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Abstract. We characterize those Tychonoff quasi-uniform spaces (X, U ) for which the
Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family K0(X) of
nonempty compact subsets of X. We deduce, among other results, that the Hausdorff-
Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space X is
uniformly locally compact on K0(X) if and only if X is paracompact and locally com-
pact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space
and show that a Hausdorff topological space is σ-compact if and only if its (lower) semi-
continuous quasi-uniformity is co-uniformly locally compact. A characterization of those
Hausdorff quasi-uniform spaces (X, U ) for which the Hausdorff-Bourbaki quasi-uniformity
is co-uniformly locally compact on K0(X) is obtained.

Keywords: Hausdorff-Bourbaki quasi-uniformity, hyperspace, locally compact, cofinally
complete, uniformly locally compact, co-uniformly locally compact
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1. Introduction and preliminaries

Throughout this paper the letters # , $ and % will denote the set of real numbers,
the set of integer numbers and the set of positive integer numbers, respectively.
Our basic reference for quasi-uniform and quasi-metric spaces is [9], for general

topology it is [6], and for hyperspaces it is [1].
Let us recall that a quasi-uniformity on a set X is a filter U on X ×X such that

(i) for each U ∈ U , {(x, x) : x ∈ X} ⊆ U ;
(ii) for each U ∈ U there is V ∈ U such that V 2 ⊆ U .

The second and third listed authors acknowledge the support of the Spanish Ministry of
Science and Technology under grant BFM2000-1111.
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A quasi-uniform space is a pair (X, U ) such that X is a (nonempty) set and U is

a quasi-uniformity on X .
Each quasi-uniformity U on X generates a topology T (U ) = {G ⊆ X :

for each x ∈ G there is U ∈ U such that U(x) ⊆ G}, where, as usual, U(x) =
{y ∈ X : (x, y) ∈ U}.
If U is a quasi-uniformity on X then the filter U −1 = {U−1 : U ∈ U } is also a

quasi-uniformity on X , called the conjugate of U (as usual, U−1 = {(x, y) : (y, x) ∈
U}). Furthermore, the filter U s : = U ∨U −1 is the coarsest uniformity on X finer

than U .
Given a topological space X we denote by P0(X) (resp. C L 0(X), K0(X)), the

family of all nonempty subsets (resp. nonempty closed subsets, nonempty compact
subsets) of X . If (X, U ) is a quasi-uniform space, C L 0(X) (resp. K0(X)) denotes
the family of all nonempty T (U )-closed subsets (resp. nonempty T (U )-compact
subsets) of X .

The Hausdorff-Bourbaki quasi-uniformity of a quasi-uniform space (X, U ) is de-
fined as the quasi-uniformity U∗ onP0(X) which has as a base the family of sets of
the form

UH = {(A, B) ∈ P0(X)×P0(X) : B ⊆ U(A) and A ⊆ U−1(B)},

whenever U ∈ U ([2], [14]).

The restriction of U∗ to C L 0(X) and to K0(X) is also denoted by U∗ if no
confusion arises.

A filter F on a (quasi-)uniform space (X, U ) is weakly Cauchy ([5], [8], [9])
provided that for each U ∈ U ,

⋂
F∈F

U−1(F ) 6= ∅. A (quasi-)uniformity U on a

set X is called cofinally complete ([7], [13]) if every weakly Cauchy filter on (X, U )
has a cluster point. In this case, we say that (X, U ) is a cofinally complete quasi-
uniform space.
It is well known that a Tychonoff space is paracompact if and only if its fine

uniformity is cofinally complete ([5], [7], [8]).
In our context a topological space X will be called locally compact if each point

of X has a neighborhood whose closure is compact.
A (quasi-)uniformity U on a set X is said to be uniformly locally compact ([8],

[9]) if there is U ∈ U such that for each x ∈ X , U(x) is compact. In this case, we
say that (X, U ) is a uniformly locally compact (quasi-)uniform space.
It is well known ([7], [8], [9]) that a Tychonoff (quasi-)uniform space is uniformly

locally compact if and only if it is locally compact and cofinally complete, and, hence,

the fine uniformity of a Tychonoff space X is uniformly locally compact if and only
if X is paracompact and locally compact.
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Several authors have discussed the preservation of local compactness and uni-

form local compactness by the Vietoris topology and the Hausdorff-Bourbaki
(quasi-)uniformity, respectively. Thus, Michael proved in [15] (see also [4]) that
a Tychonoff space X is locally compact if and only if the Vietoris topology of X

is locally compact on K0(X). In [3] Burdick characterized uniform local compact-
ness of (C L 0(X), U∗) in the case that U is a uniformity on X and showed that

the Hausdorff-Bourbaki uniformity of the Euclidean uniformity on # is not locally
compact on C L 0(X). However, its restriction to K0( # ) is uniformly locally com-
pact because it was proved in [13] that a uniform space (X, U ) is uniformly locally
compact if and only if (K0(X), U∗) is uniformly locally compact. In [13], p. 140,
a uniformly locally compact quasi-uniform (actually, quasi-metric) space (X, U ) is
constructed such that (K0(X), U∗) is not cofinally complete and, thus, not uniformly
locally compact.
These results and examples suggest the problem of characterizing those (Ty-

chonoff) quasi-uniform spaces (X, U ) for which the Hausdorff-Bourbaki quasi-
uniformity is uniformly locally compact on K0(X). Here we solve this problem
and deduce conditions under which the Hausdorff-Bourbaki quasi-uniformity of the
locally finite quasi-uniformity and of the (lower) semicontinuous quasi-uniformity,

respectively, is uniformly locally compact on K0(X). In particular, we prove that
the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of

a Tychonoff space X is uniformly locally compact on K0(X) if and only if X is
paracompact and locally compact. The quasi-metric case is also discussed. Finally,

we introduce the notion of a co-uniformly locally compact quasi-uniform space
and show that a Hausdorff space is σ-compact if and only if its semicontinuous

quasi-uniformity is co-uniformly locally compact. A characterization of Hausdorff
quasi-uniform spaces (X, U ) for which the Hausdorff-Bourbaki quasi-uniformity is
co-uniformly locally compact on K0(X) is obtained.

2. Uniform local compactness of (K0(X), U∗)

The following lemmas will be useful in establishing our main result.

Lemma 1 ([8], [9]). A quasi-uniform space is uniformly locally compact if and
only if it is locally compact and cofinally complete.

Let us recall that a quasi-uniformity U on a set X is precompact ([9]) provided

that for each U ∈ U there is a finite subset A of X such that U(A) = X . U is said
to be totally bounded ([9]) if U s is a totally bounded uniformity on X . Of course,

U is totally bounded if and only if U −1 is so. It is well known that every totally
bounded quasi-uniformity is precompact but the converse does not hold in general.
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Lemma 2. Let (X, U ) be a compact quasi-uniform space such that for each
K ∈ K0(X), U −1

∣∣K is precompact. Then U −1 is hereditarily precompact.
&('*)+)�,

. Let A be a nonempty subset of X . Since (X, U ) is compact, the
closure A of A in (X, T (U )) belongs to K0(X). So U −1

∣∣A is precompact. It
immediately follows that U −1

∣∣A is precompact. �

Following [19], a filter F on a quasi-uniform space (X, U ) is left K-Cauchy pro-

vided that for each U ∈ U there is FU ∈ F such that U(x) ∈ F for all x ∈ FU .
(X, U ) is said to be left K-complete if every left K-Cauchy filter is convergent ([19]).
Since every left K-Cauchy filter converges to all of its cluster points ([19]) and

each left K-Cauchy filter is weakly Cauchy, every cofinally complete quasi-uniform

space is left K-complete.

Lemma 3 ([11]). Let (X, U ) be a T1 quasi-uniform space and let A be a pre-

compact subspace of (X, U ). If (K0(X), U∗) is left K-complete, hence U −1
∣∣A is

precompact.

Lemma 4. Let (X, U ) be a T1 quasi-uniform space. Then (K0(X), U∗) is com-
pact if and only if (X, U ) is compact and U −1 is hereditarily precompact.

&('*)+)�,
. It is proved in [12] that if (X, U ) is a T1 quasi-uniform space, then

(P0(X), U∗) is compact if and only if (X, U ) is compact and U −1 is hereditarily
precompact, and it is proved in [11] that (K0(X), U∗) is compact if and only if
(P0(X), U∗) is compact. Combining these results we obtain the conclusion. �

Theorem 1. Let (X, U ) be a Tychonoff quasi-uniform space. Then (K0(X), U∗)
is uniformly locally compact if and only if (X, U ) is uniformly locally compact and
for each K ∈ K0(X), U −1

∣∣K is precompact.
&('*)+)�,

. Suppose that (K0(X), U∗) is uniformly locally compact. By [13],
Proposition 3.1 and Remark 3.2, (X, U ) is uniformly locally compact. Now let
K ∈ K0(X). Then K is a precompact subspace of (X, U ). Since, by Lemma 1,
(K0(X), U∗) is cofinally complete and every cofinally complete quasi-uniform space
is left K-complete, it follows from Lemma 3 that U −1

∣∣K is precompact.
Conversely, by assumption there is U ∈ U such that for each x ∈ X , U(x) is

compact. Let V ∈ U be such that V 3 ⊆ U . We shall prove that for eachK ∈ K0(X),
VH(K) is compact in (K0(X), U∗).
Let K ∈ K0(X). We first show that V (K) is a compact subset of (X, U ). Indeed,

let (zλ)λ∈Λ be a net in V (K). Then there is a finite subset {x1, . . . , xn} of K such
that K ⊆

n⋃
i=1

V (xi). On the other hand, for each λ ∈ Λ there is aλ ∈ K with
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zλ ∈ V 2(aλ). (In fact, fix λ ∈ Λ. Since zλ ∈ V (K), for each W ∈ U there exists

bW ∈ K such that W (zλ)∩V (bW ) 6= ∅; by compactness of K, the net (bW )W∈U has
a cluster point aλ ∈ K; so zλ ∈ V 2(aλ).)
Since aλ ∈ V (xi) for some i ∈ {1, . . . , n}, we deduce that V 2(aλ) ⊆ V 3(xi) and

thus {zλ : λ ∈ Λ} ⊆
n⋃

i=1

V 3(xi). Hence, the net (zλ)λ∈Λ is contained in the compact

set
n⋃

i=1

U(xi), so it has a cluster point which obviously belongs to V (K). We conclude

that V (K) is a compact subset of (X, U ).
By our hypothesis, U −1

∣∣K ′ is precompact for each K ′ ∈ K0(X) and, in partic-
ular, for each K ′ ∈ K0(V (K)). Therefore, by Lemma 2, U −1

∣∣V (K) is hereditarily
precompact and by Lemma 4, (K0(V (K)), U∗) is compact.
Finally, let (Kλ)λ∈Λ be a net in VH(K). Then Kλ ⊆ V (K) and thus Kλ ∈

K0(V (K)) for all λ ∈ Λ. Hence, there is C ∈ K0(V (K)) which is a cluster point
of (Kλ)λ∈Λ with respect to T (U∗). Obviously C ∈ K0(X) and C ∈ VH(K). We
have shown that VH(K) is compact in (K0(X), U∗) for all K ∈ K0(X). Hence
(K0(X), U∗) is uniformly locally compact. �

Corollary 1 ([13]). Let (X, U ) be a Tychonoff uniform space. Then (K0(X), U∗)
is uniformly locally compact if and only if (X, U ) is uniformly locally compact.

Next we apply Theorem 1 to study uniform local compactness on K0(X) of
the Hausdorff-Bourbaki quasi-uniformity corresponding to some canonical quasi-
uniformities of a Tychonoff space X .

Following [9] we denote by P , L F , PF and S C the Pervin quasi-uniformity,

the locally finite quasi-uniformity, the point finite quasi-uniformity and the (lower)
semicontinuous quasi-uniformity, respectively, of a (topological) space X .

Let us recall that a cover G of a topological space X is said to be compact finite
if each compact subset of X meets only finitely many members of G .

LetA be the collection of all compact finite open covers G of a topological spaceX .
For each G ∈ A let UG =

⋃
x∈X

({x} × ⋂{G ∈ G : x ∈ G}). Then {UG : G ∈ A } is
a subbase for a transitive quasi-uniformity C F for X , called the compact finite
quasi-uniformity of X .

It is clear that P ⊆ L F ⊆ C F ⊆ PF .

On the other hand, observe that if X is a locally compact space then L F = C F .

Lemma 5. Let X be a space. Then C F
∣∣K is totally bounded for allK ∈ K0(X).

&('*)+)�,
. LetA be the collection of all finite open covers G ofX . For each G ∈ A

let UG =
⋃

x∈X

({x} ×⋂{G ∈ G : x ∈ G}). It is well known ([9]) that {UG : G ∈ A }
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is a subbase for the Pervin quasi-uniformity P . So we immediately deduce that for

eachK ∈ K0(X), C F
∣∣K = P

∣∣K. Then the result follows from the well-known facts
that P is totally bounded and that total boundedness is a hereditary property. �

Proposition 1. Let X be a Tychonoff space. Then (K0(X), C F ∗) is uniformly
locally compact if and only if (X, C F ) is uniformly locally compact.

&('*)+)�,
. It is an immediate consequence of Theorem 1 and Lemma 5. �

Proposition 2. Let X be a space. Then PF = C F if and only if PF
−1

∣∣K is
precompact for all K ∈ K0(X).

&('*)+)�,
. Suppose that PF

−1
∣∣K is precompact for all K ∈ K0(X). Let K ∈

K0(X), G a point finite open cover of X and U ∈ PF be such that U(x) =
⋂{G ∈

G : x ∈ G} for all x ∈ X . Then there exists a finite subset F of K such that

K ⊆ U−1(F ). Let G0 ∈ G be such that G0 ∩ K 6= ∅, then there exists x ∈ F such
that G0 ∩ U−1(x) 6= ∅. Let y ∈ G0 ∩ U−1(x). Then x ∈ U(y) =

⋂{G ∈ G : y ∈ G},
so x ∈ G0. It follows that F ∩ G0 6= ∅. Since G is point finite and F is finite, G is
compact finite. We conclude that PF = C F .

The converse follows from Lemma 5. �

Corollary 2. Let X be a Tychonoff space such that PF 6= C F . Then (K0(X),
PF ∗) is not uniformly locally compact.

Denote by FN the fine uniformity of a Tychonoff space X . It then follows from

Corollary 1 and results cited in Section 1 that (K0(X), FN ∗) is uniformly locally
compact if and only if X is paracompact and locally compact.

Here, we obtain the following result.

Proposition 3. Let X be a Tychonoff space. Then (K0(X), L F ∗) is uniformly
locally compact if and only if X is paracompact and locally compact.

&('*)+)�,
. Suppose that (K0(X), L F ∗) is uniformly locally compact. By Theo-

rem 1, (X, L F ) is uniformly locally compact. Therefore X is locally compact and

L F is cofinally complete by Lemma 1. Hence X is paracompact by the third corol-
lary of Theorem 2.2 in [8] that states that L F is cofinally complete if and only if

X is paracompact.
Conversely, if X is a paracompact locally compact space, then L F is cofinally

complete, so by Lemma 1, L F is a uniformly locally compact quasi-uniformity.
Furthermore, since L F = C F , it follows from Lemma 5 that for each K ∈ K0(X),
L F

−1
∣∣K is precompact. Therefore (K0(X), L F ∗) is uniformly locally compact by

Theorem 1. �
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Remark 1. a) Note that the proof of Proposition 3 shows that if X is a (Ty-

chonoff) paracompact locally compact space, then (K0(X), L F ∗) is uniformly lo-
cally compact and L F = C F .

b) We also have (compare Proposition 1) that for a Tychonoff space X , (K0(X),
L F ∗) is uniformly locally compact if and only if (X, L F ) is uniformly locally
compact.

c) Since a space is metacompact if and only if PF is cofinally complete ([8]), the

existence of metacompact locally compact spaces that are not paracompact shows
that uniform local compactness of (X, PF ) does not imply uniform local compact-
ness of (K0(X), PF ∗) in general.

Lemma 6. Let X be a locally compact Tychonoff space, and suppose that X is

not discrete. Then there exists a compact subspace K of X such that S C
−1

∣∣K is
not precompact.

&('*)+)�,
. Let x be a non-isolated point ofX and letK be a compact neighborhood

of x. Then there exists a sequence (Gn)n∈ - of open neighborhoods of x such that
Gn ⊆ K and Gn+1 ⊆ Gn with Gn 6= Gn+1 for each n ∈ % . Let G =

⋂
n∈ - Gn =

⋂
n∈ - Gn, which is clearly a nonempty compact set, and let A−n = Gn\G and An = X

for each n ∈ % . It is clear that An is open and An ⊆ An+1 whenever n ∈ $ ,⋃
n∈ . An = X and

⋂
n∈ . An = ∅, and hence A = {An : n ∈ $ } is an open spectrum.

Let U ∈ S C be such that U(x) =
⋂{A ∈ A : x ∈ A} for all x ∈ X (see [9],

Theorem 2.12). It is easy to check that, for any finite subset F ofX , U−1(F ) = X\An

for some n ∈ $ , and hence S C
−1

∣∣K is not precompact, since An ∩K 6= ∅ for each
n ∈ $ . �

Lemma 7 ([8], [9]). A Tychonoff space is Lindelöf if and only if S C is cofinally

complete.

Proposition 4. Let X be a Tychonoff space. Then (K0(X), S C ∗) is uniformly
locally compact if and only if X is discrete and countable.

&('*)+)�,
. Suppose that X is discrete and countable. By Lemmas 1 and 7,

(X, S C ) is uniformly locally compact. Clearly S C
−1

∣∣K is precompact for all K ∈
K0(X). Then (K0(X), S C ∗) is uniformly locally compact by Theorem 1.
Conversely, it follows from Theorem 1 that (X, S C ) is uniformly locally compact

andS C
−1

∣∣K is precompact for allK ∈ K0(X). ThereforeX is discrete and Lindelöf
by Lemmas 6 and 7, so it is discrete and countable. �
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Example 1. From Propositions 3 and 4 it follows that (K0( # ), L F ∗) is uni-
formly locally compact while (K0( # ), S C ∗) is not.

Example 2. The result that (K0( # ), L F ∗) is uniformly locally compact can be
extended to any Tychonoff topological groupX of pointwise countable type whose left
uniformity is cofinally complete. In fact, it was proved in [20] that such a topological

group is locally compact and since every Tychonoff topological group of pointwise
countable type is paracompact, it follows from Proposition 3 that (K0(X), L F ∗) is
uniformly locally compact.

By TV we shall denote the Vietoris topology of a topological space X .

Remark 2. It is proved in [18] that for a quasi-uniform space (X, U ), one has
TV = T (U∗) on K0(X) if and only if U −1

∣∣K is precompact for all K ∈ K0(X).

Hence, by Theorem 1 and Proposition 3, the Hausdorff-Bourbaki quasi-uniformity

on K0(X) of the locally finite quasi-uniformity of any (Tychonoff) paracompact
locally compact space X is compatible with the Vietoris topology of X .

Let (X, d) be a bounded quasi-pseudo-metric space. Then the Hausdorff-Bourbaki
quasi-pseudo-metric d∗ on P0(X) is defined by

d∗(A, B) = max
{

sup
b∈B

d(A, b), sup
a∈A

d(a, B)
}

whenever A, B ∈ P0(X) ([2], [14]).
The quasi-pseudo-metric d∗ generates on P0(X) the Hausdorff-Bourbaki quasi-

uniformity of the quasi-uniformity Ud, where Ud is the quasi-uniformity on X gen-

erated by d (see [9], page 3), i.e. Ud∗ = (Ud)∗.
Let us recall ([16]) that a sequence (xn)n∈ - in a quasi-pseudo-metric space (X, d)

is right K-Cauchy provided that for each ε > 0 there is nε such that d(xm, xn) < ε

whenever m > n > nε.

A quasi-metric space (X, d) is said to be uniformly locally compact if (X, Ud) is a
uniformly locally compact quasi-uniform space.

Thus Theorem 1 can be restated for quasi-metric spaces, as follows.

Theorem 2. Let (X, d) be a Tychonoff quasi-metric space. Then (K0(X), d∗) is
uniformly locally compact if and only if (X, d) is uniformly locally compact and each
convergent sequence in X has a right K-Cauchy subsequence.

&('*)+)�,
. Let (X, d) be a Tychonoff quasi-metric space such that (K0(X), d∗) is

uniformly locally compact. By Theorem 1, (X, d) is uniformly locally compact and for
each K ∈ K0(X), (Ud)−1

∣∣K is precompact. Let (xn)n∈ - be a sequence in X which
is T (Ud)-convergent to a point x ∈ X . Let Y = {x}∪{xn : n ∈ % }. Then (Y, Ud

∣∣Y )
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is a compact quasi-uniform space and for each K ∈ K0(Y ), (Ud)−1
∣∣K is precompact

because such a K also belongs to K0(X). Thus (Ud)−1
∣∣Y is hereditarily precompact

by Lemma 2. Hence, the sequence (xn)n∈ - has a right K-Cauchy subsequence
by [10], Theorem 3.

Conversely, suppose that there is K ∈ K0(X) such that (Ud)−1
∣∣K is not pre-

compact. Then there exist a sequence (xn)n∈ - in K and a U ∈ Ud such that

xn+1 /∈
n⋃

i=1

U−1(xi) for all n ∈ % . Since the sequence (xn)n∈ - has a cluster point
(in K), it follows from our hypothesis that (xn)n∈ - has a right K-Cauchy subse-

quence, which contradicts that xn+1 /∈
n⋃

i=1

U−1(xi) for all n ∈ % . We conclude that
for each K ∈ K0(X), (Ud)−1

∣∣K is precompact. Hence (K0(X), d∗) is uniformly
locally compact by Theorem 1. �

Remark 3. Let (X, U ) be a Tychonoff uniform space. Since (K0(X), U∗) is
(uniformly) locally compact if and only if (X, U ) is (uniformly) locally compact ([4],
[15] and Corollary 1 above), it seems natural to conjecture, in the light of Lemma 1,
that cofinal completeness is also preserved by the Hausdorff-Bourbaki uniformity

on K0(X), and thus, Corollary 1 follows in an easy and elegant way, as a factor-
ization. Unfortunately, this is not the case, not even for metric spaces as is shown

in [13], Remark 3.6. Furthermore, for a metric space (X, d), cofinal completeness of
(K0(X), d∗) is equivalent to its uniform local compactness and thus to uniform local
compactness of (X, d) ([13], Proposition 3.4 and Corollary 3.5). In this direction, it
seems interesting to note that if X is a metrizable topological group which admits a

compatible cofinally complete metric d, then X is locally compact ([17]) and, hence,
(K0(X), d∗) is uniformly locally compact.

3. Co-uniform local compactness of (K0(X), U∗)

In [21] the third author introduced and studied the notion of a D-co-Lebesgue

quasi-uniform space. In particular, it is proved that the fine transitive quasi-
uniformity of a space X is D-co-Lebesgue if and only if X is metacompact, and that

a quasi-uniform space is D-co-Lebesgue if and only if it is cofinally co-complete,
where a quasi-uniform space (X, U ) is called cofinally co-complete if every weakly
Cauchy filter on (X, U −1) has a cluster point in (X, T (U )).
In this context it seems natural to propose an appropriate notion of “co-uniform

local compactness”. Thus, we say that a quasi-uniformity U on a set X is co-
uniformly locally compact if there exists U ∈ U such that for each x ∈ X , U−1(x)
is compact. In this case, the quasi-uniform space (X, U ) is said to be co-uniformly
locally compact. (Here, closure means closure in (X, T (U )).)
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In Theorem 3 below we shall show that the characterization of uniform local

compactness of (K0(X), U∗) obtained in Theorem 1 admits an analogous result for
co-uniformly locally compact Hausdorff quasi-uniform spaces.

Similarly to the proofs of Proposition 5.32 and Theorem 5.33 of [9] we can show

the following result.

Proposition 5. Let (X, U ) be a quasi-uniform space. Then
1. (X, U ) is cofinally co-complete if and only if every directed open cover of (X, U )
is a quasi-uniform cover in (X, U −1).

2. If (X, U ) is locally compact and cofinally co-complete, then (X, U ) is co-
uniformly locally compact.

3. If (X, U ) is co-uniformly locally compact, then (X, U ) is cofinally co-complete.

Our next proposition shows that a co-uniformly locally compact quasi-uniform

space need not be locally compact. We shall use the following observation.

Remark 4. It is well known ([9], Corollary 2.15) that if X is a space, then for
each U ∈ S C there is a countable subset D of X such that U(D) = X . However, it

can be easily proved that for each U ∈ S C there is a countable subset D of X such
that (U ∩ U−1)(D) = X . This fact will be used in the proof of Proposition 6 below.

Proposition 6. A Hausdorff space is σ-compact if and only ifS C is co-uniformly

locally compact.

&('*)+)�,
. Suppose that X is a Hausdorff σ-compact space. Then there is an

increasing sequence (Kn)n∈ - of compact subsets of X such that X =
∞⋃

n=1
Kn. Define

A−n = X \Kn and An = X for each n ∈ % . Thus {An : n ∈ $ } is an open spectrum.
So U =

⋃
n∈ . (An \ An−1) × An is an element of S C (see [9], Theorem 2.12). Now

let x ∈ X . There is n ∈ % such that x ∈ A−n \ A−(n+1). Therefore U−1(x) =
X \A−(n+1) = Kn+1. We conclude that S C is co-uniformly locally compact.

Conversely, let X be a (not necessarily Hausdorff) space such that S C is co-
uniformly locally compact. Let U ∈ S C such that U−1(x) is compact for all x ∈ X .

By Remark 4, there is a countable subset D of X such that (U ∩ U−1)(D) = X .
Hence X =

⋃
x∈D

U−1(x) =
⋃

x∈D

U−1(x). Therefore X is σ-compact. �

However, we obtain the following result.
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Proposition 7. Let X be a space such that L F is co-uniformly locally compact.

Then X is locally compact.

&('*)+)�,
. Let G be a locally finite open cover of X such that U−1(x) is compact

for all x ∈ X , where U =
⋃

x∈X

{x} ×⋂{G ∈ G : x ∈ G}. Let x ∈ X and let A be an

open neighborhood of x such that A ⊆ U(x) and A meets only a finite number of
elements of G , namely G1, . . . , Gn.

For each finite subset J of {1, . . . , n} such that A ∩
( ⋂

j∈J

Gj

)
6= ∅, let xJ ∈

A ∩
( ⋂

j∈J

Gj

)
. We show that A ⊆ ⋃

J

U−1(xJ ). Indeed, let y ∈ A and Jy = {j ∈

{1, . . . , n} : y ∈ Gj}. Then xJy ∈
⋂

j∈Jy

Gj , so y ∈ U−1(xJ ). Hence A ⊆ ⋃
J

U−1(xJ ),

and thus A is a compact neighborhood of x. �

Let us recall ([9]) that a quasi-uniformity U on a set X is said to be point sym-

metric if T (U ) ⊆ T (U −1).

Lemma 8. Let (X, U ) be a cofinally co-complete T1 quasi-uniform space. Then

U is point symmetric.

&('*)+)�,
. Let F be a filter on X which is T (U −1)-convergent to a point x ∈ X .

Then F is a weakly Cauchy filter on (X, U −1) and thus it has a T (U )-cluster point
y ∈ X . Since (X, U ) is T1, it follows that x = y, so F is T (U )-convergent to x.

We conclude that U is point symmetric. �

Lemma 9. Let (X, U ) be a quasi-uniform space such that (K0(X), U∗) is point
symmetric. Then U −1

∣∣K is precompact for each K ∈ K0(X).
&('*)+)�,

. Let K ∈ K0(X) and U ∈ U . Then, there exists V ∈ U such that
V −1

H (K) ⊆ UH(K). Since K is compact there exists a finite subset K ′ of K such

that K ⊆ V (K ′), so K ∈ VH (K ′) and hence K ′ ∈ V −1
H (K) ⊆ UH(K). Thus

K ⊆ U−1(K ′). We conclude that U −1
∣∣K is precompact. �

Theorem 3. Let (X, U ) be a Hausdorff quasi-uniform space. Then (K0(X), U∗)
is co-uniformly locally compact if and only if (X, U ) is co-uniformly locally compact
and U −1

∣∣K is precompact for each K ∈ K0(X).
&('*)+)�,

. Suppose that (K0(X), U∗) is co-uniformly locally compact. By Propo-
sition 5, (K0(X), U∗) is cofinally co-complete. Furthermore, it is a Hausdorff quasi-
uniform space because Hausdorffness is preserved by the Vietoris topology TV of
(X, T (U )) on K0(X), and TV ⊆ T (U ∗) on K0(X) (see [18]). Therefore U∗ is
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point symmetric on K0(X) by Lemma 8. It follows from Lemma 9 that U −1
∣∣K is

precompact for each K ∈ K0(X).
Let us prove that (X, U ) is co-uniformly locally compact. Let U ∈ U be such

that U−1
H (K) is compact for each K ∈ K0(X). Then U−1(x) is compact for each

x ∈ X . Indeed, given x ∈ X let (xλ)λ∈Λ be a net in U−1(x). It easily follows
that {xλ} ∈ U−1

H ({x}) for each λ ∈ Λ and since U−1
H ({x}) is compact, there exists

C ∈ U−1
H ({x}) which is a cluster point of ({xλ})λ∈Λ. Therefore y is a cluster point of

(xλ)λ∈Λ for each y ∈ C. We have shown that U−1(x) is compact, and hence (X, U )
is co-uniformly locally compact.

Conversely, suppose that (X, U ) is co-uniformly locally compact and U −1
∣∣K is

precompact for each K ∈ K0(X). Let U ∈ U be such that U−1(x) is compact for
each x ∈ X and let V ∈ U with V 3 ⊆ U .

Let K ∈ K0(X). We shall prove that V −1
H (K) is compact. Let (Kλ)λ∈Λ be a net

in V −1
H (K). Then Kλ ⊆ V −1(K) for all λ ∈ Λ, and thus Kλ ∈ K0(V −1(K)).
Next we show that (K0(V −1(K)), U∗) is compact. Since U −1

∣∣K is precompact,
there exists a finite subset {x1, . . . , xn} of K such that K ⊆

n⋃
i=1

V −1(xi). Hence

V −1(K) ⊆
n⋃

i=1

U−1(xi). Therefore V −1(K) is compact. Since, by our hypothesis,

U −1
∣∣K ′ is precompact whenever K ′ ∈ K0(V −1(K)), it follows from Lemmas 2 and

4 that (K0(V −1(K)), U∗) is compact.
Consequently, the net (Kλ)λ∈Λ has a cluster point C in K0(V −1(K)), and hence

V −1
H (K) is compact. We conclude that (K0(X), U∗) is co-uniformly locally compact.

�

The following result should be compared with Propositions 1 and 3 and Re-

mark 1b).

Corollary 3. Let X be a Hausdorff space. Then

a) (K0(X), C F ∗) is co-uniformly locally compact if and only if (X, C F ) is co-
uniformly locally compact.

b) (K0(X), L F ∗) is co-uniformly locally compact if and only if (X, L F ) is co-
uniformly locally compact.

&('*)+)�,
. a) Apply Theorem 3 and Lemma 5.

b) If (K0(X), L F ∗) is co-uniformly locally compact, then (X, L F ) is co-
uniformly locally compact by Theorem 3. Conversely, if (X, L F ) is co-uniformly
locally compact, then X is a locally compact space by Proposition 7, so C F = L F .
Hence (K0(X), L F ∗) is co-uniformly locally compact by part a). �
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Related to the proof of the “only if” part in Theorem 3 above, we give an example

of a T1 quasi-uniform (actually, quasi-metric) space (X, U ) such that (K0(X), U∗)
is not T1.

Example 3. Let X = {1/n : n ∈ % } and let d be the quasi-metric on X given by
d(1/n, 1/m) = 1/m if n 6= m, and d(1/n, 1/n) = 0, whenever n, m ∈ % . Clearly the
topology generated by d is the co-finite topology on X .

Let Y = {1/2n : n ∈ % }. Then X, Y ∈ K0(X) and an easy computation shows
that d∗(X, Y ) = 0. Hence the Hausdorff-Bourbaki quasi-pseudo-metric d∗ is not a

quasi-metric on K0(X).

Lemma 10. Let X be a space and K ∈ K0(X). Then S C
−1

∣∣K is precompact if
and only if every lower semicontinuous real-valued function on X is bounded on K.

&('*)+)�,
. Suppose that S C

−1
∣∣K is precompact and let f be a lower semicontinu-

ous real-valued function on X . Thus U ∈ S C where U = {(x, y) : f(x)−f(y) < 1}.
Let K ′ be a finite subset of K such that K ⊆ U−1(K ′). Put M = max{f(z) : z ∈
K ′}. Then f(x) 6 1 + M for all x ∈ K. Since f is also lower semicontinuous on K,

it is lower bounded on K ([9], Proposition 3.17). Hence f is bounded on K.

Conversely, let f be a lower semicontinuous real-valued function f on X and let

ε > 0. Put U = {(x, y) : f(x)−f(y) < ε}. By assumption, f(K) is a bounded subset
of # , so there is a finite subset K ′ of K such that f(K) ⊆ ⋃

z∈K′
]f(z)− ε, f(z) + ε[.

Hence K ⊆ U−1(K ′). Consequently, S C
−1

∣∣K is precompact. �

Proposition 8. LetX be a Hausdorff space. Then (K0(X), S C ∗) is co-uniformly
locally compact if and only if X is a σ-compact space such that every lower semi-

continuous real-valued function on X is bounded on each compact subset of X .
&('*)+)�,

. Apply Proposition 6, Theorem 3 and Lemma 10. �
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