Czechoslovak Mathematical Journal

Yong Chou; Ring Gen Chang; Y. Q. Huang
 Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 1, 237-253

Persistent URL: http://dml.cz/dmlcz/127973

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

EXISTENCE FOR NONOSCILLATORY SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS

Yong Zhou, Hunan, B. G. Zhang, Qingdao, and Y. Q. Huang, Xiangtan

(Received May 31, 2002)

Abstract. Consider the forced higher-order nonlinear neutral functional differential equation

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}[x(t)+C(t) x(t-\tau)]+\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(x\left(t-\sigma_{i}\right)\right)=g(t), \quad t \geqslant t_{0},
$$

where $n, m \geqslant 1$ are integers, $\tau, \sigma_{i} \in \mathbb{R}^{+}=[0, \infty), C, Q_{i}, g \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), f_{i} \in C(\mathbb{R}, \mathbb{R})$, $(i=1,2, \ldots, m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_{i}(t)(i=1,2, \ldots, m)$ and $g(t)$ which means that we allow oscillatory $Q_{i}(t)(i=1,2, \ldots, m)$ and $g(t)$. Our results improve essentially some known results in the references.

Keywords: neutral differential equations, nonoscillatory solutions
MSC 2000: 34K15, 34K11

1. Introduction

Consider the forced higher-order nonlinear neutral functional differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}[x(t)+C(t) x(t-\tau)]+\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(x\left(t-\sigma_{i}\right)\right)=g(t), \quad t \geqslant t_{0} . \tag{1}
\end{equation*}
$$

With respect to the equation (1), we shall throughout assume the following:
(i) $n, m \geqslant 1$ are integers, $\tau, \sigma_{i} \in \mathbb{R}^{+}=[0, \infty)(i=1,2, \ldots, m)$;

Project was supported by the Special Funds for Major State Basic Research Projects (G19990328) and Hunan Natural Science Foundation of P.R. China (10371103).
(ii) $C, Q_{i}, g \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), f_{i} \in C(\mathbb{R}, \mathbb{R})(i=1,2, \ldots, m)$.

Let $r=\max _{1 \leqslant i \leqslant m}\left\{\tau, \sigma_{i}\right\}$. By a solution of the equation (1) we mean a function $x \in C\left(\left[t_{1}-r, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)+C(t) x(t-\tau)$ is n-times continuously differentiable on $\left[t_{1}, \infty\right)$ and such that the equation (1) is satisfied for $t \geqslant t_{1}$.

Oscillation and non-oscillation of neutral functional differential equations has developed very rapidly in recent years. We refer the reader to [1]-[15] and the references cited therein. Oscillatory and nonoscillatory behavior of solutions of the forced first order neutral functional differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)+C(t) x(t-\tau)]+Q_{1}(t) f_{1}\left(x\left(t-\sigma_{1}\right)\right)=g(t), \quad t \geqslant t_{0} \tag{2}
\end{equation*}
$$

and of the second order neutral functional differential equation with positive and negative coefficients

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}[x(t)+c x(t-\tau)]+Q_{1}(t) x\left(t-\sigma_{1}\right)-Q_{2}(t) x\left(t-\sigma_{2}\right)=0, \quad t \geqslant t_{0} \tag{3}
\end{equation*}
$$

where $c \neq \pm 1, Q_{1}(t) \geqslant 0$ and $Q_{2}(t) \geqslant 0$, have been investigated in [8], [12]. Clearly, equations (2) and (3) are special forms of the equation (1). Parhi and Rath [12], Kulenovic and Hadziomerspahic [8] proved the following results by using Banach contraction mapping principle.

Theorem A ([12], Theorems 2.6, 2.8 and 2.10). Assume that $\left.\mathrm{H}_{1}\right) C(t)$ is in one of the following ranges:

$$
0 \leqslant C(t)<c_{1}<1, \quad 1<c_{2} \leqslant C(t) \leqslant c_{3}, \quad c_{4} \leqslant C(t) \leqslant c_{5}<-1
$$

where $c_{i}(i=1, \ldots, 5)$ are positive real numbers.
$\left.\mathrm{H}_{2}\right) Q_{1}(t) \geqslant 0, f_{1} \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing, $x f_{1}(x) \geqslant 0$ for any $x \neq 0$, and f_{1} satisfies the Lipschitz condition on intervals of the type $[a, b], 0<a<b$.
Further, assume that

$$
\int_{0}^{\infty} Q_{1}(t) \mathrm{d} t<\infty, \quad \int_{0}^{\infty}|g(t)| \mathrm{d} t<\infty
$$

Then the equation (2) has a nonoscillatory solution.

Theorem B [8]. Assume that
$\left.\mathrm{H}_{3}\right) c \neq \pm 1$,
$\left.\mathrm{H}_{4}\right) a Q_{1}(t)-Q_{2}(t) \geqslant 0$, for every $t \geqslant T$ and $a>0$.
Further, assume that

$$
\int_{t_{0}}^{\infty} Q_{1}(t) \mathrm{d} t<\infty, \quad \int_{t_{0}}^{\infty} Q_{2}(t) \mathrm{d} t<\infty
$$

Then the equation (3) has a nonoscillatory solution.
In this paper, by using Krasnoselskii's and Schauder's fixed point theorems and some new techniques, we obtain some sufficient conditions for the existence of a nonoscillatory solution of (1) for general $Q_{i}(t)(i=1,2, \ldots, m)$ and $g(t)$ which means that we allow oscillatory $Q_{i}(t)(i=1,2, \ldots, m)$ and $g(t)$. In particular, our results improve essentially Theorem A and B by removing the restrictive conditions H_{2}) and H_{4}) and relaxing the hypotheses H_{1}) and H_{3}).

2. Main Results

The following fixed point theorems will be used to prove the main results in this section.

Lemma 1 [5] (Krasnoselskii's Fixed Point Theorem). Let X be a Banach space, let Ω be a bounded closed convex subset of X and let S_{1}, S_{2} be maps of Ω into X such that $S_{1} x+S_{2} y \in \Omega$ for every pair $x, y \in \Omega$. If S_{1} is a contractive and S_{2} is completely continuous, then the equation

$$
S_{1} x+S_{2} x=x
$$

has a solution in Ω.

Lemma 2 [5], [6] (Schauder's Fixed Point Theorem). Let Ω be a closed, convex and nonempty subset of a Banach space X. Let $S: \Omega \rightarrow \Omega$ be a continuous mapping such that $S \Omega$ is a relatively compact subset of X. Then S has at least one fixed point in Ω. That is, there exists an $x \in \Omega$ such that $S x=x$.

We will consider the following cases:

$$
\begin{gathered}
-1<c_{1} \leqslant C(t) \leqslant 0, \quad-\infty<C(t) \leqslant c_{2}<-1, \quad 0 \leqslant C(t) \leqslant c_{3}<1, \\
1<c_{4} \leqslant C(t)<\infty, \quad C(t) \equiv 1, \quad C(t) \equiv-1
\end{gathered}
$$

Our main results are the following six theorems.

Theorem 1. Assume that $-1<c_{1} \leqslant C(t) \leqslant 0$ and that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} t^{n-1}\left|Q_{i}(t)\right| \mathrm{d} t<\infty, \quad i=1,2, \ldots, m \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} t^{n-1}|g(t)| \mathrm{d} t<\infty \tag{5}
\end{equation*}
$$

Then (1) has a nonoscillatory bounded solution.
Proof. By (4) and (5), we choose a $T>t_{0}$ sufficiently large such that

$$
\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{1}+|g(s)|\right) \mathrm{d} s \leqslant \frac{1+c_{1}}{3}
$$

where $M_{1}=\max _{2\left(1+c_{1}\right) / 3 \leqslant x \leqslant 4 / 3}\left\{\left|f_{i}(x)\right|: 1 \leqslant i \leqslant m\right\}$.
Let $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ be the set of all continuous functions with the norm $\|x\|=$ $\sup |x(t)|<\infty$. Then $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ is a Banach space. We define a closed, bounded $t \geqslant t_{0}$ and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right): \frac{2\left(1+c_{1}\right)}{3} \leqslant x(t) \leqslant \frac{4}{3}, t \geqslant t_{0}\right\} .
$$

Define two maps S_{1} and $S_{2}: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\left(S_{1} x\right)(t)=\left\{\begin{array}{l}
1+c_{1}-C(t) x(t-\tau), \quad t \geqslant T \\
\left(S_{1} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
$$

$\left(S_{2} x\right)(t)=\left\{\begin{array}{l}\frac{(-1)^{n+1}}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T, \\ \left(S_{2} x\right)(T), \quad t_{0} \leqslant t \leqslant T .\end{array}\right.$
i) We shall show that for any $x, y \in \Omega, S_{1} x+S_{2} y \in \Omega$.

In fact, for every $x, y \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
& \left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \\
& \leqslant 1+c_{1}-C(t) x(t-\tau) \\
& +\frac{1}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \leqslant 1+c_{1}-\frac{4}{3} c_{1}+\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{1}+|g(s)|\right) \mathrm{d} s \\
& \leqslant 1+c_{1}-\frac{4}{3} c_{1}+\frac{1+c_{1}}{3}=\frac{4}{3} \text {. }
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\left(S_{1} x\right)(t) & +\left(S_{2} y\right)(t) \\
\geqslant & 1+c_{1}-C(t) x(t-\tau)-\frac{1}{(n-1)!} \\
& \times \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\geqslant & 1+c_{1}-\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{1}+|g(s)|\right) \mathrm{d} s \\
\geqslant & 1+c_{1}-\frac{1+c_{1}}{3}=\frac{2\left(1+c_{1}\right)}{3} .
\end{aligned}
$$

Hence,

$$
\frac{2\left(1+c_{1}\right)}{3} \leqslant\left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \leqslant \frac{4}{3}, \quad \text { for } t \geqslant t_{0}
$$

Thus we have proved that $S_{1} x+S_{2} y \in \Omega$ for any $x, y \in \Omega$.
ii) We shall show that S_{1} is a contractive mapping on Ω.

In fact, for $x, y \in \Omega$ and $t \geqslant T$, we have

$$
\left|\left(S_{1} x\right)(t)-\left(S_{1} y\right)(t)\right| \leqslant-C(t)|x(t-\tau)-y(t-\tau)| \leqslant-c_{1}\|x-y\| .
$$

This implies that

$$
\left\|S_{1} x-S_{1} y\right\| \leqslant-c_{1}\|x-y\| .
$$

Since $0<-c_{1}<1$, we conclude that S_{1} is a contraction mapping on Ω.
iii) We now show that S_{2} is completely continuous.

First, we will show that S_{2} is continuous. Let $x_{k}=x_{k}(t) \in \Omega$ be such that $x_{k}(t) \rightarrow x(t)$ as $k \rightarrow \infty$. Because Ω is closed, $x=x(t) \in \Omega$. For $t \geqslant T$, we have

$$
\begin{aligned}
\mid\left(S_{2} x_{k}\right) & (t)-\left(S_{2} x\right)(t) \mid \\
& \leqslant \frac{1}{(n-1)!} \int_{t}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x_{k}\left(s-\sigma_{i}\right)\right)-f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|\right) \mathrm{d} s \\
& \leqslant \frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x_{k}\left(s-\sigma_{i}\right)\right)-f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|\right) \mathrm{d} s
\end{aligned}
$$

Since $\left|f_{i}\left(x_{k}\left(t-\sigma_{i}\right)\right)-f_{i}\left(x\left(t-\sigma_{i}\right)\right)\right| \rightarrow 0$ as $k \rightarrow \infty$ for $i=1,2, \ldots, m$, by applying the Lebesgue dominated convergence theorem, we conclude that $\lim _{k \rightarrow \infty} \|\left(S_{2} x_{k}\right)(t)-$ $\left(S_{2} x\right)(t) \|=0$. This means that S_{2} is continuous.

Next, we show that $\mathrm{S}_{2} \Omega$ is relatively compact. It suffices to show that the family of functions $\left\{S_{2} x: x \in \Omega\right\}$ is uniformly bounded and equicontinuous on $\left[t_{0}, \infty\right)$.

The uniform boundedness is obvious. For the equicontinuity, according to Levitan's result, we only need to show that, for any given $\varepsilon>0,[T, \infty)$ can be decomposed into finite subintervals in such a way that on each subinterval all functions of the family have change of amplitude less than ε. By (4), for any $\varepsilon>0$, take $T^{*} \geqslant T$ large enough so that

$$
\frac{1}{(n-1)!} \int_{T^{*}}^{\infty} s^{n-1}\left(M_{1} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s<\frac{\varepsilon}{2}
$$

Then for $x \in \Omega, t_{2}>t_{1} \geqslant T^{*}$

$$
\begin{aligned}
\mid\left(S_{2} x\right)\left(t_{2}\right) & -\left(S_{2} x\right)\left(t_{1}\right) \mid \\
\leqslant & \frac{1}{(n-1)!} \int_{t_{2}}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& +\frac{1}{(n-1)!} \int_{t_{1}}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\leqslant & \frac{1}{(n-1)!} \int_{t_{2}}^{\infty} s^{n-1}\left(M_{1} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s \\
& +\frac{1}{(n-1)!} \int_{t_{1}}^{\infty} s^{n-1}\left(M_{1} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

For $x \in \Omega$ and $T \leqslant t_{1}<t_{2} \leqslant T^{*}$

$$
\begin{aligned}
\mid\left(S_{2} x\right) & \left(t_{2}\right)-\left(S_{2} x\right)\left(t_{1}\right) \mid \\
& \leqslant \frac{1}{(n-1)!} \int_{t_{1}}^{t_{2}} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \leqslant \frac{1}{(n-1)!} \int_{t_{1}}^{t_{2}} s^{n-1}\left(M_{1} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s \\
& \leqslant \frac{1}{(n-1)!} \max _{T \leqslant s \leqslant T^{*}}\left\{s^{n-1}\left(M_{1} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right)\right\}\left(t_{2}-t_{1}\right) .
\end{aligned}
$$

Thus there exists a $\delta>0$ such that

$$
\left|\left(S_{2} x\right)\left(t_{2}\right)-\left(S_{2} x\right)\left(t_{1}\right)\right|<\varepsilon, \quad \text { if } 0<t_{2}-t_{1}<\delta
$$

For any $x \in \Omega, t_{0} \leqslant t_{1}<t_{2} \leqslant T$, it is easy to see that

$$
\left|\left(S_{2} x\right)\left(t_{2}\right)-\left(S_{2} x\right)\left(t_{1}\right)\right|=0<\varepsilon .
$$

Therefore $\left\{S_{2} x: x \in \Omega\right\}$ is uniformly bounded and equicontinuous on $\left[t_{0}, \infty\right)$, and hence $S_{2} \Omega$ is relatively compact. By Lemma 1 (Krasnoselskii's fixed point theorem), there is an $x_{0} \in \Omega$ such that $S_{1} x_{0}+S_{2} x_{0}=x_{0}$. It is easy to see that $x_{0}(t)$ is a nonoscillatory solution of the equation (1). The proof is complete.

Theorem 2. Assume that $-\infty<C(t) \equiv c_{2}<-1$ and that (4) and (5) hold. Then (1) has a nonoscillatory bounded solution.

Proof. By (4) and (5), we choose a $T>t_{0}$ sufficiently large such that

$$
-\frac{1}{c_{2}(m-1)!} \int_{T+\tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{2}+|g(s)|\right) \mathrm{d} s \leqslant-\frac{c_{2}+1}{2}
$$

where $M_{2}=\max _{-\left(c_{2}+1\right) / 2 \leqslant x \leqslant-2 c_{2}}\left\{\left|f_{i}(x)\right|: 1 \leqslant i \leqslant m\right\}$.
Let $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ be the set as in the proof of Theorem 1 . We define a closed, bounded and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right):-\frac{c_{2}+1}{2} \leqslant x(t) \leqslant-2 c_{2}, t \geqslant t_{0}\right\} .
$$

Define two maps S_{1} and $S_{2}: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\begin{aligned}
& \left(S_{1} x\right)(t)=\left\{\begin{array}{l}
-c_{2}-1-\frac{1}{C(t)} x(t+\tau), \quad t \geqslant T \\
\left(S_{1} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right. \\
& \left(S_{2} x\right)(t)=\left\{\begin{array}{l}
\frac{(-1)^{n+1}}{C(t)(n-1)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-1}\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s \\
\left(S_{2} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
\end{aligned}
$$

We shall show that for any $x, y \in \Omega, S_{1} x+S_{2} y \in \Omega$.
In fact, for every $x, y \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
\left(S_{1} x\right)(t) & +\left(S_{2} y\right)(t) \\
\leqslant & -c_{2}-1-\frac{1}{C(t)} x(t+\tau) \\
& \left.-\frac{1}{C(t)} \frac{1}{(n-1)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right)\right) \mathrm{d} s \\
\leqslant & -c_{2}-1+2-\frac{1}{c_{2}} \frac{1}{(n-1)!} \int_{T+\tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{2}+|g(s)|\right) \mathrm{d} s \\
\leqslant & -c_{2}+1-\frac{c_{2}+1}{2} \leqslant-2 c_{2}
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\left(S_{1} x\right)(t) & +\left(S_{2} y\right)(t) \\
\geqslant & -c_{2}-1-\frac{1}{C(t)} x(t+\tau) \\
& +\frac{1}{C(t)} \frac{1}{(n-1)!} \int_{t+\tau}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\geqslant & -c_{2}-1+\frac{1}{c_{2}} \frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{2}+|g(s)|\right) \mathrm{d} s \\
\geqslant & -c_{2}-1+\frac{c_{2}+1}{2}=-\frac{c_{2}+1}{2} .
\end{aligned}
$$

Hence,

$$
-\frac{c_{2}+1}{2} \leqslant\left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \leqslant-2 c_{2}, \quad \text { for } t \geqslant t_{0} .
$$

Thus we have proved that $S_{1} x+S_{2} y \in \Omega$ for any $x, y \in \Omega$.
We shall show that S_{1} is a contractive mapping on Ω.
In fact, for $x, y \in \Omega$ and $t \geqslant T$, we have

$$
\left|\left(S_{1} x\right)(t)-\left(S_{1} y\right)(t)\right| \leqslant-\frac{1}{C(t)}|x(t+\tau)-y(t+\tau)| \leqslant-\frac{1}{c_{2}}\|x-y\|
$$

This implies that

$$
\left\|S_{1} x-S_{1} y\right\| \leqslant-\frac{1}{c_{2}}\|x-y\|
$$

Since $0<-1 / c_{2}<1$, we conclude that S_{1} is a contractive mapping on Ω.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S_{2} is completely continuous. By Lemma 1 , there is a $x_{0} \in \Omega$ such that $S_{1} x_{0}+S_{2} x_{0}=x_{0}$. Clearly, $x_{0}=x_{0}(t)$ is a bounded nonoscillatory solution of the equation (1). This completes the proof of Theorem 2.

Theorem 3. Assume that $0 \leqslant C(t) \leqslant c_{3}<1$ and that (4) and (5) hold. Then (1) has a nonoscillatory bounded solution.

Proof. By (4) and (5), we choose a $T>t_{0}$ sufficiently large such that

$$
\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{3}+|g(s)|\right) \mathrm{d} s \leqslant 1-c_{3},
$$

where $M_{3}=\max _{2\left(1-c_{3}\right) \leqslant x \leqslant 4}\left\{f_{i}(x): 1 \leqslant i \leqslant m\right\}$.

Let $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ be the set as in the proof of Theorem 1 . We define a closed, bounded and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right): 2\left(1-c_{3}\right) \leqslant x(t) \leqslant 4, t \geqslant t_{0}\right\}
$$

Define two maps S_{1} and $S_{2}: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\begin{aligned}
& \left(S_{1} x\right)(t)=\left\{\begin{array}{l}
3+c_{3}-C(t) x(t-\tau), \quad t \geqslant T \\
\left(S_{1} x\right)(T), \quad t_{0} \leqslant t \leqslant T,
\end{array}\right. \\
& \left(S_{2} x\right)(t)=\left\{\begin{array}{l}
\frac{(-1)^{n+1}}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T \\
\left(S_{2} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
\end{aligned}
$$

We shall show that for any $x, y \in \Omega, S_{1} x+S_{2} y \in \Omega$.
In fact, for every $x, y \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
\left(S_{1} x\right)(t) & +\left(S_{2} y\right)(t) \\
\leqslant & 3+c_{3}-C(t) x(t-\tau) \\
& \quad+\frac{1}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\leqslant & 3+c_{3}+\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{3}+|g(s)|\right) \mathrm{d} s \\
\leqslant & 3+c_{3}+1-c_{3}=4
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\left(S_{1} x\right)(t) & +\left(S_{2} y\right)(t) \\
\geqslant & 3+c_{3}-C(t) x(t-\tau) \\
& \quad-\frac{1}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)+|g(s)|\right) \mathrm{d} s\right. \\
\geqslant & 3+c_{3}-4 c_{3}-\frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{3}+|g(s)|\right) \mathrm{d} s \\
\geqslant & 3+c_{3}-4 c_{3}-\left(1-c_{3}\right)=2\left(1-c_{3}\right)
\end{aligned}
$$

Hence,

$$
2\left(1-c_{3}\right) \leqslant\left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \leqslant 4, \quad \text { for } t \geqslant t_{0}
$$

Thus we have proved that $S_{1} x+S_{2} y \in \Omega$ for any $x, y \in \Omega$.

Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S_{1} is a contractive mapping on Ω and the mapping S_{2} is completely continuous. By Lemma 1 , there is an $x_{0} \in \Omega$ such that $S_{1} x_{0}+S_{2} x_{0}=x_{0}$. Clearly, $x_{0}=x_{0}(t)$ is a bounded nonoscillatory solution of the equation (1). This completes the proof of Theorem 3.

Theorem 4. Assume that $1<c_{4} \equiv C(t)<\infty$ and that (4) and (5) hold. Then (1) has a nonoscillatory bounded solution.

Proof. By (4) and (5), we choose a $T>t_{0}$ sufficiently large such that

$$
\frac{1}{c_{4}(n-1)!} \int_{T+\tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{4}+|g(s)|\right) \mathrm{d} s \leqslant c_{4}-1
$$

where $M_{4}=\max _{2\left(c_{4}-1\right) \leqslant x \leqslant 4 c_{4}}\left\{f_{i}(x): i=1,2, \ldots, m\right\}$.
Let $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ be the set as in the proof of Theorem 1 . We define a closed, bounded and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right): 2\left(c_{4}-1\right) \leqslant x(t) \leqslant 4 c_{4}, t \geqslant t_{0}\right\} .
$$

Define two maps S_{1} and $S_{2}: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\begin{aligned}
& \left(S_{1} x\right)(t)=\left\{\begin{array}{l}
3 c_{4}+1-\frac{1}{C(t)} x(t+\tau), \quad t \geqslant T \\
\left(S_{1} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right. \\
& \left(S_{2} x\right)(t)=\left\{\begin{array}{l}
\frac{(-1)^{n+1}}{C(t)(n-1)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-1} \\
\quad \times\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T \\
\left(S_{2} x\right)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
\end{aligned}
$$

We shall show that for any $x, y \in \Omega, S_{1} x+S_{2} y \in \Omega$.
In fact, for every $x, y \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
& \left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \\
& \leqslant \\
& \quad 3 c_{4}+1-\frac{1}{C(t)} x(t+\tau) \\
& \quad+\frac{1}{C(t)} \frac{1}{(n-1)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \leqslant \\
& \leqslant
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& \left(S_{1} x\right)(t)+\left(S_{2} y\right)(t) \\
& \geqslant 3 c_{4}+1-\frac{1}{C(t)} x(t+\tau) \\
& -\frac{1}{C(t)} \frac{1}{(n-1)!} \int_{t+\tau}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(y\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \geqslant 3 c_{4}+1-4-\frac{1}{c_{4}} \frac{1}{(n-1)!} \int_{T}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{4}+|g(s)|\right) \mathrm{d} s \\
& \geqslant 3 c_{4}-3-\left(c_{4}-1\right)=2\left(c_{4}-1\right) .
\end{aligned}
$$

Hence,

$$
2\left(c_{4}-1\right) \leqslant S_{1} x(t)+S_{2} y(t) \leqslant 4 c_{4}, \quad \text { for } t \geqslant t_{0}
$$

Thus we have proved that $S_{1} x+S_{2} y \in \Omega$ for any $x, y \in \Omega$.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S_{1} is a contractive mapping on Ω and the mapping S_{2} is completely continuous. By Lemma 1, there is an $x_{0} \in \Omega$ such that $S_{1} x_{0}+S_{2} x_{0}=x_{0}$. Clearly, $x_{0}=x_{0}(t)$ is a bounded nonoscillatory solution of the equation (1). This completes the proof of Theorem 4.

Theorem 5. Assume that $C(t) \equiv 1$ and that (4) and (5) hold. Then (1) has a nonoscillatory bounded solution.

Proof. By (4) and (5), we choose a $T>t_{0}$ sufficiently large such that

$$
\frac{1}{(n-1)!} \int_{T+\tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{5}+|g(s)|\right) \mathrm{d} s \leqslant 1,
$$

where $M_{5}=\max _{2 \leqslant x \leqslant 4}\left\{f_{i}(x): 1 \leqslant i \leqslant m\right\}$.
We define a closed, bounded and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right): 2 \leqslant x(t) \leqslant 4, t \geqslant t_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
(S x)(t)=\left\{\begin{array}{l}
3+\frac{(-1)^{n+1}}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau}(s-t)^{n-1} \\
\quad \times\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T \\
(S x)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
$$

We shall show that $S \Omega \subset \Omega$.
In fact, for every $x \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
(S x)(t) \leqslant & 3+\frac{1}{(n-1)!} \\
& \times \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\leqslant & 3+\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{5}+|g(s)|\right) \mathrm{d} s \leqslant 4
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
(S x)(t) \geqslant & 3-\frac{1}{(n-1)!} \\
& \times \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\geqslant & 3-\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{5}+|g(s)|\right) \mathrm{d} s \geqslant 2
\end{aligned}
$$

Hence, $S \Omega \subset \Omega$.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S is completely continuous. By Lemma 2 , there is an $x_{0} \in \Omega$ such that $S x_{0}=x_{0}$, that is

$$
x_{0}(t)=\left\{\begin{array}{l}
3+\frac{(-1)^{n+1}}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+(2 j-1) \tau}^{t+2 j \tau}(s-t)^{n-1} \\
\quad \times\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(t-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T \\
x_{0}(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
$$

It follows that

$$
\begin{aligned}
x(t)+x(t-\tau)= & 6+\frac{(-1)^{n+1}}{(n-1)!} \\
& \left.\times \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(x\left(t-\sigma_{i}\right)\right)\right)-g(t)\right) \mathrm{d} s, \quad t \geqslant T
\end{aligned}
$$

Clearly, $x_{0}=x_{0}(t)$ is a bounded nonoscillatory solution of the equation (1). This completes the proof of Theorem 5.

Remark 1. For the special case $n=1$ or $n=2$, Theorems $1-5$ improve essentially Theorem A and B by removing the restrictive conditions H_{2}) and H_{4}) and relaxing the hypotheses H_{1}) and H_{3}).

Remark 2. For the special case $C(t) \equiv-1$, it is also possible that the equation (1) has no nonoscillatory solution in spite of the fact that (4) and (5) hold. For example, consider the neutral differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}(x(t)-x(t-\tau))+\frac{1}{t^{\alpha}} x(t-\sigma)=0 \tag{6}
\end{equation*}
$$

where n is an odd integer, $\tau>0, \sigma \geqslant 0, n<\alpha<n+1$. Clearly, (4) and (5) hold. But, by Theorem 3.2 in [13], the equation (6) has no nonoscillatory solution.

Theorem 6. Assume that $C(t) \equiv-1$ and that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} t^{n}\left|Q_{i}(t)\right| \mathrm{d} t<\infty, \quad i=1,2, \ldots, m \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} t^{n}|g(t)| \mathrm{d} t<\infty \tag{8}
\end{equation*}
$$

Then (1) has a nonoscillatory bounded solution.
Proof. By a known result [5, Theorem 3.2.6], (7) and (8) are equivalent to

$$
\begin{equation*}
\sum_{j=0}^{\infty} \int_{t_{0}+j \tau}^{\infty} t^{n-1}\left|Q_{i}(t)\right| \mathrm{d} t<\infty, \quad i=1,2, \ldots, m \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \int_{t_{0}+j \tau}^{\infty} t^{n-1}|g(t)| \mathrm{d} t<\infty \tag{10}
\end{equation*}
$$

respectively. We choose a sufficiently large $T>t_{0}$ such that

$$
\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{T+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{6}+|g(s)|\right) \mathrm{d} s \leqslant 1,
$$

where $M_{6}=\max _{0 \leqslant x \leqslant 1}\left\{f_{i}(x): 1 \leqslant i \leqslant m\right\}$.
We define a closed, bounded and convex subset Ω of $C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
\Omega=\left\{x=x(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right): 2 \leqslant x(t) \leqslant 4, t \geqslant t_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ as follows:

$$
(S x)(t)=\left\{\begin{array}{l}
3+\frac{(-1)^{n}}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+j \tau}^{\infty}(s-t)^{n-1} \\
\quad \times\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T \\
(S x)(T), \quad t_{0} \leqslant t \leqslant T
\end{array}\right.
$$

We shall show that $S \Omega \subset \Omega$. In fact, for every $x \in \Omega$ and $t \geqslant T$, we get

$$
\begin{aligned}
(S x)(t) & \leqslant 3+\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+j \tau}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \leqslant 3+\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{T+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{6}+|g(s)|\right) \mathrm{d} s \leqslant 4
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
(S x)(t) & \geqslant 3-\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+j \tau}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& \geqslant 3-\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{T+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right| M_{6}+|g(s)|\right) \mathrm{d} s \geqslant 2
\end{aligned}
$$

Hence, $S \Omega \subset \Omega$.
We now show that S is continuous. Let $x_{k}=x_{k}(t) \in \Omega$ be such that $x_{k}(t) \rightarrow x(t)$ as $k \rightarrow \infty$. Because Ω is closed, $x=x(t) \in \Omega$. For $t \geqslant T$, we have

$$
\begin{aligned}
& \left|\left(S x_{k}\right)(t)-(S x)(t)\right| \\
& \quad \leqslant \frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{T+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x_{k}\left(s-\sigma_{i}\right)\right)-f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|\right) \mathrm{d} s
\end{aligned}
$$

Since $\left|f_{i}\left(x_{k}\left(t-\sigma_{i}\right)\right)-f_{i}\left(x\left(t-\sigma_{i}\right)\right)\right| \rightarrow 0$ as $k \rightarrow \infty$ for $i=1,2, \ldots m$, by applying the Lebesgue dominated convergence theorem, we conclude that $\lim _{k \rightarrow \infty} \|\left(S x_{k}\right)(t)-$ $(S x)(t) \|=0$. This means that S is continuous.

In the following, we show that $S \Omega$ is relatively compact. By (9) and (10), for any $\varepsilon>0$, take $T^{*} \geqslant T$ large enough so that

$$
\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{T^{*}+j \tau}^{\infty} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s<\frac{\varepsilon}{2} .
$$

Then for $x \in \Omega, t_{2}>t_{1} \geqslant T^{*}$

$$
\begin{aligned}
\mid(S x)\left(t_{2}\right) & -(S x)\left(t_{1}\right) \mid \\
\leqslant & \frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t_{2}+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
& +\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t_{1}+j \tau}^{\infty} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\leqslant & \frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t_{2}+j \tau}^{\infty} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s \\
& +\frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t_{1}+j \tau}^{\infty} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

For $T \leqslant t_{1}<t_{2} \leqslant T^{*}$, we choose a sufficiently large $J \in \mathbb{N}^{+}$such that $T+j \tau \geqslant T^{*}$ if $j \geqslant J$. For $x \in \Omega$

$$
\begin{aligned}
\mid(S x)\left(t_{2}\right) & -(S x)\left(t_{1}\right) \mid \\
\leqslant & \frac{1}{(n-1)!} \sum_{j=1}^{\infty} \int_{t_{1}+j \tau}^{t_{2}+j \tau} s^{n-1}\left(\sum_{i=1}^{m}\left|Q_{i}(s)\right|\left|f_{i}\left(x\left(s-\sigma_{i}\right)\right)\right|+|g(s)|\right) \mathrm{d} s \\
\leqslant & \frac{1}{(n-1)!}\left[\sum_{j=1}^{J} \int_{t_{1}+j \tau}^{t_{2}+j \tau} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s\right. \\
& \left.+\sum_{j=J+1}^{\infty} \int_{t_{1}+j \tau}^{t_{2}+j \tau} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s\right] \\
\leqslant & \frac{1}{(n-1)!}\left[\max _{T+\tau \leqslant s \leqslant T^{*}+(J-1) \tau}\left\{s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right)\right\} J\left(t_{2}-t_{1}\right)\right. \\
& \left.+\sum_{j=1}^{\infty} \int_{T^{*}+j \tau}^{\infty} s^{n-1}\left(M_{6} \sum_{i=1}^{m}\left|Q_{i}(s)\right|+|g(s)|\right) \mathrm{d} s\right] .
\end{aligned}
$$

Thus there exists a $\delta>0$ such that

$$
\left|(S x)\left(t_{2}\right)-(S x)\left(t_{1}\right)\right|<\varepsilon, \quad \text { if } 0<t_{2}-t_{1}<\delta
$$

For any $x \in \Omega, t_{0} \leqslant t_{1}<t_{2} \leqslant T$, it is easy to see that

$$
\left|(S x)\left(t_{2}\right)-(S x)\left(t_{1}\right)\right|=0<\varepsilon
$$

Therefore $\{S x: x \in \Omega\}$ is uniformly bounded and equicontinuous on $\left[t_{0}, \infty\right)$, and hence $S \Omega$ is relatively compact. By Lemma 2 (Schauder's fixed point theorem), there is an $x_{0} \in \Omega$ such that $S x_{0}=x_{0}$. That is,

$$
x_{0}(t)=\left\{\begin{array}{l}
3+\frac{(-1)^{n}}{(n-1)!} \sum_{j=1}^{\infty} \int_{t+j \tau}^{\infty}(s-t)^{n-1} \\
\quad \times\left(\sum_{i=1}^{m} Q_{i}(s) f_{i}\left(x_{0}\left(s-\sigma_{i}\right)\right)-g(s)\right) \mathrm{d} s, \quad t \geqslant T, \\
x_{0}(T), \quad t_{0} \leqslant t \leqslant T .
\end{array}\right.
$$

It follows that
$\left.x(t)-x(t-\tau)=\frac{(-1)^{n+1}}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1}\left(\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(x\left(t-\sigma_{i}\right)\right)\right)-g(t)\right) \mathrm{d} s, \quad t \geqslant T$.
Clearly, $x_{0}=x_{0}(t)$ is a bounded nonoscillatory solution of the equation (1). This completes the proof of Theorem 6.

Remark 3. Only minor adjustments are necessary to discuss the neutral functional differential equation

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}[x(t)+C(t) x(t-\tau)]+F\left(t, x\left(\sigma_{1}(t)\right), \ldots, x\left(\sigma_{m}(t)\right)\right)=g(t), \quad t \geqslant t_{0}
$$

where $F:\left[t_{0}, \infty\right) \times \mathbb{R} \times \ldots \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bounded, $\sigma_{i}(t) \rightarrow \infty(i=$ $1,2, \ldots, m)$ as $t \rightarrow \infty$, and $m \geqslant 1$ is an integer. We omit the details.

Acknowledgment. The author thanks the referee for useful comments and suggestions.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, 2000.
[2] R.P. Agarwal, S. R. Grace and D. O'Regan: Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), 601-622.
[3] R.P. Agarwal and S.R. Grace: The oscillation of higher-order differential equations with deviating arguments. Computers Math. Applied 38 (1999), 185-190.
[4] M.P. Chen, J.S. Yu and Z. C. Wang: Nonoscillatory solutions of neutral delay differential equations. Bull. Austral. Math. Soc. 48 (1993), 475-483.
[5] L. H. Erbe, Q. K. Kong and B. G. Zhang: Oscillation Theory for Functional Differential equations. Marcel Dekker, New York, 1995.
[6] I. Gyori and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ. Press, London, 1991.
[7] J. R. Graef, B. Yang and B. G. Zhang: Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients. Math. Bohemica 124 (1999), 87-102.
[8] M.R.S. Kulenovic and S. Hadziomerspahic: Existence of nonoscillatory solution of second order linear neutral delay equation. J. Math. Anal. Appl. 228 (1998), 436-448.
[9] H. A. El-Morshedy and K. Gopalsamy: Nonoscillation, oscillation and convergence of a class of neutral equations. Nonlinear Anal. 40 (2000), 173-183.
[10] C. H. Ou and J.S. W. Wong: Forced oscillation of n th-order functional differential equations. J. Math. Anal. Appl. 262 (2001), 722-732.
[11] S. Tanaka: Existence of positive solutions for a class of higher order neutral differential equations. Czechoslovak Math. J. 51 (2001), 573-583.
[12] N. Parhi and R.N. Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients. J. Math. Anal. Appl. 256 (2001), 525-241.
[13] B. G. Zhang and B. Yang: New approach of studying the oscillation of neutral differential equations. Funkcial Ekvac. 41 (1998), 79-89.
[14] Yong Zhou: Oscillation of neutral functional differential equations. Acta Math. Hungar. 86 (2000), 205-212.
[15] Yong Zhou and B. G. Zhang: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15 (2002), 867-874.

Authors' addresses: Y. Zhou, Department of Mathematics, Xiangtan University Hunan 411105, P.R. China, e-mail: yzhou@xtu.edu.cn; B. G. Zhang, Department of Applied Mathematics, Ocean University of Qingdao, Qingdao 266003, P.R. China, e-mail: bgzhang@public.qd.sd.cn; Y. Q. Huang, Department of Mathematics, Xiangtan University, Xiangtan 411105, P.R. China, e-mail: huangyq@xtu.edu.cn.

