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Abstract. It is shown that a ring R is a GM -ring if and only if there exists a complete
orthogonal set {e1, . . . , en} of idempotents such that all eiRei are GM -rings. We also
investigate GM -rings for Morita contexts, module extensions and power series rings.
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MSC 2000 : 16U99, 16E50

Many authors have studied associative rings with many units and many idem-

potents (cf. [1]–[6], [8], [9], [12] and [13]). A ring R is said to satisfy the GM -
condition provided that for any x, y ∈ R, there exists a u ∈ U(R) such that
x − u, y − u−1 ∈ U(R). In [6], K.R. Goodearl and P. Menal showed that many
known rings satisfy the GM -condition. In [8], J. Han and W.K. Nicholson studied

extensions of clean rings. A ring R is called a clean ring if for any x ∈ R, there exists
e = e2 ∈ R such that x − e ∈ U(R). To extend the GM -condition and clean rings,
the first author introduced GM -rings (cf. [5]). We say that a ring R is a GM -ring
provided that for any x, y ∈ R there exist idempotents e, f ∈ R and u ∈ U(R) such
that x − eu, y − fu−1 ∈ U(R). Clearly, all clean rings and all rings satisfying the
GM -condition are GM -rings.

In this paper we show that a ring R is a GM -ring if and only if there exists a

complete orthogonal set {e1, . . . , en} of idempotents such that all eiRei are GM -
rings. We also investigate GM -rings for Morita contexts, module extensions and

power series rings. These give generalizations of [5, Theorem 8] and [8, Theorem].

Throughout, all rings are associative with identity. GLn(R) stands for the general
linear group of R, U(R) stands for the set of units of R and we use J(R) to denote
the Jacobson radical of R.

This work was supported by the Natural Science Foundation of Zhejiang Province.
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Let e1, e2, . . . , en ∈ R be idempotents. Clearly,



e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen


 =







e1r11e1 . . . e1r1nen
...

. . .
...

e1rn1e1 . . . e1rnnen


 : rij ∈ R (1 6 i, j 6 n)





forms a ring with the identity diag(e1, . . . , en). Now we extend [5, Theorem 8] as
follows.

Lemma 1. Let e1, . . . , en be idempotents of a ring R. If all eiRei are GM -rings,

then so is the ring 

e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen


 .

���������
. Clearly, the result holds for n = 1. Now assume that the result holds for

m > 1. For any A′
1, A

′
2 ∈




e1Re1 . . . e1Rem+1

...
. . .

...

em+1Re1 . . . em+1Rem+1


, write A′

1 =
(
A1 B1

C1 d1

)

and A′
2 =

(
A2 B2

C2 d2

)
, where A1, A2 ∈



e1Re1 . . . e1Rem
...

. . .
...

emRe1 . . . emRem


, B1, B2, C1 and

C2 are m-vectors, and d1, d2 ∈ em+1Rem+1. We can find

E1 = E2
1 , E2 = E2

2 ∈



e1Re1 . . . e1Rem
...

. . .
...

emRe1 . . . emRem,


 ,

U, V1, V2 ∈ U






e1Re1 . . . e1Rem
...

. . .
...

emRe1 . . . emRem







such that A1 − E1U = V1 and A2 − E2U
−1 = V2. Because d1 − C1V

−1
1 B1, d2 −

C2V
−1
2 B2 ∈ em+1Rem+1, we have e1 = e21 ∈ em+1Rem+1 and u, v1, v2 ∈ U(em+1

Rem+1) such that d1 − C1V
−1
1 B1 = e1u+ v1 and d2 − C2V

−1
2 B2 = e2u

−1 + v2. Set

F1 =
(
E1 0
0 e1

)
, W =

(
U 0
0 u

)
and K1 =

(
V1 B1

C1 v1 + C1V
−1
1 B1

)
.
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It is easy to verify that F1 = F 2
1 ∈




e1Re1 . . . e1Rem+1

...
. . .

...
em+1Re1 . . . em+1Rem+1


 and

K1

(
V −1

1 + V −1
1 B1v

−1
1 C1V

−1
1 −V −1

1 B1v
−1
1

−v−1
1 C1V

−1
1 v−1

1

)

=
(
V −1

1 + V −1
1 B1v

−1
1 C1V

−1
1 v−1

1 C1V
−1
1

−V −1
1 B1v

−1
1 v−1

1

)
K1

= diag(e1, . . . , em+1).

This means that F1 is an idempotent and K1 is a unit. Moreover, A′
1 = F1W +K1

and W is a unit. Analogously, we have an idempotent F2 =
(
E2 0
0 e2

)
and a

unit K2 =
(
V2 B2

C2 v2 + C2V
−1
2 B2

)
such that A′

2 = F2W
−1 + K2. By induction

hypothesis, we conclude that



e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen


 is a GM -ring, as asserted.

�

Theorem 2. The following conditions are equivalent:

(1) R is a GM -ring.

(2) There exists a complete orthogonal set {e1, . . . , en} of idempotents such that all
eiRei are GM -rings.

���������
. (1) ⇒ (2) is obvious.

(2) ⇒ (1) We construct a map

ϕ : R→



e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen




given by ϕ(r) =



e1re1 . . . e1ren
...

. . .
...

enre1 . . . enren


. Since {e1, . . . , en} is a complete orthogonal

set of idempotents, we claim that ϕ is a ring homomorphism. Assume that ϕ(r) = 0.
Then eirej are all zero for 1 6 i, j 6 n, hence r = (e1re1 + . . . + e1ren) + . . . +
(enre1 + . . .+ enren) = 0. This means that ϕ is a monomorphism.
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Given any



e1r11e1 . . . e1r1nen
...

. . .
...

enrn1e1 . . . enrnnen


 ∈



e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen


 ,

we have a t := (e1r11e1 + . . .+ e1r1nen) + . . .+ (enrn1e1 + . . .+ enrnnen) ∈ R such
that

ϕ(t) =



e1r11e1 . . . e1r1nen
...

. . .
...

enrn1e1 . . . enrnnen


 .

So ϕ is an epimorphism, and then

ϕ : R ∼=



e1Re1 . . . e1Ren
...

. . .
...

enRe1 . . . enRen


 .

By virtue of Lemma 1, R is a GM -ring. �

As an immediate consequence, we show that if R is a GM -ring so also is the matrix

ring Mn(R). Furthermore, we can derive the following corollary.

Corollary 3. Let M1, . . . ,Mn be right R-modules. If EndR(M1), . . . ,EndR(Mn)
are GM -rings, then so is EndR(M1 ⊕ . . .⊕Mn).
���������

. Let e1, . . . , en be the idempotents forM = M1⊕. . .⊕Mn. Then they are
orthogonal and 1EndR(M) = e1 + . . .+en. That is, we have a complete orthogonal set

{e1, . . . , en} of idempotents of EndR(M). Moreover, all ei EndR(M)ei
∼= EndR(Mi)

are GM -rings. In view of Theorem 2, the result follows. �

A Morita context denoted by (A,B,M,N, ψ,Φ) consists of two rings A, B, two
bimodules ANB , BMA and a pair of bimodule homomorphisms (called pairings)
ψ : N

⊗
B M → A and Φ: M

⊗
AN → B which satisfy the following associativity:

ψ(n,m)n′ = nΦ(m,n′), Φ(m,n)m′ = mψ(n,m′) for any m,m′ ∈ M , n, n′ ∈ N .

These conditions ensure that the set T of generalized matrices

(
a n

m b

)
; a ∈ A,

b ∈ B, m ∈ M , n ∈ N forms a ring, called the ring of the context. A. Haghany

studied hopficity and co-hopficity for Morita contexts with zero pairings. Now we
give a simple proof of [5, Theorem 8].
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Proposition 4. Let T be the ring of a Morita context (A,B,M,N, ψ,Φ). If A
and B are GM -rings, then T is also a GM -ring.

���������
. Set e = diag(1, 0). Then eTe ∼= diag(A, 0) and (1 − e)T (1 − e) ∼=

diag(0, B). Since A and B are GM -rings, we directly verify that eTe and (1 −
e)T (1− e) are GM -rings as well. Clearly, {e, 1− e} is a complete orthogonal set of
idempotents. Thus we obtain the result by Theorem 2. �

Corollary 5. Let T be the ring of a Morita context (A,B,M,N, ψ,Φ). If A and
B are semiperfect rings, then T is also a GM -ring.

���������
. Since R is a semiperfect ring, it is a GM -ring. Thus we complete the

proof by Proposition 4. �

Let A1, A2, A3 be associative rings with identities, letM21,M31,M32 be (A2, A1)-,
(A3, A1)-, (A3, A2)-bimodules, respectively. Let Φ: M32

⊗
A2
M21 → M31 be an

(A3, A1)-homomorphism, and let T =




A1 0 0
M21 A2 0
M31 M32 A3


 with the usual matrix

operations (see [10]).

Theorem 6. The following conditions are equivalent:

(1) A1, A2 and A3 are GM -rings.

(2) The formal triangular matrix ring T =




A1 0 0
M21 A2 0
M31 M32 A3


 is a GM -ring.

���������
. (1) ⇒ (2) Let B =

(
A2 0
M32 A3

)
and M =

(
M21

M31

)
. Since A2 and A3

are GM -rings, so is the ring B by virtue of Theorem 4. In addition, A1 is a GM -ring.

Using Theorem 4 again, we see that

(
A1 0
M B

)
is also a GM -ring, as required.

(2) ⇒ (1) For any x, y ∈ A2, we have




0 0 0
0 x 0
0 0 0


 ,




0 0 0
0 y 0
0 0 0


 ∈ T . Since T is

a GM -ring, we have idempotents



e1 0 0
∗ e2 0
∗ ∗ e3


 ,



f1 0 0
∗ f2 0
∗ ∗ f3


 ∈ T,
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and a unit



u1 0 0
∗ u2 0
∗ ∗ u3


 ∈ T such that




0 0 0
0 x 0
0 0 0


−



e1 0 0
∗ e2 0
∗ ∗ e3






u1 0 0
∗ u2 0
∗ ∗ u3


 ∈ U(T )

and



0 0 0
0 y 0
0 0 0


−



f1 0 0
∗ f2 0
∗ ∗ f3






u1 0 0
∗ u2 0
∗ ∗ u3



−1

∈ U(T ).

One easily checks that e2 = e22, f2 = f2
2 and u2 ∈ U(R). Furthermore, we have

x − e2u2, y2 − f2u
−1
2 ∈ U(R). Therefore A2 is a GM -ring. Likewise, we claim that

A1 and A3 are GM -rings, as asserted. �

Corollary 7. A ring R is a GM -ring if and only if so is the ring of all n×n lower
triangular matrices over R is a GM -ring.

���������
. According to Theorem 6, the result follows. �

Analogously, we deduce that a ring R is a GM -ring if and only if the ring of all
n× n upper triangular matrices over R is a GM -ring.

Recall that a ring R is called an exchange ring if for every right R-module A and
any two decompositions A = M ′⊕N =

⊕
i∈I

Ai, where M ′
R
∼= RR and the index set I

is finite, there exist submodules A′
i ⊆ Ai such that A = M ′ ⊕

(⊕
i∈I

A′
i

)
. The class

of exchange rings includes local rings, semiperfect rings, semiregular rings, π-regular
rings, strongly π-regular rings and C∗-algebras with real rank one (cf. [1], [14] and

[16]).

Corollary 8. Let R be an exchange ring with artinian primitive factors. Then
the ring of all n× n lower (upper) triangular matrices over R is a GM -ring.

���������
. Applying Corollary 7, we get the result. �

As every exchange ring of bounded index has artinian primitive factors, we deduce

the following result.
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Corollary 9. Let R be an exchange ring of bounded index. Then the ring of all
n× n lower (upper) triangular matrices over R is a GM -ring.

Let TM2(R) be the ring of all 2 × 2 lower triangular matrices over R. Define

QM2(R) =
{(

a b

c d

)
| a+ c = b+ d, a, b, c, d ∈ R

}
. Then QM2(R) is a ring with

the identity diag(1, 1).

Corollary 10. A ring R is a GM -ring if and only if so is QM2(R).

���������
. Construct a map ψ : QM2(R) → TM2(R) given by

(
a b

c d

)
7→

(
a+ c 0
c d− c

)
for any

(
a b

c d

)
∈ QM2(R). For any

(
x 0
z y

)
∈ TM2(R), we

have

ψ

((
x− z x− y − z

z y + z

))
=

(
x 0
z y

)
.

Thus ψ is an epimorphism. It is easy to verify that ψ is a monomorphism; hence, it

is a ring isomorphism. Therefore we complete the proof by Corollary 7. �

If M is a R-R-bimodule, then the module extension of R byM is the ring R ./ M

with the usual addition and multiplication defined by (r1,m1)(r2,m2) = (r1r2,
r1m2 + m1r2) for r1, r2 ∈ R and m1,m2 ∈ M . Now we investigate GM -rings for

module extensions and introduce a large class of such rings.

Theorem 11. Let R be an introduce ring,M a R-R-bimodule. Then the following
conditions are equivalent:

(1) R is a GM -ring.

(2) R ./ M is a GM -ring.

���������
. (1) ⇒ (2) Given any (r1,m1), (r2,m2) ∈ R ./ M , we have idempotents

e, f ∈ R and units u, v1, v2 ∈ R such that r1 − eu = v1, r2 − fu−1 = v2. One
easily verifies that (r1,m1) − (e, 0)(u, 0) = (v1, 0) ∈ U(R ./ M) and (r2,m2) −
(e, 0)(u−1, 0) = (v2, 0) ∈ U(R ./ M). Clearly, (u, 0)−1 = (u−1, 0) ∈ U(R ./ M).
Hence R ./ M is a GM -ring.

(2) ⇒ (1) Given any r1, r2 ∈ R, then (r1, 0), (r2, 0) ∈ R ./ M . Thus we have

idempotents (e,m1), (f,m2) ∈ R ./ M and a unit (u, n) ∈ R ./ M such that
(r1, 0)− (e,m1)(u, n), (r2, 0)− (f,m2)(u, n)−1 ∈ U(R ./ M). Obviously, e, f ∈ R are
idempotents and u ∈ U(R). Moreover, we claim that r1 − eu, r2 − fu−1 ∈ U(R). So
R is a GM -ring, as asserted. �
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Corollary 12. Let R be a ring. Then R is a GM -ring if and only if so is R ./ R.

���������
. It is an immediate consequence of Theorem 11. �

Corollary 13. Let R be an exchange ring with artinian primitive factors. Then
R ./ R is a GM -ring.

���������
. Since R is an exchange ring with artinian primitive factors, it is a

GM -ring. Thus we get the result by Corollary 12. �

Theorem 14. Let R be an exchange ring. Then the following conditions are
equivalent:

(1) R is a GM -ring.

(2) R[[x1, . . . , xn]] is a GM -ring.
���������

. (1) ⇒ (2) It suffices to show that the result holds for n = 1. Given any
f(x1), g(x1) ∈ R[[x1]], we have f(0), g(0) ∈ R. Since R is a GM -ring, we can find
idempotents e, f ∈ R and a unit u ∈ R such that f(0) − eu, g(0) − fu−1 ∈ U(R).
It is well known that h(x1) ∈ R[[x1]] is a unit if and only if h(0) ∈ R is a unit.
Therefore we can find f ′(x1), g′(x1) ∈ R[[x1]] such that f(x1) − eu = (f(0)− eu) +
f ′(x1)x1, g(x1)− fu−1 = (g(0)− fu−1) + g′(x1)x1 ∈ U(R[[x1]]), as required.

(2) ⇒ (1) We also prove that the result holds for n = 1. Given any x, y ∈ R, we

have x, y ∈ R[[x1]] as well. Thus we can find idempotents e(x1), f(x1) ∈ R[[x1]] and
a unit u(x1) ∈ R[[x1]] such that x−e(x1)u(x1), y−f(x1)u(x1)−1 ∈ U(R[[x1]]). Thus
we know that x− e(0)u(0), y− f(0)u(0)−1 ∈ U(R). One easily checks that e(0), f(0)
are idempotents and u(0) ∈ R is a unit. So we complete the proof. �

Corollary 15. Let R be an exchange ring with artinian primitive factors. Then
R[[x1, . . . , xn]] is a GM -ring.

���������
. Since every exchange ring with artinian primitive factors is a GM -ring,

we get the result from Theorem 14. �

Know that every semiperfect ring is a GM -ring, by virtue of Theorem 14, we can

derive the following corollary:

Corollary 16. Let R be a semiperfect ring. Then R[[x1, . . . , xn]] is a GM -ring.
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