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Abstract. In the theory of accessible categories, pure subobjects, i.e. filtered colimits of
split monomorphisms, play an important role. Here we investigate pure quotients, i.e., fil-
tered colimits of split epimorphisms. For example, in abelian, finitely accessible categories,
these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the
kernels of pure quotients.

Keywords: pure quotient, pure subobject, locally presentable category, semi-abelian cat-
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The concept of a λ-pure subobject stems from module and model theory, and has
been first categorically formulated by S. Fakir [3]. In our monograph [1] we have

simplified that definition, and have proved that λ-pure subobjects play a central role
in the theory of accessible categories of C. Lair [5] and M. Makkai, R. Paré [6]. In

particular, the following results hold (recall that “accessibly embedded” means full
and closed under λ-filtered colimits for some regular cardinal λ):

(a) every accessibly embedded, accessible subcategory K is closed in K under
λ-pure subobjects for some λ,

(b) conversely, all accessibly embedded subcategories of accessible categories closed
under λ-pure subobjects are accessible, and

(c) every accessible category has enough λ-pure subobjects in the sense that it
has arbitrarily large cardinals α such that every α-presentable subobject of an

arbitrary object A can be extended to an α-presentable λ-pure subobject of A.

The first author was supported by the Grant Agency of the Czech Republic under the
grant No. 201/99/0310, the second author by the Ministry of Education of the Czech
Republic under the project MSM 149100009.
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The present note is devoted to the study of the “dual” concept: λ-pure quotient. It

can be defined, in categories with pullbacks, as a λ-filtered colimit of split quotients.
This concept has been studied in categories of modules (see, e.g., [7]) and is closely
related to λ-pure subobjects. For example, in abelian, finitely accessible categories,

λ-pure quotients are precisely the cokernels of λ-pure subobjects, and vice versa. Of
the three properties (a)–(c) mentioned above only the first has a complete analogy:

every accessible, accessibly embedded subcategory of an accessible category is closed
under λ-pure quotients for some λ. We show counterexamples to the possibility of

“dualizing” (b) and (c).
Recall that a morphism f : A → B is called a λ-pure subobject provided that in

every commutative square

(1)

X Y

A B

g

f

u v

with X and Y λ-presentable the morphism u factors through g, i.e., there exists a
diagonal morphism

(2)

X Y

A B

g

f

u v
d

making the upper triangle commutative. We define below a λ-pure quotient as
a morphism f : A → B which is projective w.r.t. all λ-presentable objects. In all

categories with an initial object 0 this is formally very similar to the above definition:
here we request that in every commutative square (1) there be a diagonal such that

the lower triangle of (2) commutes. (This, for X = 0, is precisely the projectivity
w.r.t. λ-presentable objects Y .)

We are going to prove a number of results which show parallels between λ-pure
subobjects and λ-pure quotients. For example, given an α-presentable object A (for α

“sufficiently” large), every λ-pure subobject of A is also α-presentable, and every
λ-pure quotient of A is also α-presentable. Furthermore, in locally λ-presentable

categories, λ-pure subobjects are regular monomorphisms, and λ-pure quotients are
regular epimorphisms. The most dramatic difference between those two concepts, on

the other hand, is that there are locally finitely presentable categories with arbitrarily
large objects (measured by their presentation rank) having no proper λ-pure quotient.

Throughout the paper we work with λ-accessible categories (see [6] or [1]), where
λ is a regular cardinal (i.e. an infinite cardinal which is not a sum of a smaller number
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of smaller cardinals). These are defined to be the categoriesK which have λ-filtered

colimits and a setKλ of λ-presentable objects (representing all λ-presentable objects
up to isomorphism—and considered as a full subcategory of K ) such that every
object A of K is a λ-filtered colimit of objects of Kλ. Equivalently: A = colimD

where D : Kλ ↓ A → K is the canonical diagram mapping arrows h : K → A

(K ∈ Kλ) to their domains K. See e.g. [1].

Definition 1. A morphism f : A → B in a category is called a λ-pure quotient

(for a regular cardinal λ) provided that it is projective w.r.t. λ-presentable objects.

We say pure if λ = ℵ0.

Explicitly for every λ-presentable object X , all morphisms X → B factor

through f :
X

A B
f

Example 2.
(a) Split epimorphisms are λ-pure quotients for all λ. Conversely, in accessible
categories, if a morphism f : A → B is a λ-pure quotient for all λ, then it is a

split epimorphism: take λ such that B is λ-presentable.

(b) λ-filtered colimits of λ-pure quotients in K (formed in the category K → of
morphisms of K ) are λ-pure quotients, as can be easily verified.

(c) In abelian, λ-accessible categories, all cokernels of λ-pure subobjects are λ-pure

quotients. In fact, let m : A → B be a λ-pure subobject in K . As proved in [1],
m is a λ-filtered colimit of split subobjectsmi : A → Bi (i ∈ I) in A ↓ K ; denote

by βi : (Bi, mi) → (B, m) the colimit cocone. For each i denote by ci : Bi → Ci

a cokernel of mi; since mi is a split monomorphism, ci is a split epimorphism (in

fact, split monomorphisms are precisely the injections of biproducts). Moreover,
the Ci’s form an obvious diagram with diagram scheme I such that the ci’s form

a natural transformation. This defines a diagram in K →: let

c : B → C

denote a colimit whose colimit cocone

Bi Ci

A B C

ci

c

βi γimi

m
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extents the above colimit cocone βi. Then c is a λ-pure quotient, see the pre-

ceding example. And c is a cokernel of m.

Proposition 3. In every λ-accessible category K with pullbacks, λ-pure quo-

tients are precisely the λ-filtered colimits, in K →, of split epimorphisms of K .

Remark. We will see in the proof that, moreover, the colimit cocone (in K →) is
formed by pullback squares in K .
���������

. One implication is Example 2 (a) and (b) above. For the reverse,

consider a λ-pure quotient f : A → B in K . Since K is λ-accessible, B is a λ-
filtered colimit of λ-presentable objects; denote by bi : Bi → B (i ∈ I) the colimit

cocone. For each i form a pullback of f and bi:

Ai Bi

A B

fi

f

ai bi

Since f is λ-pure, we have di : Bi → A with bi = dif , and this implies that fi is a
split epimorphism (due to bi · id = di · f). Since pullbacks commute with λ-filtered

colimits in K , f is a colimit of the obvious diagram I → K → whose object-part
assigns fi to i (with a colimit cocone formed by (ai, bi) for i ∈ I). �

Proposition 4. Let K be a λ-accessible category. Then

(a) every λ-pure quotient is an epimorphism,

and

(b) if K has pullbacks, every λ-pure quotient is a regular epimorphism.
���������

. (a) is trivial since all λ-presentable objects form a generator of K .

(b) Let f : A → B be a λ-pure quotient expressed as a λ-filtered colimit, in K →,

of split epimorphisms fi : Ai → Bi (i ∈ I). Form kernel pairs of fi:

pi, qi : Ei → Ai (i ∈ I)

to obtain a diagram i 7→ Ei in K together with two natural transformations pi, qi

(i ∈ I). We form a (λ-filtered) colimit E of that diagram. The unique morphisms
p = colim pi and q = colim qi from E to A have a coequalizer f . This follows from

fi = coeq(pi, qi) (recall that fi is a regular, in fact split, epimorphism) and from the
commutation of colimits with coequalizers. �
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Proposition 5. In every λ-accessible abelian category the following assertions

hold:

(a) λ-pure quotients are precisely the cokernels of λ-pure subobjects,

and

(b) λ-pure subobjects are precisely the kernels of λ-pure quotients.

���������
. For (a), one implication has been proved as Example 2 (c) above, for the

reverse implication, consider a λ-pure quotient c : B → C. Denote by m : A → B

the kernel of c. Given a commutative square

X Y

A B C

h

m

u v

c

with X and Y λ-presentable, it is our task to prove that u factors through h. Since
X and Y are λ-presentable, a cokernel k : Y → Z of h has the property that Z is

λ-presentable. We have

cvh = cmu = 0,

thus, cv factors through k (via w : Z → C):

X Y Z

A B C

h

m

u v

c

k

w
d′ d

Since Z is λ-presentable and c is a λ-pure quotient, there exists d : Z → B with

w = cd. From

c(v − dk) = cv − cdk = cv − wk = cv − cv = 0

we conclude that there exists d′ : Y → A with

md′ = v − dk.

This is the desired factorization: the equality u = d′h follows from m being a
monomorphism, since

md′h = (v − dk)h = vh = mu.

For (b), one implication has been just proved: kernels of λ-pure quotients are
λ-pure. The other implication is 2 (c) above. �
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Example 6. The category Rng of commutative, not necessarily unitary, rings
does not have the property that kernels of pure quotients are pure subobjects. In
fact, consider the free object on one generator x that can be described as the sub-
ring � 0[x] of the ring � [x] (of all polynomials with integer coefficients) consisting of
all polynomials with a root 0. The embedding

� 0[x] ↪→ � [x]

does not split (since � 0[x] does not have a unit, but a splitting s : � [x] → � 0[x]
would yield the unit s(1)). Since each of these rings is finitely presentable (for � [x]
consider generators x and y and equation xy = x), it follows that that embedding is

not pure. However, this is the kernel of the evaluation-at-0 map � [x] → � which is
split by the obvious embedding.

Remark. Rng is an example of a category very “near” to abelianness: it is a
semi-abelian category in the sense of Janelidze-Márki-Tholen [4]. We do not recall
the definition here, but just observe, for readers familiar with that concept, that

whereas cokernels do not work, kernels do:

Proposition 7. Let K be a λ-accessible, semi-abelian category with a zero

object. Then cokernels of λ-pure normal subobjects are λ-pure quotients.

Remark. The restriction to normal subobjects is, unfortunately, forced by the
fact that in semi-abelian categories it is not true in general that every λ-pure subob-
ject is normal. Example: in the category of groups the coproduct injections of � + �
are split subobjects which are not normal.
���������

. Since semi-abelian categories have pullbacks, λ-pure subobjects are

λ-filtered colimits of split subobjects. In more detail, given f : A → B λ-pure, there
is a λ-filtered diagram of split subobjects fi : Ai → Bi whose colimit (in K →) is f

and each of which results by pulling f back along a morphism, see 2.30 in [1]. Thus,

if f is normal, each fi is normal. And the cokernel of f is, of course, a λ-filtered
colimit of the cokernels of fi. Thus, it is sufficient to prove that a cokernel of a split,

normal subobject is a split quotient.

Let f : A → B be a normal monomorphism split by s : B → A and g : B → C a
cokernel of f . Consider the commutative diagram

A B C

A A× C C

f g

i1

idA id C〈s,g〉

p2
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where i1 = 〈idA, 0〉 and p2 is the projection. Since f is normal, f is a kernel of g.

Since i1 is a kernel of p2, the Short Five Lemma (see [4]) implies that 〈s, g〉 is an
isomorphism. Hence g splits. �

Example 8. There are finitely accessible categories with a zero object such that
cokernels of pure normal subobjects are not pure.

For example, letK be the category of graphs with loops and a base point (denoted
by ∗), i.e., relational structures with one binary reflexive relation and one constant ∗.
Consider the short exact sequence

∗

a

	

	

∗

ba

c
	

		

	
a = ∗

b

c
	

	

	

f g

It is clear that f is a split monomorphism, but g is not a split epimorphism. Since
the codomain of g is finitely presentable, it follows that g is not a pure quotient.

Corollary 9. In λ-accessible semi-abelian categories all λ-pure quotients are nor-

mal.

In fact, split epimorphisms are normal, see 3.2 in [4], and (since finite limits exist
and commute with filtered colimits) all λ-filtered colimits of normal quotients are

normal.

Remark 10. (1) We have mentioned in the introduction that λ-accessible cate-
gories have enough λ-pure subobjects. Nothing similar holds for λ-pure quotients in

general. Consider the locally finitely presentable category Gra of graphs (sets with
a binary relation) and homomorphisms. For every cardinal α, consider the complete

graph Kα on α (with an edge between any pair of distinct vertices and without
loops). No proper quotient (regular epimorphism with domain Kα) is pure—thus,

we have arbitrarily large objects without proper pure quotients! In fact, for every
proper quotient f : Kα → X , the graph X has a loop (i.e., a copy of the terminal

object 1 as a subgraph), whereas no morphism 1 → Kα exists.

(2) In accessible abelian categories, however, Proposition 5 shows that there exist
enough λ-pure quotients in the following sense: there are arbitrarily large cardi-

nals α such that for every quotient f : A → B with an α-presentable kernel (more
precisely: with a kernel whose domain is α-presentable) there exists a λ-pure quotient
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f ′ : A → B′ with an α-presentable kernel together with a factorization

A B

B′

f

f ′

Observation 11. λ-pure quotients are closed under composition and are left
cancellative. That is, given a commutative triangle

A B

C

f

h

g

then

f, g λ-pure⇒ h λ-pure

and
h λ-pure⇒ g λ-pure.

Analogously, λ-pure subobjects are closed under composition and are right can-

cellative.

Theorem 12. (Pure subobjects and pure quotients preserve the presentation
rank.) For every finitely accessible category there exists a cardinal α0 such that,

given an α-presentable object A with α > α0, then every pure subobject and every

pure quotient of A are α-presentable.

Remark. (i) More precisely, (a) for every pure subobject B → A, the object B is

α-presentable, and (b) for every pure quotient A → B, the object B is α-presentable.

(ii) The choice of the cardinal α0 can be made as follows:

α0 = card(mor Kfin) + ℵ0

where Kfin is a full subcategory of K representing all finitely presentable objects up

to isomorphism. For example,
α0 = ℵ0

for the category Ab of abelian groups, and

α0 = ℵ0 + cardR

for the category of right R-modules.
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(iii) For λ-accessible categories in general, a slightly less sharp result holds: there

exist arbitrarily large presentability ranks preserved by a “λ-pure subobject” as well
as by a “λ-pure quotient”. That is, arbitrarily large cardinals α satisfying (a) and
(b) above (for λ-pure substituting pure).
���������

(of Theorem 12 and Remark). (1) Let K be finitely accessible and put

α0 = card(mor Kfin) + ℵ0. Then following 2.15 in [1], an object A is α-presentable
in K with α > α0 iff A is a split subobject of an α-small filtered colimit of finitely

presentable objects (where “α-small” means that the domain of the diagram in
question has less than α morphisms). Let m : A −→ A′ = colimi∈I Ai be such a

split monomorphism with each Ai finitely presentable and card(mor I) < α. Let
ai : Ai → A′ denote the colimit cocone.

(1a) Given a pure subobject n : B → A, then the composite mn : B → A′ is

pure. Consider the canonical diagram (forgetful functor of the comma-category)
D : Kfin ↓ B → K whose colimit is B. For each of its objects, c : C → B, the

morphism mnc : C → A′ factors (since C is finitely presentable) through some ai

(i ∈ I), say, via c′ : C → Ai:

C Ai

B A A′

c′

n m

c ai

d

Since C and Ai are finitely presentable and mn is pure, it follows that there exists

d : Ai → B with

c = dc′.

Thus, the full subcategory D0 of Kfin ↓ B on all objects of the form Ai
d→ B

(i ∈ I and d arbitrary) is cofinal in Kfin ↓ B, hence, B is a canonical colimit of

the domain-restriction D0 : D0 → K of D above. Since D0 has less than α objects
and, for each pair of objects, at most α0 (< α) morphisms between them, we have

card(morD0) < α. Consequently, B = colim D0 is α-presentable.

(1b) Given a pure quotient b : A → B, then for the abovem we have an r : A′ → A

satisfying rm = id; this yields a pure quotient br : A′ → B. Consider, again, the

canonical diagram D : Kfin ↓ B → K .

Ai C

A′ A B

c′′

r b

ai cc′
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For each of its objects, c : C → B, we have a factorization through the pure quo-

tient br, say c = brc′, and since C is finitely presentable, c′ factors through ai for
some i ∈ I :

c = braic
′′ for some i ∈ I and c′′ : C → Ai.

This shows that the objects brai : Ai → B (i ∈ I) of Kfin ↓ B form a cofinal
subcategory. The object B is again a colimit of the diagram D restricted to that

subcategory, thus, B is α-presentable.
(2) Let K be λ-accessible. The proof is completely analogous to (1) above with

the following modifications: we put α0 = card(morKλ) + ℵ0. Then the above
characterization of α-presentable objects holds for all cardinals α > α0 with

α . λ.

This last relation means that every λ-accessible category is α-accessible. (For ex-
ample, if λ = ℵ0, then α . ℵ0 holds for all infinite cardinals α. This is the reason

of the simplified statement in (1).) Here, the only additional fact requested for our
proof is that for every cardinal λ there exist arbitrarily large cardinals α with α . λ.

And, given α > α0 with α . λ, then an object of K is α-presentable iff it is a split
subobject of an α-small colimit of λ-presentable objects, see 2.15 in [1]. Now the

proof continues as above: for all α-presentable objects with α > α0 and α . λ all
λ-pure subobjects as well as all λ-pure quotients are also α-presentable. �

Proposition 13. Every accessible, accessibly embedded subcategory of an acces-
sible category K is closed in K under λ-pure quotients for some cardinal λ.
���������

. By 2.19 in [1] there exists, for every accessible and accessibly embedded
subcategory A of K , a regular cardinal λ such that

(i) A and K are λ-accessible categories
and

(ii) A is closed inK under λ-filtered colimits and under λ-presentability (i.e., every
λ-presentable object of A is λ-presentable in K ).

Let f : A → B be a λ-pure quotient in K with A ∈ A . Express A as a λ-filtered
colimit of λ-presentable objects in A with a colimit cocone ai : Ai → A (i ∈ I). We

know that B is a canonical colimit of the diagram D : Kλ ↓ B → K in K , where
Kλ is a full subcategory ofK representing all λ-presentable objects. For each object

c : C → B of Kλ ↓ B there exists, by λ-purity of f , a factorization c′ : C → A with
c = fc′

Ai C

A B

c′′

f

ai cc′
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and since A is closed under λ-filtered colimits and C is λ-presentable, we can find

i ∈ I and c′′ : C → Ai with c′ = aic
′′. Thus,

c = (fai)c′′.

This shows that the objects fai : Ai → B of Kλ ↓ B (recall that A is closed under
λ-presentability) form a cofinal subcategory of Kλ ↓ B. Therefore, B is a colimit of

the subdiagram of D restricted to these objects, and thus Ai ∈ A implies B ∈ A .
�

Example 14. An accessibly embedded subcategory of Gra which is closed under
(not only λ-pure) quotients but is not accessible.

Such an example requires an assumption on the set theory we work in: as proved

in [1], if our theory satisfies Vopěnka’s Principle:
no large discrete full subcategory of Gra exists,

then every accessibly embedded subcategory of an accessible category is accessible.
Thus, for our example we need to assume the negation of Vopěnka’s Principle (which

is true in the set theory whenever no measurable cardinal exists, see [1]).
Thus, we start with a large discrete full subcategory D of Gra. Denote by D̂ the

class of all proper subobjects of the objects of D . The full subcategory

A = {A ∈ Gra; hom(A, D̂) = ∅ for all D̂ ∈ D̂}

is clearly closed under nonempty colimits and quotients. And it contains D since

for A ∈ D and D̂ ∈ D̂ we have a monomorphism m : D̂ → D for some D ∈ D

and in case a morphism f : A → D̂ exists, the discreteness of D yields A = D and

mf = id—thus, m is an isomorphism.
The category A cannot be accessible. In fact, if it were, there would exist, since

A is accessibly embedded, a cardinal λ such that A is λ-accessible and closed under
λ-presentability (see 2.19 in [1]). Since D is large, it contains a graphD of cardinality

larger than λ. This is an object of A that is not a λ-filtered colimit of λ-presentable
objects because no proper subobject of D lies in A .

Remark. (i) The above example contrasts with the following criterion of accessi-
bility of subcategories of an accessible category K : if A is an accessibly embedded
subcategory ofK , then A is accessible iff A is closed under λ-pure subobjects inK

for some λ, see [1].

(ii) For K abelian and A closed under kernel pairs in K , we do have the corre-

sponding fact: if A is an accessibly embedded subcategory, then A is accessible iff
A is closed under λ-pure quotients for some λ. This follows from (i) and Proposi-

tion 5.
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Proposition 15. In every locally λ-presentable category

(i) λ-pure subobjects are stable under pushout

and

(ii) λ-pure quotients are stable under pullback.
���������

. (i) It is easy to verify that split monomorphisms are stable under
pushout. Given a pushout

A B

P Q

m

m′

f f ′

where m is a λ-pure subobject, express m as a λ-filtered colimit of split subobjects

mi : A → Bi (i ∈ I) in A ↓ K and form pushouts of mi along f :

A Bi

P Qi

mi

m′
i

f f ′
i

Then Qi (i ∈ I) form the object part of a λ-filtered diagram in K with natural
transformations m′

i : ∆P → Qi and f ′i : Bi → Qi (i ∈ I). Since pushouts commute

with colimits, we obtain

m′ = colimi∈I m′
i in A ↓ K ,

a λ-filtered colimit of split subobjects—thus, m′ is a λ-pure subobject.

(ii) Given a pullback
Q P

A C

c′

c

f ′ f

with c a λ-pure quotient, we prove that c′ is a λ-pure quotient. Express c as a
λ-filtered colimit of split epimorphisms ci : Ai → Ci (i ∈ I) with a colimit cocone

Ai Ci

A C

cc

c

ai bi

where each of the above squares is a pullback (see Proposition 3).
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(a) Suppose that P is λ-presentable. Then f factors as f = bif
′ for some

f ′ : P → Ci. Form a pullback of f ′ along the split epimorphism ci:

Q P

Ai Ci

A C

c′
i

ci

c

f ′′

ai

f ′

bi

Then c′i is a split epimorphism which is a pullback of c along bif
′ = f (since both of

the above adjacent squares are pullbacks).

(b) If P is arbitrary, express P as a λ-filtered colimit of λ-presentable objects with

a colimit cocone pt : Pt → P (t ∈ T ). Form a pullback of c′ along pt:

Qt Pt

Q P

ct

c′

qt pt

Then ct is a split epimorphism by (a) above, being a pullback of fpt along c. And c′

is a λ-filtered colimit of these split epimorphisms, therefore it is a λ-pure quotient.

�

Remark 16. Let K be an abelian λ-accessible category (or, more generally, a
semi-abelian λ-accessible category in which all split monomorphisms are normal).

Then λ-pure subobjects are stable under pullback along a λ-pure quotient. In fact,
every semi-abelian category K has the property that it has pullbacks, and split

monomorphisms are stable under pullback along a epimorphism split by a normal
monomorphism, see [2], Proposition 2. If K is λ-accessible, then pullbacks commute

with λ-filtered colimits. Therefore, λ-pure subobjects (which are precisely λ-filtered
colimits of split monomorphisms, see [1]) are stable under pullback along a split

epimorphism. From Proposition 4 we conclude that λ-pure subobjects are stable
under pullback along λ-pure quotients.
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Example. The above remark does not hold for accessible categories in general.
Consider the following pullback in the category Gra:

�

�

	a

a∗

P

�

��

�
	a

a∗c

d

B

�
	a

 

 

 
	a

c

d

m′

c′

m

c

where c and c′ map a∗ to a and leave other nodes unmoved, and m, m′ are the

inclusion maps. Then m is a split subobject and c a split quotient. Nonetheless,
m′ is not pure: it is clear that m′ is not split, and since B is finitely presentable,

m′ cannot be pure.

Acknowledgement. We are grateful to George Janelidze for a discussion on
semi-abelian categories leading to Example 6.
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