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Abstract. We use polymeasures to characterize when a multilinear form defined on a
product of C(K, X) spaces is integral.
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1. Introduction and notation

Given a compact Hausdorff spaceK with Borel σ-algebra Σ, and Banach spaces X
and Y , it is well known that an operator T : C(K, X) −→ Y can be represented

in terms of a measure m : Σ −→ L(X ; Y ∗∗) verifying certain properties (see for
instance [5, § 19]).

In a series of papers (see [7], [8] and the references therein), Dobrakov developed
a theory of polymeasures (set functions defined on a product of σ-algebras which are

separately measures) that can be used to extend the classical Riesz representation
theorem to a multilinear setting. With this theory, multilinear operators from a

product of C(K, X) spaces into Y can be represented as operator valued polymea-
sures. This representation theorem can be found in [12, Theorem 1.1]. The theory

of polymeasures has been used by different authors, see, f.i., [1], [9], [10], [6] and the
references therein.

In [12] we used the above mentioned representation theorem to obtain necessary
and sometimes sufficient conditions on the polymeasure Γ representing a multilinear
operator T for T to be completely continuous or unconditionally converging. In this
note, which can be thought of as a continuation to [12], we use some techniques
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developed in [3] to characterize the integral multilinear forms (see definition below)

T : C(K1, X1)×. . .×C(Kn, Xn) −→ � in terms of their representing polymeasures Γ.
In this note we follow the notation of [12]. However we recall some basic nota-

tion. K, Ki will always be compact Hausdorff spaces and Σ, Σi will be their Borel

σ-algebras. If X is a Banach space, C(K, X) is the Banach space of the X-valued
continuous functions, endowed with the supremum norm. S(Σ, X) is the space of the
X-valued Σ-simple functions defined on K and B(Σ, X) is the completion of S(Σ, X)
under the supremum norm. It is well known that C(K, X)∗ = bvrca(Σ; X∗), the
space of regular measures with bounded variation defined on Σ with values in X∗,
endowed with the variation norm. We write bv(Σ; X) for the measures from Σ into X

with bounded variation and similarly we write bv(Σ1, . . . , Σn; X) for the polymea-
sures from Σ1 × . . .× Σn into X with bounded variation.

For notation and basic facts concerning polymeasures we refer to [12] and the
references therein.

The following two definitions go back to Grothendieck.

Definition 1.1. A multilinear form T ∈ Lk(X1, . . . , Xn) is integral if T̂ (i.e., its
linearization) is continuous for the injective (ε) topology on X1⊗ . . .⊗Xn. Its norm
(as an element of (X1⊗̂ε . . . ⊗̂εXn)∗) is the integral norm of T , ‖T‖int := ‖T̂‖ε.

Definition 1.2. An operator T ∈ L(X ; Y ) is integral if the associated bilinear
form

BT : X × Y ∗ −→ � ,

(x, y) 7→ y(T (x))

is integral. In that case the integral norm of T , ‖T‖int := ‖BT‖int. I(X ; Y ) denotes
the Banach space of the integral operators from X into Y , endowed with the integral
norm.

We will use the fact that a bilinear form T ∈ L2(E1, E2) is integral if and only
if any of the two associated linear operators T1 ∈ L(E1; E∗

2 ) and T2 ∈ L(E2; E∗
1 ) is

integral in the above sense (see, f.i., [4, Chapter VI]).
We will also need the following result from [11].

Proposition 1.3. Let T ∈ L(C(K, X); Y ) and let m be its representing measure.

Then T is integral if and only if m is I(X ; Y )-valued and it has bounded variation
when considered with values in this space.

We will later need the following well known lemma, which can be found, for in-
stance, in [2].
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Lemma 1.4. Let Σ be a σ-algebra, X a Banach space and Y ⊂ X∗ a subspace

norming X . If m : Σ −→ X is a strongly additive and σ(X, Y )-regular measure,
then m is regular.

If Γ: Σ1 × . . .× Σn −→ X is a polymeasure, we define its variation

v(Γ) : Σ1 × . . .× Σn −→ [0, +∞]

by

v(Γ)(A1, . . . , An) = sup
{ m1∑

j1=1

. . .

mn∑

jn=1

‖Γ(A1,j1 , . . . , An,jn)‖
}

where (Ai,ji )
mi

ji=1 is a Σi-partition of Ai (1 6 i 6 n).

The following lemma can be found in [3].

Lemma 1.5. Let X be a Banach space, Ω1, . . . , Ωn sets and Σ1, . . . , Σn σ-

algebras defined on them. Let now γ : Σ1 × . . . × Σn −→ X be a polymeasure and

let ϕ1 : Σ1 −→ pm(Σ2, . . . , Σn; X) be the measure given by ϕ1(A1)(A2, . . . , An) =
γ(A1)(A2, . . . , An). Then v(γ) < ∞ if and only if ϕ1 takes values in bvpm(Σ2, . . . Σn;
X) and v(ϕ1) < ∞ when we consider the variation norm in the image space. In
that case, v(ϕ1)(A1) = v(γ)(A1, Ω2, . . . , Ωn) and v(ϕ1(A1))(A2, . . . An) 6 v(γ)(A1,

A2, . . . , An). Of course the role played by the first variable could be played by any
of the other ones.

2. The result

We can present now our main result. In the following we write B0(K1× . . .×Kn)
for the σ-algebra of the Borel sets of C(K1 × . . .×Kn).

Proposition 2.1. Let T ∈ Lk(C(K1, X1), . . . , C(Kn, Xn)) and let Γ be its repre-
senting polymeasure. Then the following are equivalent:

a) The polymeasure Γ: Σ1 × . . . × Σn −→ (X1⊗̂ � . . . ⊗̂ � Xn)∗ can be extended to
a measure m ∈ bvrca(B0(K1 × . . .×Kn); (X1⊗̂ε . . . ⊗̂εXn)∗) (which implies in
particular that Γ is (X1⊗̂ε . . . ⊗̂εXn)∗-valued).

b) Γ is (X1⊗̂ε . . . ⊗̂εXn)∗-valued and v(Γ) < ∞, when we consider the integral
norm in the image space.

c) T is integral.
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Moreover, in that case v(Γ) = v(µ) = ‖T‖int, so there is an isometric isomor-

phism between (C(K1, X1)⊗̂ε . . . ⊗̂εC(Kn, Xn))∗ and the space of separately regu-
lar polymeasures with bounded variation defined on Σ1 × . . . × Σn with values in

(X1⊗̂ε . . . ⊗̂εXn)∗, endowed with the variation norm.
���������

. (c) ⇒ (a): If

T : C(K1, X1)× . . .× C(Kn, Xn) −→ �

is integral, then we can consider the continuous linear operator

T ′ : C(K1)⊗̂εX1⊗̂ε . . . ⊗̂εC(Kn)⊗̂εXn −→ �

and, using the associativity of the injective tensor product and the fact that

C(K1)⊗̂ε . . . ⊗̂εC(Kn) ≈ C(K1 × . . .×Kn), we can define the integral operator

T1 : C(K1 × . . .×Kn) −→ (X1⊗̂ε . . . ⊗̂εXn)∗.

Let µ ∈ bvrca(B0(K1× . . .×Kn); (X1⊗̂ε . . . ⊗̂εXn)∗) be the representing measure
of T1.

From regularity it follows that, for every (A1, . . . , An) ∈ Σ1 × . . .× Σn,

µ(A1 × . . .×An) = Γ(A1, . . . , An),

i.e., that µ extends Γ.
(a) ⇒ (b) is clear (observe that v(Γ) 6 v(m)).
(b) ⇒ (c): We reason by induction on n. If n = 1 there is nothing to prove. Let

us consider n = 2 and let T and Γ be as in the hypothesis.
Let ϕ1 : Σ1 −→ bv(Σ2; (X1⊗̂εX2)∗) be the measure associated to Γ given by

ϕ1(A1)(A2) = Γ(A1, A2). Since v(Γ) < ∞, Lemma 1.5 assures that ϕ1 is indeed
bv(Σ2; (X1⊗̂εX2)∗)-valued and has bounded variation with values in this space.

Claim 1. For every A1 ∈ Σ1, ϕ1(A1) is a regular measure.

Every measure of bounded variation is strongly additive ([4, Proposition I.1.15]).

So, by Lemma 1.4, to prove the claim we just need to check that, for every g ∈
X1 ⊗X2, g ◦ ϕ1(A1) is regular. So, let us first suppose that g = x1 ⊗ x2. Then

(x1 ⊗ x2) ◦ ϕ1(A1)(A2) = Γ(A1, A2)(x1, x2).

Since Γ is weak∗-separately regular (see [12, Theorem 1.1]) we get that (x1 ⊗ x2) ◦
ϕ1(A1) is regular. From here the result follows easily for a general g ∈ X1 ⊗
X2 and the claim is established. As a consequence of it we obtain that ϕ1 is
bvrca(Σ2, (X1⊗̂εX2)∗)-valued.
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Claim 2. The measure

ϕ1 : Σ1 −→ bvrca(Σ2, (X1⊗̂εX2)∗)

is regular.

We have that C(K2, X1⊗̂εX2) is isometrically isomorphic to a subspace of
B(Σ2, X1⊗̂εX2), which in turn is isometrically isomorphic to a subspace of C(K2, X1

⊗̂εX2)∗∗ ≈ (bvrca(Σ2, (X1⊗̂εX2)∗))∗. Moreover, S(Σ2, X1⊗̂εX2) is a dense subspace
of B(Σ2, X1⊗̂εX2) and S(Σ2, X1 ⊗X2) is a dense subspace of S(Σ2, X1⊗̂εX2). So,
S(Σ2, X1 ⊗X2) ⊂ C(K2, X1⊗̂εX2)∗∗ is a subspace norming bvrca(Σ2, (X1⊗̂εX2)∗).
Therefore, by reasonings analogous to the proof of Claim 1, we just need to prove
that, for every s ∈ S(Σ2, X1 ⊗ X2), s ◦ ϕ1 is regular. This follows again from the

separate weak∗-continuity of Γ, considering first s = χA(x1 ⊗ x2), then s = χAg for

any g ∈ X1 ⊗X2 and finally s =
n∑

m=1
χAmgm for any Am ∈ Σ2 and gm ∈ X1 ⊗X2.

Therefore ϕ1 : Σ1 −→ bvrca(Σ2, (X1⊗̂εX2)∗) is regular and v(ϕ1) = v(Γ) < ∞.
Observe that bvrca(Σ2, (X1⊗̂εX2)∗) = C(K2, X1⊗̂εX2)∗ = (X1⊗̂εC(K2, X2))∗ =
I(X1; C(K2, X2)∗).
So, we can consider the operator Tϕ1 : C(K1, X1) −→ C(K2, X2)∗ defined by

Tϕ1(f) =
∫

f dϕ1 and, according to Proposition 1.3, Tϕ1 is integral (and ‖Tϕ1‖ =
v(ϕ1) = v(γ)). Hence, the bilinear form

T̃ϕ1 : C(K1, X1)× C(K2, X2) −→ �

is integral.

Let
Tϕ1 : B(Σ1, X1)×B(Σ2, X2) −→ �

be the extension of T̃ϕ1 given by [12, Theorem 1.1]. Then, for every xi ∈ Xi, Ai ∈ Σi

(1 6 i 6 2), we have

Tϕ1(x1χA1 , x2χA2) = ϕ1(A1)(A2)(x1 ⊗ x2)

= Γ(A1, A2)(x1 ⊗ x2) = T (x1χA1 , x2χA2),

where T is the extension of T given by [12, Theorem 1.1].

Therefore Tϕ1 = T , so T̃ϕ1 = T and ‖T‖int = ‖T̃ϕ1‖int = v(ϕ1) = v(γ), which
finishes the proof in the case n = 2.
Let us now suppose the result to be true for n = 1, consider

T : C(K1, X1)× . . .× C(Kn, Xn) −→ �
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and let its associated polymeasure Γ be as in the hypothesis. Let

ϕ1 : Σ1 −→ bvpm(Σ2, . . . , Σn; (X1⊗̂ε . . . ⊗̂εXn)∗)

be the measure associated to Γ given by ϕ1(A1)(A2, . . . , An) = Γ(A1, . . . , An). By
Lemma 1.5 we get that ϕ1 is well defined and with bounded variation. Similarly to

the proof of Claim 1 above it can be proved that, for every A1 ∈ Σ1, the polymea-
sure ϕ1(A1) is separately regular. Call Z the space of separately regular polymeasures
with bounded variation defined on Σ2×. . .×Σn and with values in (X1⊗̂ε . . . ⊗̂εXn)∗.
Note that the induction hypothesis tells us that

Z = C(K2 × . . .×Kn, X1⊗̂εX2⊗̂ε . . . ⊗̂εXn)∗

= (X1⊗̂εC(K2, X2)⊗̂ε . . . ⊗̂εC(Kn, Xn))∗

= I(X1; (C(K2, X2)⊗̂ε . . . ⊗̂εC(Kn, Xn))∗).

Now we can continue similarly to the proof of the case n = 2 to prove that ϕ1 is
regular, and the proof finishes similarly to the case n = 2. �
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