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Abstract. The inertia set of a symmetric sign pattern A is the set i(A) = {i(B) | B =
BT ∈ Q(A)}, where i(B) denotes the inertia of real symmetric matrix B, and Q(A) denotes
the sign pattern class of A. In this paper, a complete characterization on the inertia set
of the nonnegative symmetric sign pattern A in which each diagonal entry is zero and all
off-diagonal entries are positive is obtained. Further, we also consider the bound for the
numbers of nonzero entries in the nonnegative symmetric sign patterns A with zero diagonal
that require unique inertia.
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Introduction

A matrix whose entries are from set {+,−, 0} is called a sign pattern matrix (or
sign pattern). We denote the set of all n × n sign patterns by Qn. For a real

matrix B, by sgnB we mean the sign pattern in which each positive (respectively,
negative, zero) entry of B is replaced by + (respectively, −, 0). If A ∈ Qn, then the

sign pattern class of A is defined by

Q(A) = {B | sgnB = A}.

The inertia of a real symmetric matrix B, written as i(B), is the triple of integers
i(B) = (i+(B), i−(B), i0(B)), where i+(B) (respectively, i−(B), i0(B)) denotes the
number of positive (respectively, negative, zero) eigenvalues of the matrix B counted
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with their algebraic multiplicities. Notice that the rank of a real symmetric matrix B

is equal to i+(B) + i−(B). For a symmetric sign pattern A, we define the inertia
set of A to be i(A) = {i(B) | B = BT ∈ Q(A)}. As a special case, if i(B1) = i(B2)
for all real symmetric matrices B1, B2 ∈ Q(A), we say that the sign pattern A

requires unique inertia. There is an extensive literature on inertias of matrices, see
for instance the recent survey paper [1]. However, little was known about the inertia

of a matrix solely on the bases of knowledge of the signs of the entries of the matrix.
In [2], Drew et al. discussed the inertia set of a special tridiagonal sign pattern, and

proved that it is inertially arbitrary for dimensions less than 8.

In this paper, we mostly restrict to nonnegative symmetric sign patterns with zero

diagonal. In Section 2, we characterize the inertia set of such sign pattern in which
all off-diagonal entries are positive. In Section 3, we consider the bound for the

numbers of nonzero entries in such sign patterns A that require unique inertia.

In order to simplify our notation, we need the following concepts. A sign pattern
A ∈ Qn is said to be sign nonsingular if every matrix B ∈ Q(A) is nonsingular. It is
well known that A is sign nonsingular if and only if det A = + or det A = −, that is,
in the standard expansion of det A into n! terms, there is at least one nonzero term,
and all nonzero terms have the same sign.

If A is a symmetric sign pattern, we defined smr(A), the symmetric minimal rank
of A, by

smr(A) = min{rank(B) | B = BT ∈ Q(A)}.

Similarly, the symmetric maximal rank of A, SMR(A), is

SMR(A) = max{rank(B) | B = BT ∈ Q(A)}.

Clearly, if A ∈ Qn is symmetric sign nonsingular, then smr(A) = SMR(A) = n.

For any matrix A of order n and nonempty subsets α and β of {1, 2, . . . , n}, we
use A[α, β] to denote the submatrix of A determined by the rows whose index is in α

and the columns whose index is in β. If α = β, then we write A[α] instead of A[α, β].
We also use In to denote the identity matrix of order n.
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2. Inertia set

In this section, we consider the inertia set of the nonnegative symmetric sign

pattern A of order n having the following form

(1) A =




0 + + . . . + +
+ 0 + . . . + +
+ + 0 . . . + +
...
...
...
. . .

...
...

+ + + . . . 0 +
+ + + . . . + 0




.

We obtain a complete characterization on the inertia set of such sign pattern A. In

order to simplify our notation, in the remainder of this paper, we use NNS to denote
the set of all sign patterns having the form (1).

Clearly, if n = 2, then i(A) = {(1, 1, 0)}. Now we may assume that n > 3.

Lemma 2.1 ([3]). Let B be an n× n real symmetric matrix. Then for any n×n

nonsingular matrix P , i(B) = i(PBP T ).

Lemma 2.2. Let A ∈ NNS be an n × n sign pattern. Then there exists a

nonsingular symmetric matrix B ∈ Q(A).
���������

. Let

B =




0 1 . . . 1
1 0 . . . 1
...
...
. . .

...

1 1 . . . 0


 .

It is clear that B = BT ∈ Q(A) and det B = (−1)n−1(n − 1) 6= 0. Thus the lemma
follows. �

Lemma 2.3. Let A ∈ NNS be an n× n sign pattern. Then

(i) for any integer 3 6 r < n and r × r nonsingular symmetric matrix D with

sgnD ∈ NNS, there exists a symmetric matrix B ∈ Q(A) having the following
block form

B =
[

D M

MT X

]

such that rank(B) = r.

(ii) srm(A) = 3 and SRM(A) = n.
���������

. (i) Consider the following two cases.
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Case 1. r = 3. Assume that

D =




0 a12 a13

a12 0 a23

a13 a23 0




where a12 > 0, a13 > 0, a23 > 0. Then

D−1 =




−a23

2a12a13

1
2a12

1
2a13

1
2a12

−a13

2a12a23

1
2a23

1
2a13

1
2a23

−a12

2a13a23




.

Firstly, we prove that there exists a 3 × (n − 3) entrywise positive matrix M such

that for each column vector x of M ,

(2) xT D−1x = 0.

Take x =
(
a23, k

2a13, (ka13 − a23)2/a12

)T
with k is a positive number. Note that

if k > a23/a13, then x is an entrywise positive vector and satisfies the condition (2).
We now take k > a23/a13 and

M = (β1, β2, . . . , βn−3)

where βi =
(
a23, (k + i− 1)2a13, [(k + i− 1)a13 − a23]2/a12

)T
for i = 1, 2, . . . , n− 3.

Clearly, the matrix M satisfies the above conditions.

Next, we let

B =
[

D M

MT MT D−1M

]
.

Since D is a nonsingular symmetric matrix and

[
I3 0

−MT D−1 In−3

] [
D M

MT MT D−1M

]
=

[
D M

0 0

]
,
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we have rank(B) = rank(D) = 3. For any 1 6 i, j 6 n − 3, using (MT D−1M)ij to

denote the (i, j) entry of MT D−1M , it is easy to verify that

(MT D−1M)ij = βT
i D−1βj

=
(

a23, (k + i− 1)2a13,
[(k + i− 1)a13 − a23]2

a12

)

×




(k + j − 1)[(k + j − 1)a13 − a23]
a12

a23 − (k + j − 1)a13

a12

k + j − 1




=
(j − i)2a13a23

a12
.

Thus B = BT ∈ Q(A).
Case 2. 3 < r < n. Let D1 = D[{r − 2, r − 1, r}] and D2 = D[{1, . . . , r − 3},

{r− 2, r− 1, r}]. Thus D1 is a nonsingular symmetric matrix of order 3. By Case 1,
there exists an (n− r + 3)× (n− r + 3) symmetric matrix

B1 =
[

D1 M1

MT
1 MT

1 D−1
1 M1

]

such that sgnB1 ∈ NNS and rank(B1) = 3. Letting

M =
[

D2D
−1
1 M1

M1

]
,

since D2 is an entrywise positive matrix, we can choose k > 0 sufficiently large,
where k is a variable in M1, such that M is also an entrywise positive matrix. In
this case, it is easily seen that the matrix

B =
[

D M

MT MT
1 D−1

1 M1

]
= BT ∈ Q(A)

and rank(B) = rank(D) = r. So result (i) holds.

Result (ii) is clear from result (i). The lemma now follows. �

Lemma 2.4. Let A ∈ NNS be an n× n sign pattern and smr(A) > 3. Then, for
any symmetric matrix B ∈ Q(A), i−(B) > 2.
���������

. Noticing that B is a nonnegative matrix, by the nonnegative matrix
theory, we have that the spectral radius %(B) of B is an eigenvalue of B. Since

tr(B) = 0 and rank(B) > 3, the lemma follows. �
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Lemma 2.5. Let B be an r × r (r > 3) nonsingular symmetric matrix with
sgnB ∈ NNS. Then there exist nonsingular symmetric matrices B1 and B2 of order

r+1 such that sgnB1 = sgnB2 ∈ NNS, i−(B1) = i−(B)+1 and i+(B2) = i+(B)+1.
���������

. Consider two cases.
Case 1. r = 3. Let

B =




0 b12 b13

b12 0 b23

b13 b23 0




where b12 > 0, b13 > 0, b23 > 0. It is easily seen that

B−1 =




−b23

2b12b13

1
2b12

1
2b13

1
2b12

−b13

2b12b23

1
2b23

1
2b13

1
2b23

−b12

2b13b23




.

Taking

B1 =
[

B x1

xT
1 0

]
and B2 =

[
B x2

xT
2 0

]
,

where x1 =
(
b23, k

2b13,
(kb13−b23)

2+1
b12

)T
and x2 =

(
b23, k

2b13,
(kb13−b23)2−1

b12

)T
, we may

choose k > 0 sufficiently large so that sgnB1 = sgnB2 ∈ NNS and

xT
1 B−1x1 =

4kb13b23 − 1
2b12b13b23

> 0,

xT
2 B−1x2 =

−4kb13b23 − 1
2b12b13b23

< 0.

Let

Pi =
[

I3 0
−xT

i B−1 1

]
, i = 1, 2.

Then Pi is nonsingular and

PiBiP
T
i =

[
B 0
0 −xT

i B−1xi

]
.

By Lemma 2.1, we have i−(B1) = i−(B) + 1 and i+(B2) = i+(B) + 1.
Case 2. r > 3. Let D = B[{r − 2, r − 1, r}]. Since D is nonsingular and sgn D ∈

NNS, by Case 1, there exist two entrywise positive column vectors x1 and x2 of

order 3 such that xT
1 D−1x1 > 0 and xT

2 D−1x2 < 0. Denote

B =
[

Z Y

Y T D

]
and Bi =




Z Y Y D−1xi

Y T D xi

xT
i D−1Y T xT

i 0


 , i = 1, 2.
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It is not difficult to verify that we may choose k > 0 sufficiently large, where k is

a variable in x1 and x2, such that the column vectors Y D−1x1 and Y D−1x2 are
entrywise positive, that is, sgn B1 = sgn B2 ∈ NNS. For i = 1, 2, taking

Pi =




Ir−3 0 0
0 I3 0
0 −xT

i D−1 1


 ,

it is easy to verify that Pi is nonsingular and

PiBiP
T
i =




Z Y 0
Y T D 0
0 0 −xT

i D−1xi


 =

[
B 0
0 −xT

i D−1xi

]
.

Thus Bi is nonsingular, i−(B1) = i−(B) + 1 and i+(B2) = i+(B) + 1. Now the
lemma follows. �

Combining all the lemmas above, we now obtain a complete characterization of

the inertia set of a sign pattern A ∈ NNS.

Theorem 2.6. Let A ∈ NNS be an n× n (n > 3) sign pattern. Then

i(A) = {(s, t, n− s− t) | s > 1, t > 2}.

From above the theorem, we can obtain easily the following corollary which is a

general result on the inertia set of a nonnegative symmetric sign pattern with zero
diagonal. We omit the proof of it.

Corollary 2.7. Let A be any n×n nonnegative symmetric sign pattern with zero

diagonal. If smr(A) > 3, then i(A) ⊆ {(s, t, n− s− t) | s > 1, t > 2}.

3. Sign patterns that require unique inertia

Let A ∈ NNS be an n× n sign pattern. Then the number of nonzero entries of A
is maximal in all n × n nonnegative symmetric sign patterns with zero diagonal.

But, from Theorem 2.6, it is easy to see that A does not require unique inertia when
n > 4. A natural question is: how many nonzero entries must there be in an n× n

nonnegative symmetric sign pattern with zero diagonal in order that it require unique
inertia? In this section, we consider the upper bound and the lower bound for it.

In order to simplify our notation, in this section, we use Sn to denote the set
of all n × n nonnegative symmetric sign patterns with zero diagonal. For A ∈ Sn,

e(A) denotes the number of nonzero entries in A.
We first give five examples.
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Example 3.1. Let A ∈ Sn have the following form

A =




0 +
+ 0 +

+
. . .

. . .
. . .

. . .
. . .

. . . 0 +
+ 0




.

Then e(A) = 2(n− 1) and A requires unique inertia.
���������

. It is easy to see that if n is odd, then det A = 0 and srm(A) =
SRM(A) = n−1, and that if n is even, then det A = (−)n/2, srm(A) = SRM(A) = n

and A is sign nonsingular. On the other hand, for any matrix B ∈ Q(A), the
characteristic polynomial of B is given by

fB(λ) = λn −E1(B)λn−1 + E2(B)λn−2 − . . . + (−1)nEn(B),

where Ek(B) is the sum of all k×k principal minors of B. Noticing that E2k−1(B) =
0, the characteristic polynomial of B becomes

fB(λ) = λn + E2(B)λn−2 + E4(B)λn−4 + . . . + E2m(B)λn−2m = λn−2mf(λ2),

for some m and some polynomial f(λ). It follows that if λ 6= 0 is an eigenvalue
of B, then so is −λ, and the algebraic multiplicities of λ and −λ are the same,

that is, i+(B) = i−(B). From the fact that rank(B) = i+(B) + i−(B), we have
i(A) = {( 1

2n, 1
2n, 0)} if n is even, and i(A) = {( 1

2 (n − 1), 1
2 (n − 1), 1)} if n is odd.

Thus A requires unique inertia. �

Example 3.2. Let n = 2k and A = A1 ⊕A2 ⊕ . . .⊕Ak , where Ai =
[

0 +
+ 0

]
for

i = 1, 2, . . . , k. Then e(A) = n and A requires unique inertia.
���������

. Clearly, e(A) = n. For any B = BT ∈ Q(A), B has the form B =
B1 ⊕ B2 ⊕ . . . ⊕ Bk, where Bi = BT

i ∈ Q(Ai) for i = 1, 2, . . . , k. It is clear that

i(Bi) = (1, 1, 0) for i = 1, 2, . . . , k. Thus i(B) = (k, k, 0) and i(A) = {(k, k, 0)}, that
is, A requires unique inertia. �

Example 3.3. Let n = 2k + 1 and A = A1 ⊕ A1 ⊕ . . . ⊕ Ak, where A1 =


0 + 0
+ 0 +
0 + 0


 and Ai =

[
0 +
+ 0

]
for i = 2, . . . , k. Then e(A) = n+1 and A requires

unique inertia.
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���������
. Clearly, e(A) = n + 1. For any B = BT ∈ Q(A), B has the form

B = B1 ⊕ B2 ⊕ . . . ⊕ Bk, where Bi = BT
i ∈ Q(Ai) for i = 1, 2, . . . , k. It is clear

that i(B1) = (1, 1, 1) and i(Bi) = (1, 1, 0) for i = 2, . . . , k. Thus i(B) = (k, k, 1) and
i(A) = {(k, k, 1)}, that is, A requires unique inertia. �

Example 3.4. Let n = 2k > 4 and A = (aij) ∈ Sn, where

aij =

{
0, i = j, or i > 2 is even and j < i− 1, or j > 2 is even and i < j − 1,

1 otherwise.

Then e(A) = 1
2n2 and A requires unique inertia.

���������
. Clearly, e(A) = 1

2n2. For any B = BT ∈ Q(A), it is not difficult to
verify that there is an n× n nonsingular matrix P such that

P T BP = B1 ⊕B2 ⊕ . . .⊕Bk

where sgnBi =
[

0 +
+ 0

]
for i = 1, 2, . . . , k. Thus i(B) = (k, k, 0) and A requires

unique inertia. �

Example 3.5. Let n = 2k + 1 > 5 and A = (aij) ∈ Sn, where

aij =

{
0 i = j, or i > 3 is odd and j < i− 1, or j > 3 is odd and i < j − 1,

1 otherwise.

Then e(A) = 1
2 (n2 + 3) and A requires unique inertia.

���������
. Clearly, e(A) = 1

2 (n2 + 3). For any B = BT ∈ Q(A), it is not difficult
to verify that there is an n× n nonsingular matrix P such that

P T BP = B1 ⊕B2 ⊕ . . .⊕Bk

where sgnB1 =




0 + 0
+ 0 +
0 + 0


 and sgnBi =

[
0 +
+ 0

]
for i = 2, . . . , k. Thus i(B) =

(k, k + 1, 0) and A requires unique inertia. �

From the above examples, we have the following two theorems, and we may omit

the proofs.

Theorem 3.6. Let A ∈ Sn have no zero row and zero column and require unique

inertia. Then e(A) > n and equality may hold. In particular, if A is irreducible,

then e(A) > 2(n− 1) and equality may hold.
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Theorem 3.7. For n > 2,

max{e(A) | A ∈ Sn requires unique inertia} >





n2

2
, n is even,

n2 + 3
2

, n is odd,

and there exists some A ∈ Sn such that A requires unique inertia and

e(A) =





n2

2
, n is even,

n2 + 3
2

, n is odd.

It is not difficult to verify that when n 6 5, Theorem 3.7 becomes Theorem 3.8,
thus the upper bound is obtained for n 6 5. For n > 6, we now do not know the
value of the upper bound for the numbers of nonzero entries, but we can prove that
each pair of off-diagonal zero entries aij = aji = 0 of A in Examples 3.4 and 3.5 is
essential (i.e. upon replacing these two zero entries by positive entries we obtain a

sign pattern A′ which doesn’t require unique inertia). We omit all proofs.

Theorem 3.8. For n = 2, 3, 4, 5,

max{e(A) | A ∈ Sn requires unique inertia} =





n2

2
, n is even,

n2 + 3
2

, n is odd.
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