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Abstract. In this paper, we prove a theorem for n-dimensional totally real minimal
submanifold immersed in quaternion space form.
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1. Introduction

Let M(c) denote a 4n-dimensional quaternion space form of quaternion sectional

curvature c and let P (H) denote the 4n-dimensional quaternion projective space of
constant quaternion sectional curvature 4. Let N be an n-dimensional Rieman-

nian manifold isometrically immersed in M(c). We call N a totally real submanifold
ofM(c) if each tangent 2-plane ofN is mapped into a totally real plane inM(c).Chen
and Houh [3] gave an inequality for totally real submanifolds of M(c). In particular
they considered the case when N was totally geodesic. Later, Sun [6] considered the

case when N was pseudo-umbilical and extended the theorem of Chen and Houh;
he obtained two integral inequalities for compact totally real submanifolds of M(c).
There is other literature studying totally real submanifolds [4], [8], [9].

In this paper, we make use of Yau’s maximum principle to study the complete
totally real minimal submanifolds with Ricci curvature bounded from below and use
the method of proof which is given in [7]. Thus we obtain the following result.

Main theorem. Let M(c) denote a 4n-dimensional quaternion space form

of quaternion sectional curvature c. Let N be an n-dimensional totally real mini-

mal manifold immersed in M(c) with Ricci curvature bounded from below. Then
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either N is totally geodesic or

(1.1) inf τ 6 1
12

(3n− 2)(n + 1)c

where τ is the scalar curvature of N.

2. Local formulas

We use the same notations and terminology as in [3], [6] unless otherwise stated.

Let M(c) denote a 4n-dimensional quaternion space form of quaternion sectional
curvature c and let N be an n-dimensional totally real submanifold of M(c). We
choose a local field of orthonormal frames,

e1, . . . , en, eI(1) = Ie1, . . . , eI(n) = Ien, eJ(1) = Je1, . . . , eJ(n) = Jen,

eK(1) = Ke1, . . . , eK(n) = Ken,

is such a way that when restricted to N , e1, . . . , en are tangent to N. Here I , J , K

are the almost Hermitian structure and satisfy

IJ = −JI = K, JK = −KJ = I, KI = −IK = J, I2 = J2 = K2 = −1.

We shall use the following convention on the range of indices:

A, B, . . . = 1, . . . , n, I(1), . . . , I(n), J(1), . . . , J(n), K(1), . . . , K(n),

α, β, . . . = I(1), . . . , I(n), J(1), . . . , J(n), K(1), . . . , K(n),

i, j, . . . = 1, . . . , n, Φ = I, J, K.

Let {wA} be the dual frame field. Then the structure equations of M(c) are given
by

dwA = −
∑

B

wAB ∧ wB , wAB + wBA = 0,

dwAB = −
∑

C

wAC ∧ wCB +
1
2

∑

CD

KABCDwC ∧ wD,(2.1)

KABCD =
c

4
(
δACδBD − δADδBC + IACIBD − IADIBC + 2IABICD + JACJBD

− JADJBC + 2JABJCD + KACKBD −KADKBC + 2KABKCD

)
.
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Restricting these forms to N , we get the following structure equations of the immer-

sion:

wα = 0, wαi =
∑

j

hα
ijwj , hα

ij = hα
ji, h

Φ(i)
jk = h

Φ(j)
ik = h

Φ(k)
ij ,

dwij = −
∑

k

wik ∧ wkj +
1
2

∑

k

Rijklwk ∧ wl,

Rijkl = Kijkl +
∑

α

(hα
ikhα

jl − hα
ilh

α
jk),(2.2)

dwαβ = −
∑

γ

wαγ ∧ wγβ +
1
2

∑

ij

Rαβijwi ∧ wj ,

Rαβij = K
αβij

+
∑

k

(hα
ikhβ

kj − hβ
ikhα

kj).(2.3)

We call h =
∑
ijα

hα
ijwiwjeα the second fundamental form of the immersed manifold N .

We denote by S =
∑
ijα

(hα
ij)

2 the square of the length of h.

If N is minimal in M(c), i.e., trace h = 0, then by the equations (2.1) and (2.2),
we have

(2.4) τ =
c

4
n(n + 1)− S

where S is the scalar curvature of N. We define hα
ijk and hα

ijkl by

(2.5)
∑

k

hα
ijkwk = dhα

ij −
∑

l

hα
ilwlj −

∑

l

hα
ljwli +

∑

β

hβ
ijwαβ

and
∑

l

hα
ijklwl = dhα

ijk −
∑

l

hα
ljkwli −

∑

l

hα
ilkwlj −

∑

l

hα
ijlwlk +

∑

β

hβ
ijkwαβ ,

respectively, where
hα

ijk = hα
ikj

and

hα
ijkl − hα

ijlk =
∑

m

hα
imRmjkl +

∑

m

hα
mjRmikl −

∑

β

hβ
ijRαβkl.

Let Hα and ∆ denote the n× n matrix (hα
ij) and the Laplacian on N , respectively.

By a simple calculation, we have (cf. [1], [2], [5])

(2.6)
1
2
∆S =

∑

ijkα

(hα
ijk)2 +

c

4
(n + 1)S +

∑

αβ

tr(HαHβ −HβHα)2 −
∑

αβ

(tr HαHβ)2.

In order to prove the main theorem, we need the following Lemmas.
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Lemma 1 [6]. Let Hi, i > 2 be symmetric n×n matrices, Si = tr H2
i , S =

∑
i

Si.

Then

(2.7)
∑

ij

tr(HiHj −HjHi)2 −
∑

ij

(tr HiHj)2 > −3
2
S2

and the equality holds if and only if either all Hi = 0 or there exist two Hi different

from zero. Morever, if H1 6= 0, H2 6= 0, Hi = 0, i 6= 1, 2, then S1 = S2 and there

exists an orthogonal n× n matrix T such that

THt
1T =




√
S1
2 0 . . . 0

0 −
√

S1
2 . . . 0

...
...

. . .
...

0 0 . . . 0




, THt
2T =




0
√

S1
2 . . . 0√

S1
2 0 . . . 0
...

...
. . .

...

0 0 . . . 0




.

Lemma 2 [7]. Let N be a complete Riemannian manifold with Ricci curvature

bounded from below and let f be a C2-function bounded from above on N , then for

all ε > 0, there exists a point x ∈ N at which

(i) sup f − ε < f(x),
(ii) ‖∇f(x)‖ < ε,

(iii) ∆f(x) < ε.

3. Proof of the main theorem

In this section, the method of the proof used by Ximin in [7] is applied to a totally

real minimal submanifold immersed in quaternion space form.
From (2.6) and (2.7), we obtain

(3.1)
1
2
∆S > S

( c

4
(n + 1)− 3

2
S

)
.

We know that S = c
4n(n + 1)− τ. By the condition of the theorem, we conclude

that S is bounded. We define f = S and F = (f + a)
1
2 (where a > 0 is any positive

constant number). F is bounded. We have

dF =
1
2
(f + a)−

1
2 df,(3.2)

∆F =
1
2

(
−1

2
(f + a)−

3
2 ‖df‖2 + (f + a)−

1
2 ∆f

)

=
1
2
(−2 ‖dF‖2 + ∆f)(f + a)−

1
2 ,(3.3)
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i.e.,

(3.4) ∆F =
1

2F
(−2 ‖dF‖2 + ∆f).

Hence, F∆F = −‖dF‖2 + 1
2∆f or 1

2∆f = F∆F + ‖dF‖2. Applying Lemma 2
to F , we have for all ε > 0, there exists a point x ∈ N such that at x

‖dF (x)‖ 6 ε,(3.5)

∆F (x) < ε,(3.6)

F (x) > sup F − ε.(3.7)

From (3.5), (3.6) and (3.7), we have

(3.8)
1
2
∆f < ε2 + Fε = ε (ε + F ) .

We take a sequence {em} such that εm → 0 (m →∞) and for all m, there exists a
point xm ∈ N such that (3.5), (3.6) and (3.7) hold. Therefore, εm

(
εm +F (xm)

)
→ 0

(m →∞) (because F is bounded).

From (3.7), we have F (xm) > sup F − εm, because {F (xm)} is a bounded se-
quence. So we get F (xm) → F0 (if necessary, we can choose a subsequence). Hence,

F0 > sup F. So we have

(3.9) F0 = sup F.

From the definition of F , we get

(3.10) f (xm) → f = sup f.

(3.1) and (3.8) imply that

(3.11) f
( c

4
(n + 1)− 3

2
S

)
6 1

2
∆f 6 ε(ε + F ),

and

(3.12) f(xm)
( c

4
(n + 1)− 3

2
f(xm)

)
< ε2

m + εmF (xm) 6 ε2
m + εmF0.

Let m →∞, then εm → 0 and f(xm) → f0. Hence,

(3.13) f0

( c

4
(n + 1)− 3

2
f0

)
6 0.
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(i) If f0 = 0, we have f = S ≡ 0. Hence, M is totally geodesic.

(ii) If f0 > 0, we have c
4 (n + 1)− 3

2f0 6 0 and

f0 > c

6
(n + 1),

that is, supS > c
6 (n + 1) . Therefore, inf τ 6 1

12 (3n−2)(n+1)c. This completes
the proof.

Acknowledgement. The author wishes to express his sincere thanks to the ref-
eree for the careful reading and very helpful comments on the earlier versions of this
manuscript.

References
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