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Abstract. In this paper we give some new results concerning solvability of the 1-dimen-
sional differential equation y′ = f(x, y) with initial conditions. We study the basic theorem
due to Picard. First we prove that the existence and uniqueness result remains true if
f is a Lipschitz function with respect to the first argument. In the second part we give
a contractive method for the proof of Picard theorem. These considerations allow us to
develop two new methods for finding an approximation sequence for the solution. Finally,
some applications are given.
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1. Introduction

Let D = {(x, y) ∈ � 2 : |x− x0| 6 a, |y − y0| 6 b} be a rectangle and f : D → � a
continuous function satisfying the Lipschitz condition

|f(x, y)− f(x, z)| 6 L|y − z|, ∀ (x, y), (x, z) ∈ D,

for some L > 0. Under these assumptions, according to the well known Picard
theorem (e.g. [1], [3], [6]), the Cauchy problem

(1.1)

{
y′ = f(x, y)

y(x0) = y0

has (locally) a unique solution defined at least on I = (x0 − ε, x0 + ε), where

ε = min
{

a,
b

M

}
, M = sup

(x,y)∈D

|f(x, y)|.
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Moreover, the Picard theorem gives us a method to approximate the solution, usually

called the successive approximations method.
In this sense, let us define an operator T : C(I) → C(I) by

(Ty)(x) = y0 +
∫ x

x0

f(t, y(t)) dt.

Then the solution of problem (1.1) is the limit of the successive approximations

sequence

y0 = y(x0), yn = Tyn−1,

that is

yn(x) = y0 +
∫ x

x0

f(t, yn−1(t)) dt, n ∈ � .

In the sequel, we will give results similar to the Picard theorem for local existence
and uniqueness of the solution of the Cauchy problem (1.1). These considerations

lead us to some new approximation sequences for the solution.

2. Lipschitzianity in the first argument

Assume that the continuous function f : D → � satisfies the following Lipschitz
condition with respect to the first argument, uniformly in y:

|f(x1, y)− f(x2, y)| 6 λ · |x1 − x2|, ∀ (x1, y), (x2, y) ∈ D,

for some λ > 0. Moreover, suppose that f does not vanish on D, so let

min
(x,y)∈D

|f(x, y)| = α > 0.

Under these assumptions, denote

∆ := {(y, x) ∈ � 2 : (x, y) ∈ D}

and define a function g : ∆ ⊂ � 2 → � by

g(y, x) :=
1

f(x, y)
.

Obviously,

max
(y,x)∈∆

|g(y, x)| = 1
α

.
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We can apply the Picard theorem to the Cauchy problem

(2.1)

{
x′ = g(y, x),

x(y0) = x0.

Indeed,

|g(y, x1)− g(y, x2)| =
|f(x1, y)− f(x2, y)|
f(x1, y) · f(x2, y)

6 1
α2

· |f(x1, y)− f(x2, y)|

6 λ

α2
· |x1 − x2|.

Thus problem (2.1) has (locally) a unique solution x : (y0 − δ, y0 + δ) → � , where
δ = min{b, aα}. This solution x = x(y) is strictly monotone because x′ = g(y, x) 6= 0,
thus it has an inverse y = y(x) defined on a neighbourhood of x0, y : (x0−ε, x0+ε) →
� and y(x0) = y0. Moreover,

x′ =
dx

dy
= g(y, x)

implies

y′ =
dy

dx
=

1
g(y, x)

= f(x, y),

which means that y is a solution of (1.1). We can state

Theorem 2.1. Let f : D ⊂ � 2 → � be continuous and such that
(i) f(x0, y0) 6= 0,
(ii) f satisfies the Lipschitz condition with respect to the first argument:

|f(x1, y)− f(x2, y)| 6 λ · |x1 − x2|, ∀ (x1, y), (x2, y) ∈ D.

Then the Cauchy problem (1.1) has (locally) a unique solution.

If D1 = {(x, y) : |x− x0| 6 a1, |y − y0| 6 b1} ⊆ D is a rectangle with

f(x, y) 6= 0, ∀ (x, y) ∈ D1,

then the solution of the Cauchy problem (1.1) is defined at least on y : (x0 − ε,

x0 + ε) → � , where

ε :=
1
M

min{a1α, b1}, M := max
(x,y)∈D1

|f(x, y)|, α := min
(x,y)∈D1

|f(x, y)|.
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���������
. From the continuity of f and from the fact that f(x0, y0) 6= 0, it results

that there exists a non-degenerate rectangle D1 such that f does not vanish in D1.
We can suppose that D1 = D, otherwise we can repeat the proof taking D1 instead
of D.

We have proved that, under the hypotheses of Theorem 2.1, the problem (2.1) has
an invertible local solution x = x(y) and its inverse y = y(x) is a solution of (1.1).
Reciprocally, if y = y(x) is a local solution of the problem (1.1), then y′ = f(x, y) 6= 0
and y = y(x) is invertible on a neighbourhood of x0 with the inverse x = x(y) being
a solution of (2.1). Moreover, the problem (2.1) has the local uniqueness property,
because the problem (1.1) has this property.

Let y1, y2 ∈ (y0− δ, y0 + δ), y1 < y2. Since x(y1), x(y2) ∈ (x0− ε, x0 + ε), we have,
using the Lagrange theorem,

2ε > x(y2)− x(y1) = (y2 − y1) · x′(c) = (y2 − y1) · g(c, x(c))

= (y2 − y1) ·
1

f(x(c), c)
> 1

M
(y2 − y1).

Thus

2ε >
1
M

(y2 − y1)

and taking y2 → y0 + δ, y1 → y0 − δ, we obtain

2ε > 1
M

· 2δ ⇒ ε > 1
M

· δ

with δ = min{aα, b}. �

Now it is easy to see that if a continuous function f : D ⊂ � 2 → � with
f(x0, y0) 6= 0 has partial derivatives of the first order and at least one of them is
bounded in D, then the Cauchy problem (1.1) has locally a unique solution.
Indeed, if ∂f/∂y or ∂f/∂x is bounded, then f satisfies the Lipschitz condition

with respect to the second or the first argument, respectively, and the conclusion
follows from the Picard theorem or, respectively, Theorem 2.1.

Applying the successive approximations method to the problem (2.1) with
g(y, x) := 1/f(x, y), we can state

Theorem 2.2. Suppose that f 6= 0 on D. Then the sequence

(2.2) xn+1(y) = x0 +
∫ y

y0

dt

f(xn(t), t)
, n ∈ � ,

converges to an invertible function denoted by x = x(y) and its inverse is the unique
solution of the problem (1.1).
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Indeed, x = x(y) is the solution of the problem (2.1) and we have proved that it
is invertible. Its inverse is the unique solution of (1.1).

On the other hand, we can say that the problem (1.1) was integrated in the implicit

form x− x(y) = 0.

Example. Let us consider the Cauchy problem

(2.3)

{
y′ =

y

x + ln y
,

y(1) = 1.

With

f(x, y) =
y

x + ln y
,

we have f(1, 1) = 1 6= 0 and the partial derivative

∂f

∂x
= − y

(x + ln y)2

is bounded, so we can apply Theorem 2.1 on a rectangle which contains (1,1). The

recurrence relation (2.2) is

xn+1(y) = 1 +
∫ y

1

xn(t) + ln t

t
dt = 1 +

ln2 y

2
+

∫ y

1

xn(t)
t

dt

with x0(y) = 1. It can be easily proved by induction that

xn(y) = 2
(
1 +

ln y

1!
+

ln2 y

2!
+ . . . +

lnn y

n!

)
− 1− ln y +

lnn+1 y

(n + 1)!
, n ∈ � .

The last term tends to zero as n → ∞, uniformly in y in bounded sets. It follows
that xn(y) → 2y − 1− ln y uniformly and consequently, the solution of (2.3) can be

expressed by the implicit relation

2y − 1− ln y = x.
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3. Contraction principle for the Cauchy problem

In this section we give another way to establish the unique local solvability of the

Cauchy problem

(3.1)

{
y′ = f(x, y),

y(x0) = y0,

requiring the same conditions as in the Picard theorem, namely continuity and lip-
schitzianity with respect to the second argument for f . We prove that the differen-

tiation operator Ty = y′ defined between two Banach spaces is invertible and then
we rewrite (3.1) as a fixed point problem

v(x) = f(x, T−1v(x))

with v = Ty ⇐⇒ y = T−1v which is studied using the contraction principle of Ba-
nach. In some cases the corresponding approximation sequence is easier to compute

than the sequence from the Picard theorem. Let

D = {(x, y) ∈ � 2 : |x− x0| 6 a, |y − y0| 6 b}

be a rectangle and let f : D → � be a continuous function satisfying the Lipschitz
condition

|f(x, y)− f(x, z)| 6 L|y − z|

for each (x, y), (x, z) ∈ D and some L > 0. Let us choose

0 < ε < min
{
a,

b

M

}
,

where
M = max

(x,y)∈D
|f(x, y)|

and denote I = (x0 − ε, x0 + ε). At the beginning we assume that y0 = 0 without
loss of generality, as we will see later. Let us consider the Cauchy problem

(3.2)

{
y′ = f(x, y),

y(x0) = 0.

Let us define

W := {y ∈ C
1
(I) : y(x0) = 0}.
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Lemma 3.1. The operator T : W ⊂ C(I) → C(I), Ty = y′ is linear, one-to-one

and onto. Its inverse T−1 : C(I) → W is linear, continuous and

‖T−1v‖C(I) 6 ε‖v‖C(I), ∀ v ∈ C(I).

���������
. Let y1, y2 ∈ W be such that Ty1 = Ty2 ⇒ y′1 = y′2 ⇒ y1 − y2 is

constant. But y1(x0) = y2(x0) = 0 and consequently, y1 = y2.
For every v ∈ C(I) there exists y ∈ W , y(x) :=

∫ x

x0
v(t) dt such that Ty = v.

Moreover,

|T−1v(x)| =
∣∣∣∣
∫ x

x0

v(t) dt

∣∣∣∣ 6 |x− x0| · supt∈I |v(t)| 6 ε‖v‖C(I).

�

Now, the Cauchy problem (3.2) can be equivalently written as

Ty(x) = f(x, y(x))

with y ∈ W . If we put
Ty = v ∈ C(I) ⇔ y = T−1v,

we have

(3.3) v(x) = f(x, T−1v(x)).

Let us consider the operator S : BM (0) → BM (0) given by

Sv(x) := f(x, T−1v(x)),

where

BM (0) = {v ∈ C(I) : ‖v‖C(I) 6 M}.

S is well defined because f and T−1 are continuous. Moreover, if ‖v‖C(I) 6 M , then

|T−1v(x)| 6 ε‖v‖C(I) 6 b

M
·M = b,

thus (x, T−1v(x)) ∈ D, ∀x ∈ I . Now we can see that (3.3) is equivalent to the fixed
problem v(x) = Sv(x).
We will prove that S is a contraction. Indeed, for v1, v2 ∈ BM (0) we have

|Sv1(x)− Sv2(x)| = |f(x, T−1v1(x)) − f(x, T−1v2(x))|
6 L · |T−1v1(x) − T−1v2(x)| = L · |T−1(v1(x)− v2(x))| 6 Lε‖v1 − v2‖.
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We have obtained the inequality

‖Sv1 − Sv2‖ 6 c‖v1 − v2‖, ∀ v1, v2 ∈ BM (0)

with c := Lε < 1 if ε < 1/L. From the contraction principle of Banach it results
that S has a unique fixed point denoted by v ∈ BM (0) ⊂ C(I),

v(x) = f(x, D−1v(x)),

or y′(x) = f(x, y(x)), with y = D−1v ∈ W . Hence y : (x0 − ε, x0 + ε) → � is the
unique solution of the Cauchy problem (3.2). �

Now we consider the general case when y(x0) = y0:

(3.4)

{
y′ = f(x, y),

y(x0) = y0.

If we denote z := y − y0, then z satisfies the Cauchy problem

(3.5)

{
z′ = g(x, z),

y(x0) = 0,

where g(x, z) := f(x, z + x0). Obviously, the problem (3.5) has a unique solution

as we have proved above, because g has the same properties as f . Also (3.4) has
(locally) a unique solution.

In general, the successive approximation sequence from the Picard theorem is given
by

yn+1(x) = y0 +
∫ x

x0

f(s, yn(s)) ds, n ∈ � .

In some cases the integral from this relation is more difficult to be computed than
the integral from our method:

(3.6) vn+1(x) = f

(
x,

∫ x

x0

vn(t) dt

)
,

because the integral sign appears only in the second argument of f . The recurrence

relation (3.6) follows from the contraction principle of Banach.

Example. Let us consider the Cauchy problem
{

y′ = a(x)y + b(x),

y(x0) = x0,

associated with a linear differential equation of the first order. The functions a, b

are continuous on a real compact interval.
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The mapping (x, y)
f7→ a(x)y + b(x) is Lipschitz with respect to y. The approxi-

mation sequence from the Picard theorem is

yn(x) = y0 +
∫ x

x0

(a(t)yn−1(t) + b(t)) dt

and the approximation sequence given by (3.6) is

vn+1(x) = a(x)
∫ x

x0

vn(t) dt + b(x).

Finally, let us consider the particular case

(3.7)

{
y′ = y + x2,

y(0) = 0,

which is a linear differential equation having the unique solution

y(x) = 2ex − x2 − 2x− 2, x ∈ � .

In this case

f(x, y) = x2 + y

and
|f(x, y)− f(x, z)| = |y − z|,

which is lipschitzianity with respect to the second argument. The operator S is now

defined by

Sv(x) := x2 +
∫ x

0

v(t) dt.

Using the above theoretical results, we obtain that (3.7) has a unique solution

y = T−1v, where v is the unique fixed point of S. Moreover, v is the limit of
the sequence (vn)n∈ � recursively defined by

vn+1(x) = x2 +
∫ x

0

vn(t) dt,

where v0 is arbitrarily chosen. If we take v0 = 0, then

v1(x) = x2, v2(x) = x2 +
∫ x

0

t2d. t = x2 +
x3

3

v3(x) = x2 +
∫ x

0

(
t2 +

t3

3

)
dt = x2 +

x3

3
+

x4

3 · 4 .
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It is easy to see that

vn(x) = x2 +
x3

3
+

x4

3 · 4 + . . . +
xn+1

3 · 4 · . . . · (n + 1)
, n > 2,

or vn(x) = 2 ·
n+1∑
k=0

xk/k!− 2x− 2. For n →∞ we obtain v(x) = 2ex− 2x− 2 and the

solution of (3.7) is y = T−1v, namely y(x) =
∫ x

0 v(t) dt = 2ex − x2 − 2x− 2.
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