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Abstract. The idempotent modification of a group is always a subdirectly irreducible
algebra.
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The idempotent modification of an algebra A is the algebra A′ obtained from A by
(preserving the underlying set and) modifying the basic operations in the following

way: if f is an n-ary basic operation of A, then the operation f ′ defined by

f ′(a1, . . . , an) =

{
a1 if a1 = . . . = an,

f(a1, . . . , an) otherwise

is a basic operation of A′.

Let us consider the following property of a class C of algebras: the idempotent
modification of an arbitrary algebra from C is subdirectly irreducible. The aim of
this paper is to prove that the variety of groups enjoys this property.

Theorem 1. The idempotent modification of a group is a subdirectly irreducible
algebra.

The proof will be divided into several lemmas. Let (G, ·) be a group and (G, ·) be
its idempotent modification, i.e.,

a ◦ b =

{
a if a = b,

ab otherwise.
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Let ∼ be a congruence of (G, ◦).

Lemma 2. a ∼ 1 if and only if a−1 ∼ 1.
�
	�����

. It is sufficient to prove that a ∼ 1 implies a−1 ∼ 1. If a−1 = a, there is

nothing to prove. Let a−1 6= a. Then a−1 ◦ a ∼ a−1 ◦ 1 gives 1 ∼ a−1. �

Lemma 3. a ∼ 1 implies a2 ∼ 1.
�
	�����

. This is clear if a2 = 1. Let a2 6= 1. We have a◦a2 ∼ 1◦a2, i.e., a3 ∼ a2.

If a3 = 1, we are done. So, let a3 6= 1. We have a3 ◦a−1 ∼ a2 ◦a−1 = a2a−1 = a ∼ 1.
If a3 6= a−1, this means that a2 ∼ 1. If a3 = a−1, then a3 ∼ 1 by Lemma 2, and this
together with a3 ∼ a2 gives a2 ∼ 1. �

Lemma 4. {a : a ∼ 1} is a subgroup of G.
�
	�����

. By Lemma 2, it is sufficient to prove that a ∼ 1 and b ∼ 1 imply ab ∼ 1.
This is clear if a 6= b. If a = b, it follows from Lemma 3. �

Lemma 5. If a ∼ b where a 6= b and a2 6= 1, then a ∼ b ∼ 1.
�
	�����

. We have a ◦ a ∼ a ◦ b, i.e., a ∼ ab. Hence a−1 ◦ a ∼ a−1 ◦ ab,
i.e., 1 ∼ a−1 ◦ ab. If a−1 6= ab, we get 1 ∼ b and we are done. If a−1 = ab then

a ∼ ab = a−1, so that a ◦ a ∼ a ◦ a−1 and thus a ∼ 1. �

Lemma 6. If a ∼ b where a 6= b and a2 6= 1, then x ∼ 1 for all x ∈ G such that

x2 6= 1.
�
	�����

. We have a ∼ b ∼ 1 by Lemma 5. Let x2 6= 1. We have a ◦ x ∼ b ◦ x.
If either x = a or x = b, then x ∼ 1 and we are done. Otherwise, ax ∼ bx. Hence
a−1 ◦ ax ∼ a−1 ◦ bx. If a−1 = ax, then x = a−2 and x ∼ 1 by Lemma 4. Otherwise,
x ∼ a−1 ◦ bx. If x 6= a−1 ◦ bx, then we are done by Lemma 5. Let x = a−1 ◦ bx. If
a−1 6= bx, then x = a−1bx, so that a = b, a contradiction. Hence a−1 = bx. But

then x = a−1 ∼ 1. �

Lemma 7. If a ∼ b where a 6= b, then x ∼ 1 for all x ∈ G such that x2 6= 1.
�
	�����

. By Lemma 6, it is sufficient to consider the case when a2 = b2 = 1. Let
x2 6= 1. We have a ◦ x ∼ b ◦ x, i.e., ax ∼ bx. Hence a ◦ ax ∼ a ◦ bx, i.e., x ∼ a ◦ bx.
If x 6= a ◦ bx, we can use Lemma 6. So, let x = a ◦ bx.

If a 6= bx, we get x = abx, so that ab = 1 and a = b, a contradiction. Hence a = bx,
i.e., x = ba. Since a ◦ a ∼ b ◦ a, we have a ∼ ba = x and we can use Lemma 6. �
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Lemma 8. If ∼ is nontrivial, then x2 = 1 for all x ∈ G.
�
	�����

. Suppose that ∼ is nontrivial and there exists an element x ∈ G with
x2 6= 1. By Lemma 7, the block of ∼ containing 1 contains all such elements x. Let

y be an element outside this block, so that y2 = 1 and y 6= 1. We have y ◦ 1 ∼ y ◦ x,
i.e., y ∼ yx. Hence y ◦ y ∼ y ◦ yx, i.e., y ∼ yyx = x, a contradiction. �

Lemma 9. Let G be a group satisfying x2 = 1 for all x. Then (G− {1})2 ∪ id is
the only nontrivial congruence of (G, ◦).
�
	�����

. Clearly, this relation is a congruence of (G, ◦). Let ∼ be a nontrivial
congruence of (G, ◦). If x ∼ 1 for an element x 6= 1, then for any element y /∈ {x, 1}
we have xy ∼ y, xy ◦y ∼ y, xyy ∼ y, x ∼ y, y ∼ 1. If x ∼ y for two distinct elements
x, y different from 1, then for any z /∈ {x, y, 1} we have xz ∼ yz, xxz ∼ x ◦ yz,

z ∼ x ◦ yz; if x = yz, we get z ∼ x; otherwise, we get z ∼ xyz, z ∼ xyzz = xy ∼ x.
�

We have finished the proof of Theorem 1. In fact, we have proved more:

Theorem 10. The idempotent modification of a group G is always simple, unless

the group satisfies x2 = 1 for all x; in this last case, the congruence lattice of the
idempotent modification is the three-element chain.

It would be interesting to find other varieties with the property of Theorem 1. In
particular, we can ask: Does there exist a variety V of quasigroups, not contained

in the variety of groups, such that the idempotent modification of any quasigroup
from V is subdirectly irreducible?
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