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OSCILLATION OF NONLINEAR DIFFERENTIAL SYSTEMS

WITH RETARDED ARGUMENTS
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Abstract. In this work we investigate some oscillatory properties of solutions of non-linear
differential systems with retarded arguments. We consider the system of the form

y′i(t)− pi(t)yi+1(t) = 0, i = 1, 2, . . . , n − 2,
y′n−1(t)− pn−1(t)|yn(hn(t))|α sgn[yn(hn(t))] = 0,

y′n(t) sgn[y1(h1(t))] + pn(t)|y1(h1(t))|β 6 0,

where n > 3 is odd, α > 0, β > 0.

Keywords: nonlinear differential system, oscillatory (nonoscillatory) solution

MSC 2000 : 34K15, 34K40

1. Introduction

We consider systems of nonlinear differential inequalities with retarded arguments
of the form

y′i(t)− pi(t)yi+1(t) = 0, i = 1, 2, . . . , n− 2,(S)

y′n−1(t)− pn−1(t)|yn(hn(t))|α sgn[yn(hn(t))] = 0,

y′n(t) sgn[y1(h1(t))] + pn(t)|y1(h1(t))|β 6 0,

where the following conditions are always assumed: n > 3 is odd, α > 0, β > 0,
pi : [a,∞) → [0,∞), a ∈ � , i = 1, 2, . . . , n, are continuous functions not identically
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equal to zero on any subinterval of [a,∞),

∫ ∞

a

pi(t) dt = ∞, i = 1, 2, . . . , n− 1,

h1 : [a,∞) → � , hn : [a,∞) → � are continuous nondecreasing functions and h1(t) <

t, hn(t) < t on [a,∞), lim
t→∞

h1(t) = lim
t→∞

hn(t) = ∞. Denote by W the set of

all solutions y(t) = (y1(t), . . . , yn(t)) of the system (S) which exist on some ray

[Ty,∞) ⊂ [a,∞) and satisfy sup
{ n∑

i=1

|yi(t)| : t > T
}

> 0 for any T > Ty.

As far as the autors know there is no oscillatory result for the system (S) in the

case when n > 3 is odd. It is to be pointed out that Theorems 1 and 2 extend the
result of Theorem 3 in [4]. Moreover, Theorems 3 and 4 consider the case when
αβ = 1, which is not treated in [4].

Definition 1. A solution y ∈ W is called oscillatory (weakly oscillatory) if each
component (at least one component) has arbitrarily large zeros. A solution y ∈ W is

called nonoscillatory (weakly oscillatory) if each component (at least one component)
is eventually of a constant sign on some interval [t0,∞), t0 > a. We define

I0 = 1

and

Ik(t, s; pk, . . . , p1) =
∫ t

s

pk(x)Ik−1(x, s, pk−1, . . . , p1) dx, k = 1, . . . , n− 2.

Lemma 1. Suppose that

(1) y = (y1, . . . , yn) ∈ W

is a nonoscillatory solution of (S) and

(2) (−1)n+iyi(t)y1(t) > 0 on [t0,∞), t0 > a, i = 1, . . . , n.

Then

y1(h1(t)) sgn[y1(h1(t))](3)

> |yn(hn(t))|α
∫ t

h1(t)

pn−1(x)In−2(x, h1(t); pn−2, . . . , p1) dx

for all large t.
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. Let t0 6 s 6 t. It is evident that

y1(s) = y1(t)−
∫ t

s

y′1(x) dx = y1(t)−
∫ t

s

p1(x)y2(x) dx.

We calculate the second integral by parts. Denote

v(x) =
∫ x

s

p1(τ) dτ = I1(x, s; p1), u(x) = y2(x).

Then we get

y1(s) = y1(t)− y2(t)I1(t, s; p1) +
∫ t

s

y′2(x)I1(x, s; p1) dx

= y1(t)− y2(t)I1(t, s; p1) +
∫ t

s

p2(x)y3(x)I1(x, s; p1) dx.

Applying further (n−3)-times the method of integration by parts to the last integral
we obtain the identity

y1(s) =
n−2∑

j=0

(−1)jyj+1(t)Ij(t, s; pj , . . . , p1)

+
∫ t

s

pn−1(x)|yn(hn(x))|α sgn[yn(hn(x))]In−2(x, s; pn−2, . . . , p1) dx,

t0 6 s 6 t.

In view of (2) and the monotonicity of yn(t), we obtain for T > t0 sufficiently large,

y1(s) sgn[y1(s)] =
n−2∑

j=0

(−1)jyj+1(t) sgn[y1(t)]Ij(t, s; pj , . . . , p1)

+
∫ t

s

pn−1(x)|yn(hn(x))|αIn−2(x, s; pn−2, . . . , p1) dx,

T 6 s 6 t,

y1(h1(t)) sgn[y1(h1(t))]

> |yn(hn(t))|α
∫ t

h1(t)

pn−1(x)In−2(x, s; pn−2, . . . , p1) dx, t > T.

The proof is complete. �

The following notation will be used:

pi(t) = min{pi(s) : h1(t) 6 s 6 t}, t > a, i = 1, . . . , n− 1,

Pn−1(t) = pn−1(t)pn−2(t) . . . p1(t).
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Lemma 2. Suppose that assumptions (1) and (2) are fulfilled. Then

(4) y1(h1(t)) sgn[y1(h1(t))] > (t− h1(t))n−1

(n− 1)!
Pn−1(t)|yn(hn(t))|α

for all large t.

��� �!��"
. In view of (3) we get

y1(h1(t)) sgn[y1(h1(t))] > |yn(hn(t))|αpn−1(t)
∫ t

h1(t)

In−2(x, h1(t); pn−2, . . . , p1) dx.

Integrating by parts we obtain

y1(h1(t)) sgn[y1(h1(t))]

> |yn(hn(t))|αpn−1(t)
∫ t

h1(t)

(t− x)pn−2(x)In−3(x, h1(t); pn−3, . . . , p1) dx

> . . . > |yn(hn(t))|αpn−1(t) . . . p1(t)
∫ t

h1(t)

(t− x)n−2

(n− 2)!
dx.

Calculating the last integral we have

y1(h1(t)) sgn[y1(h1(t))] > (t− h1(t))n−1

(n− 1)!
Pn−1(t)|yn(hn(t))|α, t > T,

where T is sufficiently large. �

The next lemma follows from Theorem 3 in [4].

Lemma 3. Suppose that 0 < αβ < 1 and

(5)
∫ ∞

T

(h1(t))(n−1)βpn(t)(Pn−1((h1(t)))β dt = ∞, T > a.

Then every nonoscillatory solution of system (S) has the property lim
t→∞

yk(t) = 0,

k = 1, 2, . . . , n, and (2) holds.

The next lemma is derived from Theorem 2 in [1].
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Lemma 4. Assume that g ∈ C([a,∞), [0,∞)), δ ∈ C([a,∞), � ), lim
t→∞

δ(t) = ∞,
δ(t) < t for t 6 a and

lim inf
t→∞

∫ t

δ(t)

g(s) ds >
1
e
.

Then the functional inequality

y′(t) + g(t)y(δ(t)) 6 0, t > a,

cannot have an eventually positive solution and

y′(t) + g(t)y(δ(t)) > 0, t > a,

cannot have an eventually negative solution.

The next lemma is presented in [4] as Lemma 1.

Lemma 5. Let y = (y1, . . . , yn) ∈ W be a weakly nonoscillatory solution of (S),

then y is nonoscillatory.

Theorem 1. Suppose that 0 < αβ < 1, (5) holds and

(6) lim inf
t→∞

∫ t

hn(t)

pn(s)
[∫ s

h1(s)

pn−1(x)In−2(x, h1(s); pn−2, . . . , p1) dx

]β

ds >
1
e
.

Then all solutions of system (S) are oscillatory.
��� �!��"

. Assume that the system (S) has a solution y = (y1, . . . , yn) ∈ W at

least one component of which is eventually of constant sign. Then by Lemma 5 y is
nonoscillatory. We may suppose that y1(t) > 0 for t > t0 > a. By Lemma 3 the

solution y has the property

lim
t→∞

yk(t) = 0, k = 1, 2, . . . , n

and(2) holds. Applying Lemma 1 to the nth inequality of the system (S) we obtain

y′n(t) + yαβ
n (hn(t))pn(t)

[∫ t

h1(t)

pn−1(x)In−2(x, h1(t); pn−2, . . . , p1) dx

]β

6 0,

t > T > t0.

With regard to the facts that 0 < αβ < 1 and lim
t→∞

yn(t) = 0, we get

y′n(t) + pn(t)
[∫ t

h1(t)

pn−1(x)In−2(x, h1(t); pn−2, . . . , p1) dx

]β

yn(hn(t)) 6 0,(7)

t > T,
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where T is sufficiently large. By Lemma 4 the inequality (7) cannot have a positive

solution. This contradicts the fact that yn(t) > 0 for t > T . The proof is complete.
�

Theorem 2. Suppose that 0 < αβ < 1, (5) holds and

(8) lim inf
t→∞

∫ t

hn(t)

(s− h1(s))(n−1)βP β
n−1(s)pn(s) ds >

[(n− 1)!]β

e
.

Then all solutions of system (S) are oscillatory.

��� �!��"
. Assume that the system (S) has a solution y = (y1, . . . , yn) ∈ W at least

one component of which is nonoscillatory. Then by Lemma 5 y is nonoscillatory. We
may suppose that y1(t) > 0 for t > t0 > a. Due to Lemma 3 the solution y has

the property lim
t→∞

yk(t) = 0, k = 1, 2, . . . , n, and (2) holds. Applying (4) to the nth

inequality of (S) we get

y′n(t) +
(t− h1(t))(n−1)β

[(n− 1)!]β
P β

n−1(t)pn(t)yαβ
n (hn(t)) 6 0, t > T > t0.

By virtue of the conditions 0 < αβ < 1 and lim
t→∞

yn(t) = 0, we obtain

(9) y′n(t) +
(t− h1(t))(n−1)β

[(n− 1)!]β
P β

n−1(t)pn(t)yn(hn(t)) 6 0, t > T

where T is sufficiently large.

By Lemma 4 the inequality (9) cannot have a positive solution. This is a contra-

diction with property (2). �

The next lemma follows from Lemma 2 and Lemma 5 in [4].

Lemma 6. Suppose that the assumption (1) of Lemma 1 is fulfilled. Then there
exists l ∈ {1, 2, . . . , n}, l is odd and t0 > a such that

yi(t)y1(t) > 0 on [t0,∞) for i = 1, 2, . . . , l,(10)

(−1)n+iyi(t)y1(t) > 0 on [t0,∞) for i = l + 1, . . . , n,(11)

and

(12) |yi(t/2)| > cit
n−iP i

n−1(t)|yn(t)|α for t > t0, i = 1, 2, . . . , l − 1,
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where

ci =
2−2(n−i)

(n− 1)!(n− i)!
, i = 1, 2, . . . , n− 1,

P i
n−1(t) = pn−1(t)pn−2(t) . . . pi(t) for i = 1, 2, . . . , n− 1,

P 1
n−1(t) = Pn−1(t).

Remark. The inequality (10) implies

|yi(t)| > |yi(t/2)| for i = 1, 2, . . . , l− 1.

Hence(12) can be written in the form

(13) |yi(t)| > cit
n−iP i

n−1(t)|yn(t)|α for t > t0, i = 1, . . . , l − 1.

Theorem 3. Suppose that αβ = 1, (6) holds and

(14) lim inf
t→∞

∫ t

h1(t)

[h1(s)](n−1)β [Pn−1(h1(s))]βpn(s) ds >
1

ecβ
1

.

Then all solutions of the system (S) are oscillatory.
��� �!��"

. Assume that the system (S) has a solution y = (y1, . . . , yn) ∈ W at

least one component of which is nonoscillatory. Then by Lemma 5 the solution y is
nonoscillatory. We may assume that y1(t) > 0 for t > t0 > a and y1(h1(t)) > 0 for
t > t1 > t0. Then the nth inequality of (S) implies that y′n(t) 6 0 for t > t1 and it
is not identically zero on any subinterval of [t1,∞]. As y1(t) > 0 and y′n(t) 6 0 for
t > t1, then by Lemma 6 we get (10), (11), and (12) or (13).
Let l > 2. From (13) we have for i = 1,

y1(t) > c1t
n−1Pn−1(t)yα

n(t), t > t2 > t1.

Then the nth inequality of system (S) implies

y′n(t) + cβ
1 [h1(t)](n−1)β [Pn−1(h1(t))]βpn(t)[yn(h1(t))] 6 0, t > t3 > t2.

This inequality by Lemma 4 cannot have an eventually positive solution yn(t), which
is a contradiction. The case when l = 1 is also impossible. This case can be treated
as in the proof of Theorem 1. So the proof is complete. �
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Theorem 4. Suppose that αβ = 1 and (5), (8), (14) hold. Then all solutions of
system (S) are oscillatory.

The result of the theorem follows from Theorems 3 and 2.

References

[1] R.G. Koplatadze and T.A. Chanturia: On the oscillatory and monotone solutions of the
first order differential equations with deviating arguments. J. Diff. Equations 8 (1982),
1463–1465. (In Russian.)

[2] I. Foltynska and J. Werbowski: On the oscillatory behaviour of solution of system of
differential equation with deviating arguments. Colloquia Math. Soc. J. B., Qualitative
theory of Diff. Eq. Szeged 30 (1979), 243–256.

[3] Y. Kitamura and T. Kusano: On the oscillation of a class of nonlinear differential systems
with deviating argument. J. Math. Annal Appl. 66 (1978), 20–36.

[4] P. Marušiak: On the oscillation of nonlinear differential systems with retarded argu-
ments. Math. Slovaca 34 (1984), 73–88.

[5] P. Marušiak and R. Olach: Functional Differential Equations. University of Žilina, EDIS,
Žilina, 2000. (In Slovak.)

Authors’ addresses: # $ # % & ' (*) , Department of Mathematics, Faculty of Sciences,
University of Žilina, Slovak Republic, e-mail: beatrix.bacova@fpv.utc.sk; # $ + ' , ' - . %0/1 ' (*) , Department of Applied Mathematics, Faculty of Mechanical Engineering, University
of Žilina, Slovak Republic, e-mail: dorociak@kam.utc.sk.

262


		webmaster@dml.cz
	2020-07-03T15:14:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




