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Abstract. It is proved in this paper that special generalized ultrametric and special U ma-
trices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric
and U matrices, respectively. Moreover, we present a new class of inverseM -matrices which
generalizes the class of U matrices.
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1. Introduction

It is a longstanding open problem to characterize the nonnegative matrices whose

inverses areM -matrices (see [15]), although the inverse of a nonsingularM -matrix is
always a nonnegative matrix. In 1994, Martínez, Michon and San Martín introduced

strictly symmetric ultrametric matrix A = (aij) whose entries satisfy

aij > min{aik, akj} for all i, j, k,(1)

aii > aij for all i 6= j(2)

and proved that the inverse of a strictly symmetric ultrametric matrix is a row
and column diagonally dominant M -matrix (see [8] and [12]). Later, nonsymmetric

ultrametric matrices were independently introduced in [10] and in [13]; i.e., nested
block form (for short, NBF) and generalized ultrametric matrices (for short, GUM),

This work was supported by the grant No. 10371075 of the National Natural Science
Foundation of China and by the project-sponsored by SRF for ROCS, SEM.
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respectively. After a suitable permutation, every GUM can be put in NBF. In other

words, there exists a permutation matrix P such that

(3) PAP t =
(

A11 b1211t

b211t1 A22

)

where A11 and A22 are GUM and b12 6 b21, min{aij , aji} > b12, max{aij , aji} > b21

for all i, j, 1 is the vector of all one’s. Moreover, if A itself and as well as all its

principal submatrices which are GUM are of the form (3), then A is called NBF.
They proved that this class of matrices has similar properties as strictly symmetric

ultrametric matrices. In other words, the inverse of a nonsingular GUM is a row
and column diagonally dominant M -matrix. Let A = (aij) be an n× n NBF of the

form (3), where A11 and A22 are m×m and (n−m)×(n−m) NBF. An n×n matrix
B = (bij) is called a U matrix (see [11]), if bij = aij for 1 6 i 6 j 6 n; bij = aij for

1 6 j < i 6 m and bij = ain for i > j and m+1 6 i 6 n. Nabben in [11] proved that
the inverse of a U matrix is a column diagonally dominant M -matrix. Many other

properties on GUM and other related classes were investigated by many authors (for
example, see [3], [4], [14], etc.).

Recently, Fiedler in [6] defined that an n×n matrix A is called a special symmetric

ultrametric matrix if A is symmetric nonnegative and satisfies (1) and

(4) aii = max{aij ; j 6= i} for i = 1, . . . , n.

Further, he proved that special symmetric ultrametric matrices are, in a sense, ex-

tremal matrices in the boundary of the set of strictly symmetric ultrametric matrices.
Although they are not inverses of M -matrices, these matrices are in the closure of

inverses of weakly row and column diagonally dominant nonsingular M -matrices.
In other words, they are the limits of convergent sequences of matrices that are in-

verses of weakly row and column diagonally dominant M -matrices. Moreover, he
gave a simple structure of these matrices using weighted graphs. As for the closure

of inverses of M -matrices, the reader may be referred to [2] and [7].

This paper is motivated by the results of Fiedler [6] and Nabben [11]. We introduce
special GUM and special U matrices in Section 2 and 3 respectively, which are, in

a sense, extremal matrices in the boundary of the set of GUM and U matrices.
Further, we present a simple construction of these matrices by using doubly edge-

weighted paths and mixed edge-weighted paths. The result generalizes the result of
Fiedler in [6]. In section 4, we introduce a new class of inverse M -matrices which

generalizes the class of U matrices.
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2. Special generalized ultrametric matrices

Definition 2.1. An n× n matrix A = (aij) is called a special generalized ultra-
metric matrix (for short, special GUM), if A is a generalized ultrametric matrix and

satisfies

(5) aii = max{aij , aji, j 6= i} for i = 1, . . . , n.

Moreover, if A is an NBF and satisfies (5), then A is called a special NBF. Clearly,
A is a special GUM if and only if there exists a permutation matrix P such that PAPt

is a special NBF. It is easy to see that A is the limit of a convergent sequence of ma-
trices which are inverses of weakly row and column diagonally dominantM -matrices

from Theorem B in [6] or in [7]. Moreover, if A is symmetric, it is just a special
symmetric ultrametric matrix in [6]. However, a special GUM may be not singular,

while each special symmetric ultrametric matrix is always singular.
Let T = (V, E) be a path on the vertex set V = {v1, . . . , vn} and the edge set

E = {E1, . . . , En−1}, where Ei = (vi, vi+1) for i = 1, . . . , n − 1. If two nonnegative
numbers αi 6 βi are assigned to each edge Ei, for i = 1, . . . , n − 1 and satisfy
the following condition “for any i < j, there exists an i 6 p < j such that αp =
min{αk ; Ek is an edge in the path from vi to vj} and βp = min{βk ; Ek is an edge
in the path from vi to vj}”, then T is called a double edge-weighted path with two

vectors ~α = (α1, . . . , αn−1) and ~β = (β1, . . . , βn−1) (for short, double edge-weighted
path). Hence we can define an n × n nonnegative matrix C(T ) = (cij) associated
with a double edge-weighted path T as follows:
For i < j, cij = min{αk ; Ek is an edge in the path from vi to vj}; for i > j,

cij = min{βk ; Ek is an edge in the path from Vi to Vj} and cii = max{βk ; Ek is
incident with vi}.
The main result in this section is that the class of all special generalized ultrametric

matrices just coincides with the class of all matrices C(T ) with doubly edge-weighted
paths, up to permutation.

Lemma 2.2. Let A = (aij) be an n× n special NBF. Then there exists a double
edge-weighted path T with ~α = (α1, . . . , αn−1) and ~β = (β1, . . . , βn−1) such that
A = C(T ).
��������

. We prove the assertion by the induction on n. The assertion is trivial
for n = 2. Assume that the assertion holds for less than n. Since A = (aij) is
special NBF, A has the following form

(6) A =
(

A11 b1211t

b211t1 A22

)
,
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where A11 and A22 are m×m and (n−m)× (n−m) NBF, respectively; b21 > b12,

min{aij , aji} > b12 and max{aij , aji} > b21 for all i, j. We first suppose that 1 <

m < n− 1. By the induction hypothesis, there exist double edge-weighted paths T1

on the vertex set V1 = {v1, . . . , vm} with two edge-weighted vectors (α1, . . . , αm−1)
and (β1, . . . , βm−1) and T2 on the vertex set V2 = {vm+1, . . . , vn} with two edge-
weighted vectors (αm+1, . . . , αn−1) and (βm+1, . . . , βn−1) such that A11 = C(T1) and
A22 = C(T2), respectively. Now let T be a path on the vertex set V = {v1, . . . , vn}
obtained from T1 ∪ T2 by adding one edge (vm, vm+1) to T1 ∪ T2 with two weight

αm = b12 6 βm = b21. For i 6 m < j, by the induction hypothesis, we have
αm = b12 = min{akl, alk, k 6= l} 6 min{ai,i+1, . . . , aj−1,j} = min{αk ; Ek is an edge

in the path from vi to vj} 6 αm. Hence αm = min{αk ; Ek is edge in the path
from vi to vj}. Similarly, βm = b21 = min{βk, Ek is an edge in the path from vi

to vj}. Hence T is a double edge-weighted path on n vertices with ~α = (α1, . . . , αn−1)
and ~β = (β1, . . . , βn−1). Moreover, it is easy to see that

C(T ) =
(

C(T1) αm11t

βm1t1 C(T2)

)
.

If m = 1 or n− 1, we define C(T1) = (b21) or C(T2) = (b21). Therefore, there exists
a double edge-weighted path T such that A = C(T ). �

Lemma 2.3. Let C(T ) be matrix associated with a doubly edge-weighted path T

on n vertices. Then C(T ) is a special NBF.
��������

. We prove the assertion by the induction on n. It is trivial for n = 2.
Assume that the assertion holds for less than n. We assume that there is a double
edge-weighted path T on a vertex set {v1, . . . , vn} with two edge-weighted vectors ~α

and ~β. Then by the definition of a double edge-weighted path, there exists a 1 6
m 6 n − 1 such that αm = min{αk, Ek is an edge in the path from v1 to vn}
and βm = min{βk, Ek is an edge in the path from v1 to vn}. By the definition of
C(T ) = (cij), we have cij = αm for i 6 m < j, and cij = βm for i > m > j. Hence

C(T ) has the following form

C(T ) =
(

C(T1) αm11t

βm1t1 C(T2)

)
,

where C(T1) and C(T2) are matrices associated with double edge-weighed paths T1 on

vertices {v1, . . . , vm} with two edge-weighted vectors (α1, . . . , αm−1), (β1, . . . , βm−1)
and T2 on vertices {vm+1, . . . , vn} with two edge-weighted vectors (αm+1, . . . , αn−1),
(βm+1, . . . , βn−1), respectively. Moreover, min{cij , cji} > αm, and max{cij , cji} >
βm. By the induction hypothesis, C(Ti) is a special NBF for i = 1, 2. Moreover,
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cii = max{ci1, . . . , cim, c1i, . . . , cmi} = max{ci1, . . . cin, c1i, . . . , cni} for i = 1, . . . , m

and cii = max{ci,m+1, . . . , cin, cm+1,i, . . . , cni} = max{ci1, . . . , cin, c1i, . . . , cni} for
i = m + 1, . . . , n. Hence C(T ) is a special NBF. �

Theorem 2.4. Let A be an n × n nonnegative matrix. Then the following

statements are equivalent:

(i) A is a special GUM.

(ii) There exist a double edge-weighted path T and permutation matrix P such that

PAP t = C(T ).
��������

. (i) =⇒ (ii). By Lemma 4.1 [10], there exists a permutation matrix P

such that PAP t is a special NBF. Hence (ii) follows from Lemma 2.2. The converse
directly follows from Lemma 2.3. �

Corollary 2.5. A is a special NBF if and only if there exists a double edge-
weighted path such that A = C(T ).

Remark 2.6. For some special GUM, there exists a double edge-weighted path T

such that A = C(T ). For example,

A =




9 9 7 7
3 9 7 7
2 2 8 6
2 2 8 8




is a special GUM matrix, but there does not exist a double edge-weighted path such
that A = C(T ). However, if A is a symmetric special ultrametric matrix, there

always exists a double edge-weighted path T such that A = C(T ) by Theorem 2.2
in [6]. In fact, since the permutation P corresponds to renumbering of the vertices,

then Theorem 2.2 in [6] immediately follows from Theorem 2.4. Hence Theorem 2.4
generalizes the result of Fiedler, since in this case, ~α = ~β. In the next Theorem, we

shall investigate the singularity of a special NBF given by a double edge-weighted
path.

Theorem 2.7. Let A = (aij) be an n× n matrix associated with a double edge-

weighted path T and two vectors ~α = (α1, . . . , αn−1) and ~β = (β1, . . . , βn−1). Then
A is singular if and only if α1 = β1 = 0; or αn−1 = βn−1 = 0; or αp−1 = αp =
βp−1 = βp = 0; or min{αp, . . . , αq−1} = αp = αq−1 = min{βp, . . . , βq−1} = βq−1 =
βp > max{βp−1, βq} for some 1 < p < q 6 n.
��������

. Sufficiency: If α1 = β1 = 0, or αn−1 = βn−1 = 0, or αp−1 = αp =
βp−1 = βp = 0, then all entries of the first, or last, or p-th rows of A are zero.
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Hence A is singular. Now we may assume that min{αp, . . . , αq−1} = αp = αq−1 =
min{βp, . . . , βq−1} = βq−1 = βp > max{βp−1, βq} for some 1 < p < q 6 n. We
shall show that the p-th and q-th rows of A are the same. In fact, for j < p,
apj = min{βk ; Ek is an edge in the path from vertex vp to vertex vj} = min{βk ; Ek

is an edge in the path from vertex vq to vertex vj} = aqj , since min{βp, . . . , βq−1} =
βp > βp−1. For j > q, apj = min{αk ; Ek is an edge in the path from vertex vp to

vertex vj} = min{αk ; Ek is an edge in the path from vertex vq to vertex vj} = aqj ,
since min{αp, . . . , αq−1} = αp > αq. For p < j < q, apj = min{αk ; Ek is an edge

in the path from vertex vp to vertex vj} = αp = βp = βq−1 = min{βk ; Ek is an
edge in the path from vertex vq to vertex vj} = aqj , since αp = min{αp, . . . , αq−1}
and βq−1 = min{βp, . . . , βq−1}. Moreover, app = max{βk ; Ek is incident with vp} =
βp = max{βk ; Ek is an edge in the path from vp to vertex vq} = aqp and aqq =
max{βk ; Ek is incident with vq} = βq−1 = min{αk ; Ek is an edge in the path
from vp to vertex vq} = apq . Hence A is singular.

Necessity. Assume that A is singular. If all entries of p-th row of A are zero,
then by the definition of A = C(T ), if p = 1, then α1 = β1 = 0; or if p = n, then

αn−1 = βn−1 = 0; or if 1 < p < n, then αp−1 = αp = βp−1 = βp = 0. Now we
assume that A does not contain a row of zeros. By Theorem 4.4 in [10], there exist

two rows of A, say p-th and q-th rows for p < q, which are the same. So apj = aqj

for j = 1, . . . , n. Hence, for p < j < q,

app = max{βp−1, βp} > βp > αp > min{αp, . . . , αj−1} = apj

> min{αp, . . . , αq−1} = apq = aqq = max{βq−1, βq} > βq−1

> min{βj , . . . , βq−1} = aqj > min{βp, . . . , βq−1} = aqp = app.

Therefore, min{αp, . . . , αq−1} = αp = βp = min{βp, . . . , βq−1} = βq−1 = αq−1 >
max{βp−1, βq}. �

Corollary 2.8. Let A be the n×nmatrix associated with a double edge-weighted

path T and two vectors ~α = (α1, . . . , αn−1) and ~β = (β1, . . . , βn−1). Let S denote the
set of such indices k ∈ {1, . . . , n} for which S = {k : αk = βk > max{βk−1, βk+1} }.
Then the nullity ν(A) and the rank of A satisfy the inequalities ν(A) > |S| and
rank(A) 6 n− |S| respectively.
��������

. If k ∈ S, then the k-th and (k+1)-th rows of A are the same. In fact, for
j < k, akj = min{βi ; Ei is an edge in the path from vk to vertex vj} = min{βi ; Ei

is an edge in the path from vk+1 to vertex vj} = ak+1,j , since βk > βk−1. For

j > k + 1, akj = min{αi ; Ei is an edge in the path from vk to vertex vj} =
min{αi ; Ei is an edge in the path from vk+1 to vertex vj} = ak+1,j , since αk >
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βk+1 > αk+1. Moreover, akk = ak,k+1 = ak+1,k = ak+1,k+1 = βk. Hence the vector

~ϕk = (0, . . . , 0, 1,−1, 0, . . . , 0)t belongs to the null-space of A, where the k-th and
(k + 1)-th components of ~ϕk are 1 and −1, respectively. Since all these vectors ϕk

are linearly independent, ν(A) > |S| and rank(A) 6 n− |S|. �

3. Special U matrices

Let U be an n× n U matrix. Then U = (uij) has the following form

(7) U =
(

U11 τ11t

b1t U22

)
,

where U11 is an m×m matrix in NBF, τ = min{uij , i, j = 1, . . . , n} and b is the last

column of U22.

Definition 3.1. An n× n matrix U = (uij) is called special U matrix if U is a

U matrix in the form (7) satisfying uii = max{uij , uji ; j = 1, . . . , m and j 6= i} for
i = 1, . . . , m; uii = max{ui,i+1, . . . , uin, u1i, . . . , ui−1,i} for i = m + 1, . . . , n.

Clearly, each special U matrix U is always singular, since the last two rows of U
are the same. Furthermore, it follows from Theorem B in [6] that each special U
matrix is the limit of a convergent sequence of matrices which are inverses of column

diagonally dominant M -matrices.
Let T1 be a double edge-weighted path on the vertex set V1 = {v1, . . . , vm} with the

two vectors (α1, . . . , αm−1) and (β1, . . . , βm−1) and T2 be an edge weighted path on
the vertex set V2 = {vm+1, . . . , vn} with the edge-weighted vector (αm+1, . . . , αn−1).
Let T = T1 ∪T2 be the path obtained by adding an edge (vm, vm+1) with weight αm

satisfying αm = min{αi, i = 1, . . . , n− 1}. Then T is called a mixed edge-weighted

path with the two vectors ~α = (α1, . . . , αn−1) and ~β = (β1, . . . , βm−1).
Now we may define an n × n nonnegative matrix B(T ) = (bij) associated with a

mixed edge-weighted path T on n vertices and the two vectors ~α = (α1, . . . , αn−1)
and ~β = (β1, . . . , βm−1) as follows:
For i < j, bij = min{αk, Ek is an edge in the path from vertex vi to vertex vj};

for j < i 6 m bij = min{βk, Ek is an edge in the path from vertex vi to vertex vj};
for j < i and m < i < n, bij = min{αk, Ek is an edge in the path from vertex vi

to vertex vn} and bnj = αn−1 for j = 1, . . . , n − 1. Moreover, bii = max{βk, Ek

is incident with vertex vi} for i = 1, . . . , m and bii = max{αk, Ek is incident with
vertex vi} for i = m + 1, . . . , n.

In this section, we prove that the set of special U matrices just coincides with the
set of nonnegative matrices associated with mixed edge-weighted paths.
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Lemma 3.2. Let U be an n × n special U matrix in the form (7). Then there

exists a mixed edge-weighted path T such that U = B(T ).
��������

. We prove the assertion by induction on n. It is trivial for n = 2 and
assume that the assertion holds for less than n. If 1 < m < n − 1, we assume that
U = (uij) is a special U matrix in the form (7), where τ = min{uij , i, j = 1, . . . , n},
U11 is special NBF. Hence by Lemma 2.2, there exists a double edge-weighted path T1

on vertex set V1 = {v1, . . . , vm} with (α1, . . . , αm−1) and (β1, . . . , βm−1) such that
U11 = C(T1) = (cij). On the other hand, clearly, U22 has the following form

U22 =
(

U33 τ111t

b21t U44

)
,

where U t
33 is (p −m) × (p−m) special NBF with m + 1 6 p < n, τ1 > τ and b2 is

the last column of U44. Hence

W22 = (wij) =
(

U t
33 τ111t

b21t U44

)

is special U matrix. By the induction hypothesis, there exists a mixed edge-
weighted path T2 = T21 ∪ T22 on vertices T21 = {vm+1, . . . , vp} with the two vec-
tors (γm+1, . . . , γp−1) 6 (δm+1, . . . , δp−1) and on vertices T22 = {vp+1, . . . , vn} with
(γp+1, . . . , γn−1). Moreover, the edge (vp, vp+1) is assigned with γp = min{γi, i =
m + 1, . . . , n− 1} = τ1. Hence we may define a mixed edge-weighted path T on the
vertex set V = {v1, . . . , vn} with the two vectors (α1, . . . , αn−1) and (β1, . . . , βm−1),
where αm = τ , αi = δi for i = m + 1, . . . , p − 1 and αi = γi for i = p, . . . , n− 1. If
m = 1 orm = n−1, we have U11 = (τ) or U22 = (τ), respectively. Then we may show
that the matrix B(T ) = (bij) associated with a mixed edge-weighted path T on the

vertex set V and the two vectors (α1, . . . , αn−1) and (β1, . . . , βm−1) is just U . In fact,
if 1 6 i 6 m and 1 6 j 6 m, then bij = cij = uij . If 1 6 i 6 m, m + 1 6 j 6 n, then

bij = min{αk ; Ek is an edge in the path T from vertex vi to vertex vj} = τ = uij .
If m + 1 6 i < j 6 p; bij = min{αk, Ek is an edge in the path from vertex vi to

vertex vj} = min{δk, Ek is edge in the path from vertex vi to vertex vj} = uij . If
m + 1 6 i 6 p and p + 1 6 j 6 n, then bij = min{αk, Ek is edge in the path from

vertex vi to vertex vj} = γp = τ1 = uij . If p + 1 6 i < j 6 n, then bij = min{αk, Ek

is an edge in the path from vertex vi to vertex vj} = min{γk, Ek is an edge in

the path from vertex vi to vertex vj} = wij = uij . If i > j and i > m + 1, then
bij = min{αk, Ek is edge in the path from vertex vi to vertex vn} = bin = uin = uij .

Moreover, for 1 6 i 6 m, bii = max{βk, Ek is incident with vi} = cii = uii. For
m + 1 6 i 6 p, bii = max{αk, Ek is incident with vi} = max{δk, Ek is incident

with vi} = wii = uii, since δk > γk > γp for m + 1 6 k 6 p− 1. For p + 1 6 i 6 n,
bii = max{αk, Ek is incident with vi} = max{γk, Ek is incident with vi} = uii. �
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Lemma 3.3. Let U be an n × n nonnegative matrix associated with a mixed

edge-weighted path T . Then U is a special U matrix.
��������

. We prove the assertion by induction on n. Clearly, the assertion holds
for n = 1 and n = 2. Assume U is associated with a mixed edge-weighted path

T = T1 ∪ T2 on vertex set V = {v1, . . . , vn} with the two vectors (α1, . . . , αn−1)
and (β1, . . . , βm−1). Moreover, αm = min{αi, i = 1, . . . , n− 1}. Clearly, U has the
following form

U = B(T ) =
(

B11 B12

B21 B22

)
:= (bij),

where B11 is them×mmatrix associated with a double edge-weighted path T1 on the

vertex set V1 = {v1, . . . , vm} with two vectors (α1, . . . , αm−1) and (β1, . . . , βm−1);
B12 = αm11t; B21 = b1t and b is the last column of B22. Let C22 = (cij) be the
(n−m)× (n−m) matrix associated with the double edge-weighted path T2 and the
two vectors (αm+1, . . . , αn−1) and (αm+1, . . . , αn−1). Then by Theorem 2.4, C22 is

a special NBF. Further, the matrix

C =
(

B11 B12

Bt
12 C22

)
:= (cij)

is a NBF. Moreover, for m + 1 6 i < j < n, we have bij = min{αk ; Ek is an edge

in the path from vertex vi to vertex vj} = cij . For m + 1 6 j < i 6 n, we have
bij = min{αk ; Ek is an edge in the path from vertex vi to vertex vn} = bin. Therefore

by the definition of U matrix, B(T ) is a U matrix. Now we show that B(T ) is a
special U matrix. Since B11 is an m × m matrix associated with a double edge-

weighted path T1 and the vectors (α1, . . . , αm−1) and (β1, . . . , βm−1), B11 is special
NBF by Theorem 2.4. Hence bii = max{βk, Ek is incident with vi} = max{bij , bji ;
j 6= i, j = 1, . . . , m} for i = 1, . . . , m; bii = max{αi, Ek is incident with Vi} =
max{αi−1, αi} = max{bi,i+1, . . . , bin, b1i, . . . , bi−1,i} for i = m + 1, . . . , n− 1, since
bi,i+1 > bi,i+2 > . . . > bin and b1i 6 b2i 6 . . . 6 bi−1,i. Moreover, bnn = max{αk ; Ek

is incident with vn} = αn−1 = max{b1n, . . . , bn−1,n}, since b1n 6 b2n 6 . . . 6 bn−1,n.

Hence B(T ) is a special U matrix. �

We immediately obtain the main result in this section.

Theorem 3.4. A nonnegative matrix U is a special U matrix if and only if there

exists a mixed edge-weighted path T such that U = B(T ).
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4. A new class of inverse M-matrices

In this section, we shall define a new class of inverse M -matrices which gener-
alizes the class of U matrices. Let T1 be a double weighted path on the vertex

set V1 = {v1, . . . , vm} and two vectors (α1, . . . , αm−1) 6 (β1, . . . βm−1). Let T2 be
a double weighted path on the vertex set V2 = {vm+1, . . . , vn} and two vectors
(αm+1, . . . , αn−1) and (βm+1, . . . , βn−1) satisfying βi 6 1 for i = m + 1, . . . , n − 1.
Then let T = T1∪T2 be a path on the vertex set V = {v1, . . . , vn} obtained by adding
an edge (vm, vm+1) which is assigned two positive numbers αm and βm satisfying
αm = min{αi, i = 1, . . . , n− 1} and βm = min{βm, . . . , βn−1}. Hence we call such a
weighted path T with (α1, . . . , αn−1) and (β1, . . . , βn−1) quasi-double edge-weighted
path.

For a quasi-double edge-weighted path T , we may define an n × n nonnegative

matrix W (T ) as follows: wii > max{βk, Ek is incident with vertex vi} for i =
1, . . . , m − 1; wmm > βm−1; wii > max{αk, Ek is incident with vertex vi} for i =
m + 1, . . . , n. For i < j, wij = min{αk, Ek is edge in the path from vertex vi to
vertex vj}. For m > i > j, wij = min{βk, Ek is edge from vertex vi to vertex vj};
for j < i 6 n and i > m + 1, wij = winfij , where fij = βm for i > m > j and
fij = min{βk, Ek is edge from vertex vi to vertex vj} for i > j > m + 1. The set of
all matrices W (T ) given by the above definition and up to permutation matrices is
denoted by W . From the definition, let A ∈ W . If βi = 1 for i = m + 1, . . . , n− 1,
then there exists a permutation matrix such that PAPt ∈ U . Hence the class of U
is just the proper subclass of W . Now we present the main result of this Section.

Theorem 4.1. Let A ∈ W . Then A is nonsingular if and only if A does not

contain a row or column of zeros, and no two rows or two columns are the same. If

A is nonsingular, then A−1 is a column diagonally dominant M -matrix.

��������
. If A does contain a row or column of zeros, or two rows or two columns

are the same, then A is singular. We prove the rest of the assertion by induction
on n. Assume that the assertion holds for less than n. By the definition of W , there

exists a permutation matrix P such that

PAPt =
(

A11 αm11t

βmb1t A22

)

where A11 is an m×m NBF and A22 ∈ W , and b is the last column of A22. Clearly
Aii does not contain a row or column of zeros, and no two rows or two columns are

the same for i = 1, 2. Hence by Theorem 4.4 by [10], A11 is nonsingular. Further,
A22 is nonsingular by the induction hypothesis. Moreover, the Schur complement
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of A11 in A is

A/A11 = A22 −A21A
−1
11 A12 = A22 − αmβm(1tA−1

11 1)b1t.

By Theorem 3.5 in [13], βmαm(1tA−1
11 1) 6 βm. Hence A/A11 is a nonnegative

matrix and is in W . By the induction hypothesis, (A/A11)−1 is a column diagonally
dominant M -matrix. On the other hand,

A/A22 = A11 −A12A
−1
22 A21 = A11 − αmβm11t;

thus A/A22 is nonsingular GUM, whose inverse is a column diagonally dominant
M -matrix in [10] or [13]. Using the Sherman-Morrison formula, A is nonsingular

and

A−1 =
(

(A/A22)−1 −A−1
11 αm11t(A/A11)−1

−A−1
22 βmb1t(A/A22)−1 (A/A11)−1

)
.

Since

−A−1
22 A21(A/A22)−1 = − en−pβm1t(A/A22)−1 6 0,

−A−1
11 A12(A/A11)−1 = − (αmA−1

11 1)(1t(A/A11)−1) 6 0,

where en−m = (0, . . . , 0, 1)t, A−1 is an M -matrix. Moreover, we have

1t(A/A22)−1 − 1tA−1
22 b1t(A/A22)−1 = (1− βm)1t(A/A22)−1 > 0

and

1t(A/A11)−1 − 1tA−1
11 αm11t(A/A11)−1

= (1− αmβm1t(A/A11)−11)1t(A/A11)−1 > 0,

since 1 − αmβm1t(A/A11)−11) > 1 − βm > 0. Hence A−1 is a column diagonally

dominant M -matrix. �
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