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Abstract. In this note we study finite p-groups G = AB admitting a factorization by an
Abelian subgroup A and a subgroup B. As a consequence of our results we prove that if
B contains an Abelian subgroup of index pn−1 then G has derived length at most 2n.
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1. Introduction

A group G is called (properly) factorizable if it contains two (proper) subgroups A

and B such that G = AB, namely G = {ab | a ∈ A, b ∈ B}. A classical problem in
the theory of factorizable groups is to determine how the structure of the factors A

and B determines that of the whole group G. If, for example, A and B are finite
and nilpotent, a well-known result by Wielandt and Kegel (see [1, Theorem 2.4.3])

states that such a group is solvable. Several examples show that the Wielandt-Kegel
theorem cannot be extended to infinite groups; indeed, a more satisfactory result on

factorizable groups is Itô’s theorem (see [1, Theorem 2.1.1]): if A and B are Abelian
then G is metabelian.

In the light of the previous and several other results the following conjecture has
been stated:

Conjecture. Let G = AB where A and B are finite and nilpotent of class, α and
β, respectively. Then, there exists a function f depending only on α and β such that

the derived length of G is bounded by f(α, β).

By Itô’s theorem f(1, 1) = 2; moreover it has been conjectured by some authors
that f(α, β) = α + β. This conjecture has been disproved by some examples con-
structed by Cossey and Stonehewer in [2].
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In [5] Pennington has proved that the conjecture holds whenever A and B have

coprime orders, and in fact f(α, β) = α + β (see [1, Theorem 2.5.3]). As a conse-
quence, it is enough to consider p-groups in order to bound the derived length of G.
Recently Morigi [4] and Mann [3] show that if G = AB is a p-group, A Abelian and

|B′| = pm, then the derived length of G is bounded by a function of m (m + 2 and
2·log2(m+2)+3, respectively). In this paper we continue the study of finite p-groups

with a factorization where one of the factors is Abelian. In particular we study the
case in which B has an Abelian subgroup of small index (in a certain sense, a dual of

the situation considered in [4] and [3]). Then we define, for every natural number n,
the class An of finite p-groups as follows. Let A1 be the class of Abelian p-groups,

and B ∈ An if and only if for every principal series

{1} = K0 < K1 < . . . < Kr = B (|B| = pr)

there exists an Abelian term Ki with B/Ki ∈ An−1.
We will prove:

Theorem. If G = AB is a finite p-group, where A is Abelian and B ∈ An, then

G has derived length at most 2n.

Corollary. Let G = AB be a finite p-group. If A is Abelian and B contains an

Abelian subgroup of index pn−1, then G has derived length at most 2n.

2. Notations and preliminary results

All groups considered will be finite p-groups where p is a fixed prime number; if
B is a group and {1} = K0 < K1 < . . . < Kr = B is a principal series for B, we

shall denote by K∗ the largest Abelian term of the series.
The rest of the notation will be standard (see, for example, [1]).

It is clear that, in order to prove B ∈ An, it suffices to show that, for every
principal series of B, B/K∗ ∈ An−1.

The following lemma from [4] is very useful.

Lemma 1. Let {1} 6= G = AB where A is Abelian. Then AG 6= {1} or BG 6= {1}.
��������

([4]). Let ab be a nontrivial element of Z(G), a ∈ A, b ∈ B. Without

loss of generality we may assume a 6= 1 6= b since otherwise the result is trivial.
Then for every x ∈ A we have 1 = [ab, x] = [a, x]b[b, x] = [b, x] and then [A, b] = 1.
Therefore 〈b〉G = 〈b〉AB = 〈b〉B 6 B is a nontrivial normal subgroup of G contained
in B. �
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We will also use the following two observations:

Lemma 2. The class An is closed under homomorphic images.

Lemma 3. If B contains a subgroup E of index pk such that E ∈ An, then

B ∈ An+k.

��������
. We argue by induction on k.

I) Let k = 1 and 1 = K0 < K1 < . . . < Kr = B be a principal series of B; it
suffices to show that B/K∗ ∈ An.

We can distinguish three cases:

a) K∗+1 6 E. We prove this point arguing by induction on r.

If r = 1 then |B| = p and the initial step is trivial. Since K∗+1 is not Abelian and
E ∈ An it is clear that n > 1. Since E ∈ An it follows that E/K∗ ∈ An−1 and in

B = B/K∗ the subgroup E has index p. Thus, by induction on r, B ∈ An.

b) K∗ 66 E. Since E is a maximal subgroup of B we have B = EK∗ and so
B/K∗ = EK∗/K∗ ∼= E/(E ∩ K∗) ∈ An.

c) K∗ 6 E and K∗+1 66 E. Then K∗+1 = K∗〈t〉 where t 6∈ E and tp ∈ K∗; in

B = B/K∗, t̄ ∈ Z(B) and t̄p = 1 so that B = E〈t̄〉 = E × 〈t̄〉. Since E ∈ An it is
clear that B ∈ An.

II) Suppose k > 1 and x ∈ NB(E), x 6∈ E, xp ∈ E. Let E1 = E〈x〉; by induction
it follows that E1 ∈ An+1. Since |B : E1| = pk−1 the induction hypothesis gives
B ∈ A(n+1)+(k−1) = An+k. �

It follows from the previous lemma that if B0 is an Abelian group and 〈b〉 a cyclic
group of prime order p, then the standard wreath product B = B0 o 〈b〉 belongs to
the class A2. Note that the nilpotency class of B is not bounded and that |B ′| is not
bounded, not even as a function of p.

There are groups in A2 with no Abelian maximal subgroup, as the following ex-
ample shows:

B = 〈x, y | xp4
= 1 = yp2

, xy = x1+p2〉.

3. The proofs

In this section we prove the results stated in the introduction.
��������

of the Theorem. We argue by induction on n, observing that the first
induction step follows from Itô’s theorem. We can distinguish two cases.

I) X = A ∩ B = {1}.
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Let {1} = G0 < G1 < . . . < Gt = G be a principal series of G, built up as

follows: if in G = G/Gi there exists an element a ∈ Z(G) ∩ AG of order p, then
we define Gi+1 = 〈a, Gi〉. Otherwise Lemma 1 shows that BG 6= {1} and we define
Gi+1 = 〈b, Gi〉, where b̄ is some element of order p of Z(G) ∩ BG.

Since for every i ∈ {1, 2, . . . , t}, we have A ∩ B = {1} in G = G/Gi, each Gi is
factorized, namely Gi = (A ∩ Gi)(B ∩ Gi).
Let G? be the maximal element of the above series such that B ∩ G? is Abelian.

Then G? = (A ∩G?)(B ∩G?) is metabelian by Itô’s theorem. Since in the principal
series Ki = B ∩ Gi of B, we have K∗ = B ∩ G?, then in G = G/G? we have
B = BG?/G?

∼= B/(B ∩G?) = B/K∗ ∈ An−1 (clearly A is Abelian). The induction

hypothesis implies that G has derived length at most 2(n − 1). Therefore G has
derived length at most 2n.

II) X = A ∩ B 6= {1}.
Then XG = XAB = XB 6 B. Therefore XG is factorized and in G = G/XG

we have A ∩ B = {1}. Let {1} = G0 < G1 < . . . < Gk = XG be any principal
series with Gi C G for all i ∈ {1, 2, . . . , k}. Such a series can be extended to a
principal series of G by constructing a principal series of G/XG as in the case of
A ∩ B = {1}. With the same notation as before, if G? contains XG, then G? is

factorized and the conclusion follows. Otherwise, if G? < XG 6 B, then G? is an
Abelian subgroup of B and, since the term G?+1 6 XG 6 B is nonabelian, we must

have B/G? ∈ An−1. Therefore G/G? has derived length at most 2(n− 1) and G has
derived length at most 1 + 2(n − 1) < 2n. �
��������

of the Corollary. It is an easy consequence of the Theorem and of our
Lemma 3. �
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Author’s address: Università di Ca’ Foscari, Dipartimento di Matematica Applicata,
Dorsoduro 3825/E, 30123 Venezia, Italy; e-mail: jabara@unive.it.

996


		webmaster@dml.cz
	2020-07-03T15:39:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




