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ON FINITENESS CONDITIONS FOR REES MATRIX SEMIGROUPS
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Abstract. Let T =M [S; I, J ;P ] be a Rees matrix semigroup where S is a semigroup, I
and J are index sets, and P is a J × I matrix with entries from S, and let U be the ideal
generated by all the entries of P . If U has finite index in S, then we prove that T is periodic
(locally finite) if and only if S is periodic (locally finite). Moreover, residual finiteness and
having solvable word problem are investigated.
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1. Introduction

After Rees matrix semigroups were introduced by Rees ([6]), they became very
important family of semigroups, especially in the study of the structure theory of

completely (0)-simple semigroups (see for example [3]). Although Rees matrix semi-
groups are defined over groups, we define them over semigroups (as in [1], [4], [5]).

Let S be a semigroup, let I and J be two index sets, and let P = (pji)j∈J, i∈I be
a J × I matrix with entries from S. The set

I × S × J = {(i, s, j) | i ∈ I, s ∈ S, j ∈ J}

with multiplication defined by

(i, s, j)(k, t, l) = (i, spjkt, l)

is a semigroup. This semigroup is called a Rees matrix semigroup, and denoted by
M [S; I, J ;P ].
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Finiteness conditions for semigroups (the properties of semigroups which all finite

semigroups have) have been considered for certain classes of semigroup constructions
(for examples, see [1], [2], [8], [7]). In this paper periodicity, local finiteness, residual
finiteness of Rees matrix semigroups and solvable word problem for Rees matrix

semigroups are investigated.

2. Periodicity

Recall that a semigroup S is periodic if, for each s ∈ S, the monogenic semigroup
generated by s is finite, or equivalently there exist two distinct positive integers m,
n (depending on s) such that sm = sn.

Lemma 2.1. If S is periodic, then M [S; I, J ;P ] is periodic.
���������

. For an arbitrary element (i, s, j) ∈ M [S; I, J ;P ], consider spji ∈ S

such that there exist two positive integers m 6= n such that (spji)m = (spji)n. It
follows that

(i, s, j)m+1 = (i, (spji)ms, j) = (i, (spji)ns, j) = (i, s, j)n+1.

Thus T is periodic as well. �

The ideal U of S generated by the set {pji | j ∈ J, i ∈ I} of all entries of P plays
a very important role in this paper as in [1].

Theorem 2.2. The Rees matrix semigroup M [S; I, J ;P ] is periodic if and only
if the ideal U of S generated by all the entries of the matrix P = (pji)j∈J, i∈I is

periodic.
���������

. (⇒) It is clear that an arbitrary element of U can be written as spjit

where s, t ∈ S1. Consider the element (i, tspjits, j) of M [S; I, J ;P ] such that there
exist two integers m 6= n such that

(i, tspjits, j)m = (i, tspjits, j)n,

(i, (tspji)2m−1ts, j) = (i, (tspji)2n−1ts, j).

It follows that (tspji)2m−1ts = (tspji)2n−1ts or (tspji)2m = (tspji)2n, and so

(spjit)2m+1 = spji(tspji)2mt = spji(tspji)2nt = (spjit)2n+1.

Thus U is periodic as well.
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(⇐) Let (i, s, j) ∈ T = M [S; I, J ;P ]. Since U is the ideal of S generated by all
the entries of the matrix P = (pji)j∈J, i∈I , spji ∈ U , there exist two positive integers
p 6= q such that (spji)p = (spji)q . It follows that

(i, s, j)p+1 = (i, (spji)ps, j) = (i, (spji)qs, j) = (i, s, j)q+1,

and so T is periodic. �

Note that if the ideal U has finite index in S, that is S \ U is finite, it follows
from [7, Theorem 5.1] that S is periodic if and only if U is periodic. Thus we have

the following corollary.

Corollary 2.3. Let T = M [S; I, J ;P ], and let the ideal U of S generated by all
the entries of the matrix P = (pji)j∈J, i∈I have finite index in S. Then T is periodic

if and only if S is periodic.

3. Local finiteness

Let X be a subset of a semigroup S, then the smallest subsemigroup of S con-

taining X is called the subsemigroup of S generated by X , and denoted by 〈X〉. If
each finitely generated subsemigroup of a semigroup S is finite, then S is said to be

locally finite.
First we give a technical lemma.

Lemma 3.1. Let S be a semigroup without an identity. Then T = M [S; I, J ;P ]
is locally finite if and only if T ′ = M [S1; I, J ;P ] is locally finite.

���������
. (⇒) Let X be a non-empty finite subset of T ′. Take Y = X ∩ T ,

Z = X \Y andW = Y ∪Y Z ∪ZY ∪ZZ where Y Z = {yz | y ∈ Y, z ∈ Z}, etc. Then
it is clear that W is a finite subset of T , and so 〈W 〉 is finite. Since 〈X〉 = 〈W 〉 ∪Z,
T ′ is locally finite as well.

(⇐) Since every subsemigroup of a locally finite semigroup is locally finite, and
since T is a subsemigroup of T ′, the proof is complete. �

Theorem 3.2. The Rees matrix semigroup M [S; I, J ;P ] is locally finite if and
only if the ideal U of S generated by all the entries of the matrix P = (pji)j∈J, i∈I is

locally finite.
���������

. (⇒) Let X be a finite subset of U . Since each element of U has the
form spjit for some s, t ∈ S1 and entries pji of P , we may take

X = {skpjkik
tk | 1 6 k 6 m}.
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Then define sets

I ′ = {ik ∈ I | 1 6 k 6 m},
X ′ = {sk, tk, tksk ∈ S1 | 1 6 k 6 m},
J ′ = {jk ∈ J | 1 6 k 6 m}.

Since I ′×X ′×J ′ is a finite subset ofM [S1; I, J ;P ], it follows from the above lemma
that 〈I ′×X ′×J ′〉 is finite. Since I ′×〈X〉×J ′ ⊆ 〈I ′×X ′×J ′〉, the subsemigroup 〈X〉
is finite, as required.

(⇐) Let Y be a finite subset of M [S; I, J ;P ]. Define

I ′′ = {i ∈ I | (i, s, j) ∈ Y },
J ′′ = {j ∈ J | (i, s, j) ∈ Y },
Y ′′ = {s ∈ S | (i, s, j) ∈ Y },

and then define X ′′ = {spji, spjit | i ∈ I ′′; s, t ∈ Y ′′; j ∈ J ′′}. Since X ′′ is a finite

subset of U , 〈X ′′〉 is a finite subsemigroup of U .
Observe that an arbitrary element (i, s, j) ∈ 〈Y 〉 \ Y can be written as a product

(i, s, j) = (i1, s1, j1) . . . (ik, sk, jk) = (i1, s1pj1i2s2 . . . pjk−1ik
sk, jk),

where (i1, s1, j1), . . . , (ik, sk, jk) ∈ Y with k > 2. Thus (i, s, j) ∈ I ′′ × 〈X ′′〉 × J ′′,
and so 〈Y 〉 is a subset of the finite set (I ′′ × 〈X ′′〉 × J ′′) ∪ Y , as required. �

If S \ U is finite then, from the previous theorem and [7, Theorem 5.1], we have
the following corollary.

Corollary 3.3. Let T = M [S; I, J ;P ], and let the ideal U of S generated by all
the entries of the matrix P = (pji)j∈J, i∈I have finite index in S. Then T is locally

finite if and only if S is locally finite.

4. Residual finiteness

We call a semigroup S residually finite if, for each pair s 6= t ∈ S, there ex-
ists a homomorphism Φ from S onto a finite semigroup such that Φ(s) 6= Φ(t), or
equivalently, there exists a congruence % with finite index (that is, % has finitely
many equivalence classes) such that (s, t) /∈ %. (Residual finiteness of completely

(0)-simple semigroups, which are Rees matrix semigroupsM [G; I, J ;P ] over groups,
was investigated in [2].)
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Let K be a subset of I . If, for each i ∈ I , there exist si ∈ S1 and ki ∈ K such that

(1) pji = pjkisi for all j ∈ J,

then we call K a (left) co-index of I . Let L be a subset of J . If, for each j ∈ J ,
there exist tj ∈ S1 and lj ∈ L such that

(2) pji = tjplji for all i ∈ I,

then we call L a (right) co-index of J . Given left and right co-indices K and L
respectively, we fix all si, ki (i ∈ I) and tj , lj (j ∈ J) and moreover, we take si = 1 if
i ∈ K and tj = 1 if j ∈ L. If, for all fixed si and tj , sistj = sittj implies s = t, then
we call K and L normal co-indices. Notice that if S is a group then all co-indices are

normal. Notice also that if both I and J have finite normal co-indices, then there
are finitely many rows and columns of P such that each row (column) of P is a right
(left) multiple of one of these finitely many rows (columns).

Theorem 4.1. If S is residually finite, and if both I and J have finite normal
co-indices, then the Rees matrix semigroup T = M [S; I, J ;P ] is residually finite.

���������
. Let (i1, s1, j1) and (i2, s2, j2) be arbitrary different elements of T . If

i1 6= i2, then we consider the left zero semigroup L2 = {a1, a2} (ab = a) of order 2
and the mapping ϕ : T −→ L2, defined by

ϕ(i, s, j) =

{
a1 if i = i1,

a2 if i 6= i1.

It is clear that ϕ is an onto homomorphism such that ϕ(i1, s1, j1) 6= ϕ(i2, s2, j2). If
j1 6= j2, then this is shown similarly. If i1 = i2 and j1 = j2 then s1 6= s2. Let K

and L be finite normal co-indices. Then si1s1tj1 6= si1s2tj1 . Moreover, since S is
residually finite, there exist a finite semigroup S ′ and an onto homomorphism Φ
from S onto S′ such that Φ(si1s1tj1) 6= Φ(si1s2tj1).
Now define a submatrix P ′ = (pkl)k∈K,l∈L of P where pkl is the corresponding

entry of P and consider the finite Rees matrix semigroup T ′ = M [S′;K,L;P ′′] where
P ′′ = (Φ(pkl))k∈K, l∈L, and the map ψ : T −→ T ′ defined by

ψ : (i, s, j) 7→ (ki,Φ(sistj), lj)

where ki, si, tj and lj are defined as in (1) and (2). Since ki and lj are unique,
and since si and tj are fixed, the map ψ is well-defined, and clearly onto. For
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(i1, s1, j1), (i2, s2, j2) ∈ T , it follows from (2) and (1) that

ψ(i1, s1, j1)ψ(i2, s2, j2) = (ki1 ,Φ(si1s1tj1), lj1)(ki2 ,Φ(si2s2tj2), lj2)

= (ki1 ,Φ(si1s1tj1)Φ(plj1ki2
)Φ(si2s2tj2), lj2)

= (ki1 ,Φ(si1s1(tj1plj1ki2
)si2s2tj2), lj2)

= (ki1 ,Φ(si1s1(pj1ki2
si2)s2tj2), lj2)

= (ki1 ,Φ(si1s1pj1i2s2tj2), lj2)

= ψ(i1, s1pj1i2s2, j2) = ψ((i1, s1, j1)(i2, s2, j2))

so that ψ is a homomorphism. Moreover, it is clear that ψ(i1, s1, j1) 6= ψ(i2, s2, j2),
as required. �

Notice that if S is residually finite, and if both I and J are finite, then the Rees

matrix semigroup T = M [S; I, J ;P ] is residually finite. Now consider the cyclic
group C2 = {1, a} of order 2, the matrix P1 = (pji)j∈ � , i∈ � where � is the set of
natural numbers and

pji =

{
1 if j 6 i,

a if j > i,

and the Rees matrix semigroup T1 = M [C2; � , � ;P1 ]. Clearly C2 is residually finite
but we will show that T1 is not residually finite.

For (1, 1, 1) and (1, a, 1) in T1, assume that there exists a congruence % on T1 with
finite index such that ((1, 1, 1), (1, a, 1)) /∈ %. Let (i, a, j) ∈ T1 be arbitrary, and let
j < l. Then, since % has finite index, we may assume either ((i, a, j), (k, a, l)) ∈ % or
((i, a, j), (k, 1, l)) ∈ % for some k, l ∈ � .
If ((i, a, j), (k, a, l)) ∈ %, then we have

(1, 1, 1)(i, a, j)(j, 1, 1) = (1, apjj , 1) = (1, a, 1),

(1, 1, 1)(k, a, l)(j, 1, 1) = (1, aplj , 1) = (1, 1, 1),

and so ((1, 1, 1), (1, a, 1)) ∈ %, which is a contradiction.
If ((i, a, j), (k, 1, l)) ∈ %, then we have

(1, 1, 1)(i, a, j)(l, 1, 1) = (1, apjl, 1) = (1, a, 1),

(1, 1, 1)(k, 1, l)(l, 1, 1) = (1, pll, 1) = (1, 1, 1),

and so ((1, 1, 1), (1, a, 1)) ∈ %, which is again a contradiction. Thus T1 cannot be a
residually finite semigroup.

This example shows that the residual finiteness of S is not sufficient for the
residual finiteness of M [S; I, J ;P ]. Moreover, consider the Rees matrix semigroup
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T2 = M [S; I, J ;P2] where S is a non-residually finite semigroup with a zero 0, and
the matrix P2 = (pji)j∈J, i∈I with pji = 0. (Note that since adding a zero into a
non-residually finite semigroup gives a non-residually finite semigroup with a zero,
examples of non-residually finite semigroups with a zero exist.) It is easy to show

that T2 is residually finite. This last example shows that the converse of the above
theorem is not true in general.

5. Word problem

A semigroup S is said to have a solvable word problem with respect to a generating
set A if there exists an algorithm which, for any two words u, v ∈ A+, decides

whether the relation u = v holds in S or not. It is a well-known fact that, for a
finitely generated semigroup S, the solvability of the word problem does not depend

on the choice of the finite generating set for S. Thus we say that a finitely generated
semigroup S has a solvable word problem if S has a solvable word problem with

respect to any finite generating set.

Since finite generation is important in this section, we recall the main result of [1]:

Theorem 5.1. Let S be a semigroup, let I and J be index sets, let P =
(pji)j∈J, i∈I be a J × I matrix with entries from S, and let U be the ideal of S

generated by the set {pji | j ∈ J, i ∈ I} of all entries of P . Then the Rees matrix
semigroup M [S; I, J ;P ] is finitely generated (finitely presented) if and only if the
following three conditions are satisfied:

(i) both I and J are finite;

(ii) S is finitely generated (respectively, finitely presented); and

(iii) the set S \ U is finite.

In this section we assume T = M [S; I, J ;P ] is finitely generated, and so the sets I ,
J and S \ U are finite and S is finitely generated.
Let T = M [S; I, J ;P ] have a solvable word problem. Since I and J are finite,

T ′ = M [S1; I, J ;P ] is a small extension of T , that is T ′ \ T = I × {1} × J is
finite, T ′ has a solvable word problem (see [7, Theorem 5.1 (i)]. Let Z be a finite

generating set for the ideal U . First note that each z ∈ Z has the form szpjziz tz
where sz, tz ∈ S1, then consider the set

X = I × {1, s, sz, tz, sztz, tzsz | s ∈ S \ U, z ∈ Z} × J

which is a finite generating set for T ′ (see [1]).
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Let u ≡ (sz1pjz1 iz1
tz1) . . . (szmpjzm izm

tzm) and v ≡ (sz′1
pjz′1

iz′1
tz′1) . . . (sz′npjz′n

iz′n

tz′n) be arbitrary words in Z+. Then, for any i ∈ I and j ∈ J , consider the elements

(i, u, j) = (i, sz1 , jz1)(iz1 , tz1sz2 , jz2) . . . (izm , tzm , j),

and

(i, v, j) = (i, sz′1 , jz′1)(iz′1 , tz′1sz′2 , jz′2) . . . (iz′n , tz′n , j)

in T ′. Since T ′ has a solvable word problem, the relation (i, u, j) = (i, v, j) is
decidable, and so u = v is decidable. Therefore we have

Proposition 5.2. IfM [S; I, J ;P ] has a solvable word problem, then the ideal U
of S generated by the entries of P has a solvable word problem.

Let the semigroup S have a solvable word problem. Let X be a finite generating

set for T = M [S; I, J ;P ]. Then the set

Y = {s ∈ S | (i, s, j) ∈ X for some i ∈ I, j ∈ J} ∪ {pji | i ∈ I, j ∈ J}

is a finite generating set for S (see [1]).

Let u ≡ (i1, s1, j1) . . . (im, sm, jm), v ≡ (k1, t1, l1) . . . (kn, tn, ln) be arbitrary el-
ements in X . Since the relation u = v is decidable in T if and only if i1 = k1,

jm = ln and the relation s1pj1i2s2 . . . sm−1pjm−1imsm = t1pl1k2t2 . . . tn−1pln−1kntn is
decidable in S, and since S has a solvable word problem, u = v can be decidable

in T . Therefore we have

Proposition 5.3. Let T = M [S; I, J ;P ] be a finitely generated Rees matrix
semigroup over a semigroup S. If S has a solvable word problem, T has a solvable

word problem as well.

Finally, we have the following theorem:

Theorem 5.4. Let T = M [S; I, J ;P ] be a finitely generated Rees matrix semi-
group over a semigroup S. Then T has a solvable word problem if and only if S has

a solvable word problem.
���������

. Since S \ U is finite, it follows from [7, Theorem 5.1 (i)] that U has a
solvable word problem if and only if S has a solvable word problem. Thus the result

follows from Propositions 5.2 and 5.3. �
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