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Abstract. The information contained in the measure of all shifts of two or three given
points contained in an observed compact subset of � d is studied. In particular, the con-
nection of the first order directional derivatives of the described characteristic with the
oriented and the unoriented normal measure of a set representable as a finite union of sets
with positive reach is established. For smooth convex bodies with positive curvatures, the
second and the third order directional derivatives of the characteristic is computed.
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1. Introduction

Let X ⊆ 	 d be a nonempty compact set and T ⊆ 	 d a nonempty finite set
containing the origin. Consider the functional

ψX(T ) = λd

(⋂

t∈T

(X − t)
)
,

where λd denotes the d-dimensional Lebesgue measure. We interpret X as an ob-
served body, T as a test set (probe) and ψX(T ) is the commonly used morphological
characteristic of the erosion of X by T , i.e., the measure of all shifts of T contained
in X . Note that ψX(T ) is the volume of X if T has one point and it coincides with
the set covariance (called also covariogram) if T has two points.
If T = {0, t1, . . . , tn} has n + 1 points, we shall often write ψ(n)

X (t1, . . . , tn) or
simply ψX(t1, . . . , tn) instead of ψX(T ).
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Usually random instead of deterministic sets are considered in mathematical mor-
phology. If X is a random compact set (in the sense of Matheron [6]) then the mean
value EψX(T ) is the basic characteristic of interest. If X is a stationary closed subset
of 	 d , the mean value must be replaced by the spatial intensity. In this note, the
deterministic case will be treated; nevertheless, the results may be applied also in
the random setting.
The goal of this note is to present some results concerning the information on X

which can be retrieved from the observations ψX(T ) for two- and three-point test
sets T . It was shown by Nagel [7] (and by another method in [9]) that three-point test
sets are sufficient to determine a compact set uniquely up to shifts and differences of
Lebesgue measure zero. The results presented in this note are restricted to special
classes of compact sets.
Let PR denote the family of subsets of 	 d with positive reach (this concept was

introduced by Federer [2], see also [12], [13]). For X ∈ PR, the curvature measures
Ck(X ; ·), k = 0, 1, . . . , d−1, are defined as signed Radon measures on the unit normal
bundle norX . The concept of curvature measures was extended to the family UPR of
locally finite unions of sets with positive reach such that all their finite intersections
have positive reach as well, see [13]. The second coordinate projections of curvature
measures, called spherical area measures, are denoted by

σk(X ; ·) = Ck(X ; 	 d × ·);

in particular, σd−1(X ; ·) is obtained by integrating the usual unit outer normal
to X over the boundary of X (cf. [13, Theorem 4.1]). The symmetrized version
of σd−1(X ; ·),

σ∗d−1(X ; ·) = σd−1(X ; ·) + σd−1(−X ; ·),

is called the (unoriented) normal measure of X . The normal measure is a function of
the boundary ∂X only and can be determined from the intensity of the intersections
of ∂X with lines of given directions. The determination of its oriented version,
σd−1(X ; ·), is more complicated, see [16], [10], [11], [15].
It is well known at least for convex sets X that the directional derivative at

the origin of the set covariance equals minus the volume of the projection of X
in the given direction, and the volumes of projections of a convex set determine
the normal measure of X , see e.g. [6]. We shall show in Section 3 that this is true
even for UPR-sets satisfying certain full-dimensionality condition. In analogy to this
result, we show in Section 2 that the first order directional derivatives of ψ(2)

X (·, ·)
for certain UPR sets X determine the oriented normal measure of X .
In order to understand better the information obtained in the set covariance of

convex bodies, we calculate certain second and third order derivatives of the set
covariance for smooth convex bodies with positive Gauss curvature. This yields
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a partial answer in the planar smooth case to the question of determination of a
convex body by its set covariance up to shifts and central reflection, see also Bianchi
et al. [1].

2. Three-point test sets

In this section, the function

ψX(t1, t2) = λd(X ∩ (X − t1) ∩ (X − t2))

will be investigated. First, we recall a known result (see also [7, Satz 2.1]).

Theorem ([9, Theorem 4]). The function ψX(·, ·) determines the compact set X
uniquely up to a translation and a set difference of Lebesgue measure zero.

Remarks.
1. In [9], the corresponding result was formulated for dilations instead of erosions;
nevertheless, the proof given there is based on erosions and the transfer from
dilations to erosions is enabled by the inclusion-exclusion formula.

2. It is clear that for any finite T , ψX(T ) is invariant under translations as well as
set differences of Lebesgue measure zero. Therefore, the information obtained
from three-point test sets is optimal and no additional information on X is
obtained for finite test sets of more than three points.

Now we shall investigate the directional derivatives of ψX(·, ·) for certain UPR-
sets. We say that X ∈ UPR is full-dimensional if there exists no (x, n) ∈ norX such
that (x,−n) ∈ norX , where norX is the unit normal bundle of X (see [13]).
We say that X ∈ PR compact has bounded tangential projections (cf. [14]) if for

any 0 6 k 6 d− 2,
sup

W∈G(d,k+1)

Hk(TWX) <∞,

where G(d, k+1) is the Grassmannian of (k+1)-dimensional linear subspaces of 	 d ,

TWX = {pWx : ∃n ∈W ∩ 
 d−1, (x, n) ∈ norX},

pW denotes the orthogonal projection onto W and Hk denotes the k-dimensional
Hausdorff measure. We use the standard notation SOd for the group of Euclidean
rotations in 	 d .
Let U denote the set of all compact UPR-sets with representation X = X1 ∪ . . .∪

XN such that
1. Xi1∩. . .∩Xik

has bounded tangential projections for any 1 6 i1 < . . . < ik 6 N ,
2. Hd−1(∂Xi ∩ ∂Xj) = 0 for any 1 6 i < j 6 N ,
3. X is full-dimensional.
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Theorem 1. Let 0 6= u, v ∈ 	 d be two vectors whose angle is not a ratio-
nal multiple of π. Then the directional derivatives dψ(2)

X (0, 0)(%u, %v) together with
dψ

(1)
X (0)(%u), % ∈ SOd, and ψX(0) determine σd−1(X ; ·) for a set X ∈ U uniquely.

Remark. If follows from Theorem 1 that σd−1(X ; ·) can be determined from two-
dimensional sections of X (but, of course, not from one-dimensional sections; these
determine the unoriented normal measure only).
�
�������

. Let K be the triangle with vertices 0, u, v. K satisfies the assump-
tion of [11, Theorem 3.1] and it is not difficult to see that the pair X,T satisfies
the assumptions of [11, Corollary 4.2]. In fact, using the boundedness of tangen-
tial projections of X , we may apply [14, Theorem 2] (eventually its proof) to ver-
ify the assumptions of [11, Corollary 4.2] for the pair X,L, where L is either the
two-dimensional subspace spanned by K, or any of the one-dimensional subspaces
spanned by the edges of K. It follows that X,K satisfy the assumptions of [11,
Corollary 4.2] as well. Hence, applying [11, Theorem 3.1, Corollary 4.2], we see that
the derivatives of the functions

ε 7→ λd(X ⊕ ε%K), % ∈ SOd,

at zero determine uniquely σd−1(X, ·). By using the elementary inclusion and exclu-
sion formula, one can express the volume of the dilation of X by a three-point set
by means of the volumes of erosion by subsets of this three-point set. Therefore, the
information on X assumed in the Theorem yields the derivatives of the functions

ε 7→ λd(X ⊕ ε%{0, u, v}), % ∈ SOd.

The proof is completed by applying Lemma 2 below. �

For the notion of rectifiability, we refer to Federer’s book [3].

Lemma 1. Let Y ⊆ 	 d be countably (Hd−1, d − 1)-rectifiable and Hd−1-
measurable and let S be a segment in 	 d . Then

λd({z ∈ 	 d : H0(Y ∩ (z + εS)) > 2}) = o(ε), ε→ 0.

�
�������
. Suppose without loss of generality that S is a unit segment centred at

the origin. Let L be the line containing S and L⊥ the (d − 1)-subspace orthogonal
to L. For y ∈ L⊥, set

k(y) = H0(Y ∩ (y + L)).

It is well known that the mapping k is measurable, k(y) < ∞ for λd−1-a.a. y ∈ L⊥

and ∫

L⊥
k(y)λd−1(dy) 6 Hd−1(Y ) <∞
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(the last integral is the total projection content of Y onto L⊥). Further, to a given
y ∈ L⊥ we attach

δ(y) = inf{|u− v| : u, v ∈ Y ∩ (y + L), u 6= v}.

The mapping δ is measurable as well and since k(y) <∞ implies δ(y) > 0, it fulfills
δ(y) > 0 for a.a. y ∈ L⊥. We have

λd{z : H0(Y ∩ ε(z + εS)) > 2}

=
∫

L⊥
λ1{z ∈ y + L : H0(Y ∩ (z + εS)) > 2}λd−1(dy)

6
∫

{δ(y)6ε}
εk(y)λd−1(dy).

Since {δ(y) 6 ε} ↘ {δ(y) = 0} and λd−1({δ(y) = 0}) = 0, we conclude that

lim
ε↘0

∫

{δ(y)6ε}
k(y)λd−1(dy) = 0,

which completes the proof. �

Lemma 2. Let K be a triangle in 	 d with vertices u, v, w and let X ∈ U . Then

λd((X ⊕ εK) \ (X ⊕ ε{u, v, w})) = o(ε), ε→ 0+.

�
�������
. Denote by L the linear hull of K and let z ∈ 	 d be such that z + εK

hits X but z + ε{u, v, w} does not. Then, by the full-dimensionality of X , at least
one of the following three cases occurs:
1. ∂X hits one of the sides of z + εK twice,
2. X osculates with the linear hull of one of the sides of z + εK (i.e., there exists

(x,m) ∈ norX with x ∈ z + εK and m perpendicular to a side of z + εK),
3. X ∩ (z + εK) is a relatively (in z + L) isolated component of X ∩ (L+ z).
Let Nε

1 , N
ε
2 , N

ε
3 denote, in turn, the sets of shifts z with properties 1, 2, 3. We have

λd(Nε
1 ) = o(ε) by Lemma 1 since ∂X is compact and (Hd−1, d−1)-rectifiable. Using

the boundedness of tangential projections and [14, Theorem 2], we get λd(Nε
2 ) = 0.

Finally, note that, given y ∈ L⊥,

λ2(Nε
3 ∩ (y + L)) 6 ε2λ2(K)C(y),

where C(y) is the number of isolated components of X ∩ (L + y). Clearly C(y) is
bounded from above by the zeroth absolute curvature measure of X ∩ (y + L),
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V abs
0 (X ∩ (y + L)), and, hence,

λd(Nε
3 ) =

∫

L⊥
λ2(Nε

3 ∩ (y + L))λd−2(dy)

6 ε2λ2(T )
∫

L⊥
V abs

0 (X ∩ (y + L))λd−2(dy),

the last integral being bounded again by the boundedness of tangential projections
and [14, proof of Theorem 2]. �

3. Set covariance

In this section we shall investigate the information contained in the function

ψX(u) = λd((X ∩ (X − u)), u ∈ 	 d .

First note that, besides translations and set differences of Lebesgue measure zero,
ψ is also invariant with respect to central reflection. But, even when ignoring the
translations, differences of Lebesgue measure zero and reflections, a compact set is
not determined by the set covariance, as has been shown independently by H. Rost
in [8] and Lešanovský and Rataj [4], see also [5]. E.g., the sets [0, 5]∪ [6, 9]∪ [11, 12]
and [0, 2] ∪ [4, 10] ∪ [11, 12] in 	 have the same set covariance but they are different
even after translations and reflection.
For u ∈ 
 d−1, the total projection of X in the direction u is defined by

TPX(u) =
1
2

∫

nor X

|u · n|Cd−1(X ; d(x, n)).

It is well known that the directional derivative of the covariance equals the total
projection, at least for convex sets X . We present a proof of this fact in a more
general setting, for full-dimensional UPR-sets.

Theorem 2. For X ∈ UPR bounded full-dimensional and u ∈ 
 d−1 we have

dψX(0)(u) = −TPX(u).

�
�������
. Let ∂RX denote the set of all “regular” boundary points of X , i.e., the

set of points x ∈ ∂X at which the tangent cone Tan(∂X, x) is a (d− 1)-dimensional
subspace of 	 d . Due to the full-dimensionality assumptions, there exists a unique
unit outer normal n = n(x) with (x, n) ∈ norX at any regular boundary point
x ∈ ∂RX . We have Hd−1(∂X \ ∂RX) = 0; this follows from [13, Theorem 4.1] after
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applying the area formula to the projection (x, n) 7→ x whose Jacobian vanishes if
x 6∈ ∂RX . Further, denote

∂u−X = {x ∈ ∂RX : u · n(x) > 0}

and notice that

TPX(u) =
∫

∂u−X

u · n(x)Hd−1(dx).

For x ∈ ∂X , denote by

qu(x) = inf{t > 0: x− tu 6∈ X or x+ tu ∈ X}

(the maximum t such that the segment [x− tu, x+ tu] meets X exactly in the half-
segment [x−tu, x]). Note that the half-segment [x−min{t, qu(x)}u, x] is “lost” when
X is intersected with X − tu. Thus we get using the Fubini theorem

λd(X)− λd(X ∩ (X − tu)) >
∫

∂u−X

min{t, qu−(x)}u · n(x)Hd−1(dx).

On the other hand, we have clearly

λd(X)− λd(X ∩ (X − tu)) 6
∫

∂u−X

tu · n(x)Hd−1(dx).

Note that since u·n(x) > 0 andX is fulldimensional, qu−(x) > 0 whenever x ∈ ∂u−X .
Thus t−1 min{t, qu−(x)} converges monotonely upwards to 1 as t tends to 0 from the
right for any x ∈ ∂u−X , and we get the assertion by the monotone convergence
theorem. �

It is well known that the total projections determine the normal measure uniquely
(see, e.g., 6, Theorem 4.5.1]). Thus we get the following result.

Corollary 1. The first order derivative at the origin of the set covariance deter-
mines uniquely the normal measure σ∗d−1(X ; ·) of a full-dimensional UPR-setX ⊆ 	 d .

In the remainder of this note we shall investigate higher order derivatives of the set
covariance at the origin. We shall limit ourselves to smooth convex bodies. Assume
thus that X is a full-dimensional convex body in 	 d , ∂X is C2-smooth and that the
Gauss curvature K(x) is positive at any x ∈ ∂X . Thus, there exists a unique outer
unit normal n(x) at any x ∈ ∂X and the Gauss map x 7→ n(x) is invertible.
Let u ∈ 
 d−1 be fixed. The mapping f : t 7→ ψX(tu) is differentiable at t > 0

small enough with

f ′(t) = −TPX∩(X−tu)(u) = −1
2

∫
�

d−1
|u · v|σd−1(X ∩ (X − tu); dv)
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(see Theorem 2). The last integral is equal to

∫

∂X

|u · n(x)|g(1X (x− tu) + 1X(x + tu))Hd−1(dx),

hence

f ′(t)− f ′(0) =
1
2

∫

∂X

|u · n(x)|1XC (x − tu)1XC (x+ tu)Hd−1(dx).

Denote P = {x ∈ ∂X : n(x) · u = 0}; P is a (d − 2)-dimensional C2-submanifold
of ∂X (note that u is not a tangent vector to P at any z ∈ P since, otherwise, the
Gauss curvature at x would have to be zero). Let C be the cylinder over P in the
direction u. Let p denote the mapping which assigns to y ∈ C the point x ∈ ∂X

such that y is the metric projection of x onto C. p is a bijection defined on some
neighbourhood of P in C. Let, further, q denote the Gauss map on C. Then we
have by the area and co-area formulas

f ′(t)− f ′(0)

=
1
2

∫

C

|u · n(p(y))|Jd−1p(y)1XC (p(y)− tu)1XC (p(y) + tu)Hd−1(dy)

=
1
2

∫
�

d−2(u⊥)

∫

q−1{v}
|u · n(p(y))| Jd−1p(y)

Jd−2q(y)
1XC (p(y)− tu)1XC (p(y) + tu)

×H1(dy)Hd−2(dv).

For given v ∈ 
 d−2(u⊥), let z(v) denote the point of P with n(z(v)) = v and let hv

be the function
hv(s) = (z(v)− p(z(v) + su)) · v

defined for small s (the graph of hv parametrizes the section of ∂X by the plane
through z(v) spanned by the vectors u, v). hv is a convex C2-function with h′v(0) = 0
and h′′v(0) = k〈u〉(v), where k〈u〉(v) denotes the normal curvature of X at z(v) in the
direction u. We have further

1XC (p(y)− tu)1XC (p(y) + tu) =

{
1{f(s−t)<f(s)}, s > 0,

1{f(s+t)>f(s)}, s < 0,

for y = z(v) + su. Thus we have

f ′(t)− f ′(0) =
1
2

∫
�

d−2(u⊥)

∫ ξv

ξv−t

|u · n(p(z(v) + su))| Jd−1p(z(v) + su)
Jd−2q(z(v) + su)

dsHd−2(dv),

where ξv > 0 is such that hv(ξv − t) = hv(ξv). We find easily that ξv = 1
2 t+ o(t) and

hv(ξv − t) = 1
8k〈u〉(v)t

2 + o(t2), hv(ξ+v ) = 1
8k〈u〉(v)t

2 + o(t2), t → 0. We shall need
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later that the remainder terms above are of order o(t2) uniformly in v; this can be
guaranteed by the Taylor formula if ∂X is C3-smooth.
Further, we note that the influence of the curvature of C on the Jacobian Jd−1p

can be neglected for our purposes; in fact, we have

Jd−1p(z(v) + su) = |v · n(p(z(v) + su))|−1 +O(s), s→ 0,

where the remainder O(s) is uniform in v. The Jacobian Jd−2q(z(v)+su) equals the
product of all d − 2 nonzero principal curvatures of C at z(v); we shall denote this
number by KC(v). If dimension d = 2 we set KC(v) = 1 since clearly J0q(v) = 1.
Using the fact that ∣∣∣∣

u · n(p(z(v) + su))
v · n(p(z(v) + su))

∣∣∣∣ = h′v(s),

we can write

f ′(t)− f ′(0) =
1
2

∫
�

d−2(u⊥)

∫ ξv

ξv−t

(|h′v(s)|+O(s)) ds
1

KC(v)
Hd−2(dv)

=
1
2

∫
�

d−2(u⊥)

(hv(ξv − t) + hv(ξv) + o(t2))
1

KC(v)
Hd−2(dv)

=
t2

8

∫
�

d−2(u⊥)

k〈u〉(v)
KC(v)

Hd−2(dv) + o(t2).

We conclude the following

Theorem 3. Let X be a C3-smooth convex body in 	 d with positive Gauss
curvature and let u ∈ 
 d−1. Then d2ψX (0)(u, u) = 0 and

d3ψX(0)(u, u, u) =
1
4

∫
�

d−2(u⊥)

k〈u〉(v)
KC(v)

Hd−2(dv).

Remarks.
1. In 	 3 , KC(v) is equal to the normal curvature of the cylinder C at z(v) in
the direction perpendicular to u. If, for example, X is the ball in 	 3 of ra-
dius R, then clearly KC(v) = k〈u〉(v) = R−1 for any unit vectors u ⊥ v, thus
d3ψX(0)(u, u, u) = 1

2π by Theorem 3, which agrees with the directly obtained
formula

ψX(tu) = π
(4

3
R3 −R2t+

1
12
t3

)
.

2. In 	 2 , the assumption of C2-smoothness of X is sufficient since 
 0(u⊥) is finite
and no uniform property is needed. In this case, we get the expression

d3ψX(0)(u, u, u) =
1
4
(k(u⊥+) + k(u⊥−)),

213



where k(u⊥+), k(u⊥−) are the curvatures of ∂X at the two boundary points
with normal perpendicular to u. The first directional derivatives of ψX at 0
determine the normal measure of X which has density k(u⊥+)−1 + k(u⊥−)−1,
u ∈ 
 1. It follows that both the first and the third order directional derivatives
of a C2-smooth planar convex body with positive curvature determine the (un-
ordered) pairs of curvatures k(u⊥+), k(u⊥−) at any u ∈ 
 d−1 uniquely, which was
shown independently in [1].
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