 and

(−1)n+kw(k)(t) < 0, k = 0, 1, 2, . . . , n− 1, then we take n∗ = 0 whether n is odd or
even and apply Lemma 2.1 to obtain, for t > t1 > t0 + %,

∫ ∞

t1

(s− t1)n−1Q(s)G
(
y(s− σ)

)
ds < ∞

as in the proof of Lemma 2.4. Hence lim inf
t→∞

G
(
y(t)

)
= 0. Then lim inf

t→∞
y(t) = 0. This

completes the proof of the theorem. �
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The following example illustrates Theorem 3.3.

Example. The equation

(
y(t)− 4y(t− log 2)

)′′ + (2 + e−2t)y(t− log 2) =
1
2
e−t, t > 0,

admits an unbounded nonoscillatory solution y(t) = et.

Corollary 3.4. Let n be even and let (H1)–(H3) hold. Suppose that p(t) is in the
range (A4). Then bounded nonoscillatory solutions of (14) tend to zero as t → ∞.
Further, if y(t) is an unbounded nonoscillatory solution of (14), then lim

t→∞
|y(t)| = ∞

or lim inf
t→∞

|y(t)| = 0.

Remark 4. The first part of Corollary 3.4 answers a conjecture by Ladas and
Sficas (see [10, p. 506]). In fact, the conjecture should state “every bounded solution
of (14) tends to zero as t → ∞ when n is even, G(u) = u, p(t) = p > 1 and
Q(t) = q > 0”, because such an equation may admit an unbounded solution. The
following example illustrates this statement.

Example. The equation

(
y(t)− 4y(t− log 2)

)′′ + ey(t− 1) = 0, t > 0

admits a positive unbounded solution y(t) = et.

Theorem 3.5. Suppose that (H1), (H3) and (H5) hold. If p(t) is in one of the
ranges (A1)–(A4), then every bounded solution of (7) oscillates or tends to zero as

t →∞.

��������

. Let y(t) be a bounded solution of (7). If y(t) oscillates, then there
is nothing to prove. Let y(t) > 0 for t > t0 > 0. The case y(t) < 0 for t > t0
may be treated similarly. From Lemma 2.6 it follows that lim

t→∞
w(i)(t) = 0, i =

0, 1, 2, . . . , n− 1, where w(t) is given by (10). Hence lim
t→∞

z(t) = 0, where z(t) is set

as in (15). If (A1) holds, then from (15) it follows that

0 = lim sup
t→∞

[y(t)− p(t)y(t− τ)]

> lim sup
t→∞

[y(t)− p1y(t− τ)]

> lim sup
t→∞

y(t) + lim inf
t→∞

[−p1y(t− τ)]

= (1− p1) lim sup
t→∞

y(t).
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Hence lim sup
t→∞

y(t) = 0. Then lim
t→∞

y(t) = 0. If (A2) or (A3) holds, then z(t) > y(t)

implies that lim sup
t→∞

y(t) = 0 and hence lim
t→∞

y(t) = 0. If (A4) holds, then (15) yields

0 = lim inf
t→∞

[y(t)− p(t)y(t− τ)]

6 lim inf
t→∞

[y(t)− p5y(t− τ)]

6 lim sup
t→∞

y(t) + lim inf
t→∞

[−p5y(t− τ)]

= (1− p5) lim sup
t→∞

y(t).

Since p5 > 1, then lim sup
t→∞

y(t) = 0 and hence lim
t→∞

y(t) = 0. Thus the theorem is

proved. �

Remark 5. Theorem 3.5 holds for linear, sublinear and superlinear equations.

Remark 6. The assumption (H3) is not enough to show that every solution
of (7) oscillates or tends to zero as t → ∞. The following example illustrates this
statement. Hence we consider the stronger assumption (H4) in our next result.

Example. Consider

[y(t) + py(t− 1)]′′′(16)

+
[

1
t2(t− 1)(log(t− 1)− 1)

+
p

(t− 1)3(log(t− 1)− 1)

]
y(t− 1) = 0, t > 14,

where 0 6 p < 1. Hence p(t) is in the range (A2). Further,

∫ ∞

14

t2Q(t) dt >

∫ ∞

14

dt

(t− 1)(log(t− 1)− 1)
=

∫ ∞

(log 13)−1

dz

z
= ∞

and

∫ ∞

14

tQ(t) dt =
∫ ∞

14

dt

t(t− 1)(log(t− 1)− 1)
+ p

∫ ∞

14

tdt

(t− 1)3(log(t− 1)− 1)

<

∫ ∞

(log 13)−1

dz

z2
+ p

∫ ∞

(log 13)−1

dz

ze1+z
+ p

∫ ∞

(log 13)−1

dz

ze2(1+z)
< ∞.

Thus (H3) holds but (H4) fails. We may note that y(t) = t(logt−1) is an unbounded
positive solution of (16) which →∞ as t →∞.

Theorem 3.6. Let p(t) be in one of the ranges (A1) and (A2). If (H1), (H2),
(H4) and (H5) hold, then every solution of (7) oscillates or tends to zero as t →∞.
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��������
. If y(t) is a nonoscillatory solution of (7), then y(t) > 0 or < 0 for t >

t0 > 0. Let y(t) > 0 for t > t0. The proof for the case y(t) < 0 for t > t0 is similar. It
is enough to show that lim sup

t→∞
y(t) = 0. From Lemma 2.5 it follows that lim

t→∞
w(t) = 0

and hence lim
t→∞

z(t) = 0, where w(t) and z(t) are given, respectively, by (10) and (15).

We claim that y(t) is bounded. If not, then there exists a sequence {tn} such that
t0 + % < t1 < t2 < . . ., tn →∞ and y(tn) →∞ as n →∞ and

y(tn) = max{y(t) : t0 + % 6 t 6 tn}.

If (A1) holds, then, for large n,

z(tn) > (y(tn)− p1y(tn − τ) > (1− p1)y(tn).

Hence z(tn) → ∞ as n → ∞, a contradiction. If (A2) holds, then z(tn) > y(tn)
implies that lim

n→∞
z(tn) = ∞, a contradiction. Thus our claim holds. Proceeding

as in Theorem 3.5 we may obtain lim sup
t→∞

y(t) = 0. This completes the proof of the

theorem. �

Remark 7. Theorem 3.6 is an extension of Theorem 2 in [2], and Theorem 1(b)
and Theorem 2 in [1]. The following example illustrates Theorem 3.6.

Example. The equation

(
y(t)− py(t− 2 � ))′′ + 2e−3 � /2(e2 � − p)y

(
t− �

2

)
= 0

admits an unbounded oscillatory solution y(t) = et cos t, where 0 6 p < 1 or −1 <

p 6 0.

Theorem 3.7. Let p(t) be in the range (A8). Suppose that (H1), (H2) and (H5)
hold. Let Q∗(t) = min{Q(t), Q(t− τ)}. If
(H6)

∫∞
0 tn−2Q∗(t) dt =∞,

(H7) for u > 0 and v > 0, G(uv) 6 G(u)G(v),
(H′7) G(−u) = −G(u) and
(H8) for u > 0 and v > 0, there exists a δ > 0 such that G(u) + G(v) > δG(u + v)
hold, then every solution of (7) oscillates or tends to zero as t →∞.

Remark 8. We may note that (H8) and (H′7) imply that, for u < 0, v < 0, there
exists a β > 0 such that G(u) + G(v) 6 βG(u + v).
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��������
of Theorem 3.7. Let y(t) be a nonoscillatory solution of (7). Then

y(t) > 0 or < 0 for t > t0 > 0. Let y(t) > 0 for t > t0. Setting w(t) and z(t) as
in (10) and (15), respectively, we obtain z(t) > 0, w(t) = z(t)− F (t),

w(n)(t) = −Q(t)G
(
y(t− σ)

)
6 0

for t > t0 + % and w(n)(t) 6≡ 0 in any neighbourhood of infinity. Hence w(t), w′(t),
w′′(t), . . . , w(n−1)(t) are monotonic and lim

t→∞
w(t) = l, where −∞ 6 l 6 ∞. If

−∞ 6 l < 0, then z(t) < 0 for large t, a contradiction. Hence 0 6 l 6 ∞. If
l = 0, then lim

t→∞
z(t) = 0 and hence z(t) > y(t) implies that lim

t→∞
y(t) = 0. Let

0 < l 6 ∞. Then w(t) > 0 for large t. From Lemma 2.2 it follows that there exists
an integer n∗, 0 6 n∗ 6 n − 1 and t1 > t0 + % such that n − n∗ is odd, w(j)(t) > 0
for j = 0, 1, 2, . . . , n∗ and (−1)n+j−1w(j)(t) > 0 for j = n∗ + 1, n∗ + 2, . . . , n − 1,
t > t1. Hence lim

t→∞
w(n∗)(t) exists and lim

t→∞
w(i)(t) = 0 for i = n∗+1, n∗+2, . . . , n−1.

Further, for n∗ > 1, it is possible to choose M0 > 0 such that w(t) > M0t
n∗−1 for

t > t2 > t1. Hence

(17) lim inf
t→∞

(z(t)/tn
∗−1) > M0 > 0.

For t > t2 + %, (H7) and (H8) yield

0 = w(n)(t) + Q(t)G
(
y(t− σ)

)

= w(n)(t) + Q(t)G
(
y(t− σ)

)
+ G

(
−p(t− σ)

)

×
[
w(n)(t− τ) + Q(t− τ)G

(
y(t− τ − σ)

)]

> w(n)(t) + G(p)w(n)(t− τ) + Q∗(t)
[
G

(
y(t− σ)

)
+ G

(
−p(t− σ)

)
G

(
y(t− τ − σ)

)]

> w(n)(t) + G(p)w(n)(t− τ) + Q∗(t)[G
(
y(t− σ)

)
+ G(−p(t− σ)y(t− τ − σ)]

> w(n)(t) + G(p)w(n)(t− τ) + δQ∗(t)G
(
y(t− σ)− p(t− σ)y(t − τ − σ)

)
,

that is,

[w(t) + G(p)w(t − τ)](n) 6 −δQ∗(t)G
(
z(t− σ)

)
.

Hence, for t > t3 > t2 + %,

w(n∗)(t)G(p)w(n∗)(t− τ) >
(
1 + G(p)

)
w(n∗)(∞)

+
δ

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q∗(s)G
(
z(s− σ)

)
ds

due to Remark 1. In particular,
∫ ∞

t3

(s− t3)n−n∗−1Q∗(s)G
(
z(s− σ)

)
ds < ∞.

820



Hence lim inf
t→∞

(
G

(
z(t)

)
/tn

∗−1
)

= 0 by (H6). If n∗ = 0, then lim inf
t→∞

tG
(
z(t)

)
= 0

implies that lim inf
t→∞

z(t) = 0, a contradiction to the fact that lim
t→∞

z(t) = lim
t→∞

w(t) = l

and 0 < l 6 ∞. Hence n∗ > 1. Consequently, lim inf
t→∞

(z(t)/tn
∗−1) = 0 due to (H1)

and (H2). This is a contradiction to (17). Hence 0 < l 6∞ is not possible. If y(t) < 0
for t > t0, then one may use (H′7) and proceed as above to obtain lim

t→∞
y(t) = 0. Thus

the theorem is proved. �

Remark 9. The prototype of G in Theorem 3.7 is G(u) = (β + |u|µ)|u|λ sgn u,
where β > 1, λ > 0, µ > 0 and λ + µ > 1 (see [8, p. 292]). Further, we may note
that (H6)⇒(H4).

4. Necessary conditions

In the following we show that the condition (H3) is necessary for every solution

of (7) to oscillate or tend to zero as t →∞.

Theorem 4.1. Let n be odd. Suppose that (H1) and (H5) hold and p(t) is in
the range (A1). If every bounded solution of (7) oscillates or tends to zero as t →∞,
then (H3) is satisfied.


��������
. If possible, let

(18)
∫ ∞

0

tn−1Q(t) dt < ∞.

It is possible to choose large t0 > 0 such that

(19)
G(1)

(n− 1)!

∫ ∞

t0

tn−1Q(t) dt <
1− p1

5
and |F (t)| < 1− p1

10
for t > t0.

Let

(20) X =
{

y ∈ BC
(
[t0,∞), � ) :

1− p1

10
6 y(t) 6 1

}
,

where BC
(
[t0,∞), � ) is the Banach space of real valued bounded continuous func-

tions on [t0,∞) with supremum norm. Let

K = {y ∈ BC
(
[t0,∞), � ) | y(t) > 0 for t > t0}.
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For u, v ∈ BC
(
[t0,∞) � ), u 6 v if and only if v − u ∈ K. If u0(t) = 1

10 (1 − p1) for
t > t0, then u0 = inf X and u0 ∈ X . Let Φ ⊂ X∗ ⊂ X . If v0(t) = sup{v(t) | v ∈ X∗},
then v0 = sup X∗ and v0 ∈ X . For y ∈ X , we define

(Ty)(t) =





p(t)y(t− τ) − (−1)n

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G
(
y(s− σ)

)
ds

+ F (t) +
1− p1

5
, for t > t0 + %,

(Ty)(t0 + %), for t0 6 t 6 t0 + %.

Clearly, Ty : [t0,∞) → � is continuous. Further, for t > t0,

Ty(t) 6 p1 +
1− p1

5
+

1− p1

10
+

1− p1

5
< 1

and

Ty(t) >
1− p1

5
− 1− p1

10
=

1− p1

10

due to (19). Hence T : X → X . Further, for u, v ∈ X with u 6 v, Tu 6 Tv since G

is nondecreasing. Then T has a fixed point y0 ∈ X by the Knaster-Tarski fixed-point

theorem (see [7, p. 30]). Since n is odd, then y0 is a solution of (7) for t > t0 + %

with 1
10 (1− p1) 6 y0(t) 6 1. Clearly, y0(t) � 0 as t →∞. This completes the proof

of the theorem.

Corollary 4.2. Let n be odd, (H1) and (H5) hold and p(t) be in the range (A1).

Every bounded solution of (7) oscillates or tends to zero as t →∞ if and only if (H3)
holds.

��������

. This follows from Theorems 3.5 and 4.1.
�

Theorem 4.3. Let n be even and let the conditions of Theorem 4.1 hold.
Suppose that G is Lispchitzian in intervals of the form [a, b], 0 < a < b. If every

bounded solution of (7) oscillates or tends to zero as t →∞, then (H3) holds.

��������

. Suppose that (18) holds. There exists a large t0 > 0 such that

(21)
L

(n− 1)!

∫ ∞

t0

tn−1Q(t) dt <
1− p1

20
and |F (t)| < 1− p1

20
for t > t0,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on
[

1
10 (1 − p1), 1

]
.

Set X as in (20). Hence X is a complete metric space, where the metric is induced
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by the supremum norm. For y ∈ X , we define

(Ty)(t) =





p(t)y(t− τ) − (−1)n

(n− 1)!
∫∞

t
(s− t)n−1Q(s)G

(
y(s− σ)

)
ds

+ F (t) +
1− p1

5
, for t > t0 + %,

(Ty)(t0 + %), for t0 6 t 6 t0 + %.

Hence Ty : [t0,∞) → � is continuous and, for t > t0, Ty(t) < p1 + 1
20 (1−p1)+ 1

5 (1−
p1) < 1 and Ty(t) > − 1

20 (1−p1)− 1
20 (1−p1)+ 1

5 (1−p1) = 1
10 (1−p1) by (21). Thus

TX ⊆ X . For u, v ∈ X ,

d(Tu, Tv) = Sup{|Tu(t)− Tv(t)| : t > t0} 6
(

p1 +
1− p1

20

)
d(u, v).

Hence T is a contraction. Thus T has a unique fixed point y0 ∈ X by the Banach
contraction principle. Since n is even, then y0 is a solution of (7) for t > t0 + % and
1
10 (1− p1) 6 y0(t) 6 1. Hence the theorem is proved. �

Corollary 4.4. Let n be even, (H1) and (H5) hold, G be Lipschitzian in every

interval of the form [a, b], 0 < a < b, and p(t) be in the range (A1). Every bounded
solution of (7) oscillates or tends to zero as t →∞ if and only if (H3) holds.
��������

. This follows from Theorems 3.5 and 4.3. �

Theorem 4.5. Let (H1) and (H5) hold, G be Lipschitzian in intervals of the

form [a, b], 0 < a < b, and p(t) be in the range (A2). If every bounded solution of (7)

oscillates or tends to zero as t →∞, then (H3) holds.
��������
. The proof is similar to that of Theorem 4.3. However, if n is odd, then

we define, for y ∈ X ,

(Ty)(t) =





p(t)y(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G
(
y(s− σ)

)
ds

+ F (t) +
1− 4p2

5
, for t > t0 + %,

(Ty)(t0 + %), for t0 6 t 6 t0 + %.

If n is even, then T is defined as follows:

(Ty)(t) =





p(t)y(t− τ) − 1
(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G
(
y(s− σ)

)
ds

+ F (t) +
1− 4p2

5
, for t > t0 + %,

(Ty)(t0 + %), for t0 6 t 6 t0 + %.

�
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Corollary 4.6. Suppose that the conditions of Theorem 4.5 hold. Every

bounded solution of (7) oscillates or tends to zero if and only if (H3) holds.
��������
. This follows from Theorems 3.5 and 4.5. �

Remark 10. Similar theorems may be established for the ranges (A3) and (A4).
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