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Abstract. In this paper, we introduce related comparability for exchange ideals. Let I be
an exchange ideal of a ring R. If I satisfies related comparability, then for any regular matrix
A ∈ Mn(I), there exist left invertible U1, U2 ∈ Mn(R) and right invertible V1, V2 ∈ Mn(R)
such that U1V1AU2V2 = diag(e1, . . . , en) for idempotents e1, . . . , en ∈ I.
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Let R be an associative ring with identity. We say that R is an exchange ring
if for every right R-module A and any two decompositions A = M ⊕ N =

⊕
i∈I

Ai,

where MR
∼= R and the index set I is finite, there exist submodules A′i ⊆ Ai such

that A = M ⊕
(⊕

i∈I

A′i

)
. We see that regular rings, π-regular rings, strongly π-

regular rings, semiperfect rings, left or right continuous rings, clean rings and unit

C∗-algebras of real rank zero are all exchange rings. We refer the reader to [1] for
a survey on exchange rings. An ideal I of a ring R is said to be an exchange ideal

provided that eRe is an exchange ring for any idempotent e ∈ I .
An exchange ring R is said to satisfy related comparability, provided that for any

idempotents e, f ∈ R with e = 1−ab and f = 1−ba for some a ∈ (1−e)R(1−f) and
b ∈ (1−f)R(1−e), there exists u ∈ B(R) such that ueR .⊕ ufR and (1−u)fR .⊕

(1− u)eR. Clearly, an exchange ring R satisfies related comparability if and only if
R = A1 ⊕B1 = A2 ⊕B2 with A1

∼= A2 implies that there exists e ∈ B(R) such that
B1e .⊕ B2e and B2(1− e) .⊕ B1(1− e) (see [6]–[7]).
The class of exchange rings satisfying related comparability is very large. It in-

cludes all exchange rings satisfying the general comparability, all exchange rings
satisfying the comparability axiom, all exchange rings with stable range one, all
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one-sided unit-regular rings, all right self-injective regular rings, all right or left con-

tinuous regular rings, etc.
In this paper, we introduce related comparability for exchange ideals of a ring.

Let I be an exchange ideal of a ring R. We say that I satisfies related comparability

provided that for any idempotents e, f ∈ I with e = 1− ab and f = 1− ba for some
a ∈ (1−e)R(1−f) and b ∈ (1−f)R(1−e), there exists u ∈ B(R) such that ueR .⊕

ufR and (1−u)fR .⊕ (1−u)eR. On easily checks that an exchange ideal I of a ring
R satisfies related comparability if and only if R = A1⊕B1 = A2⊕B2 with A1

∼= A2

and B1, B2 ∈ 9(I) implies that there exists e ∈ B(R) such that B1e .⊕ B2e and
B2(1−e) .⊕ B1(1−e), where 9(I) denotes the set of all finitely generated projective
right R-modules P such that P = PI . We will investigate diagonal reduction for
regular square matrices over exchange ideals satisfying related comparability. Let

I be an exchange ideal of a ring R. If I satisfies related comparability, then for
any regular matrix A ∈ Mn(I), there exist left invertible U1, U2 ∈ Mn(R) and right
invertible V1, V2 ∈ Mn(R) such that U1V1AU2V2 = diag(e1, . . . , en) for idempotents
e1, . . . , en ∈ I .
Throughout this paper, rings are associative with identity and modules are right

unital modules. Let B(R) denote the Boolean algebra of all central idempotents in
R, and U(R) (Ur(R), Ul(R), Ul(R)Ur(R)) the set of all units (right units, left units,
products of a left unit and a right unit) of R. If A and B are R-modules, the notation

B .⊕ A means that B is isomorphic to a direct summand of A. An element w ∈ R
is called a related unit if there exists some e ∈ B(R) such that ew ∈ Ur(eR) and
(1− e)w ∈ Ul((1− e)R). We use Uw(R) to denote the set of all related units of R.

Lemma 1. Let I be an exchange ideal of a ring R. If I satisfies related compara-
bility, then aR+ bR = R with a ∈ 1 + I, b ∈ R implies that there exists y ∈ R such
that a+ by ∈ Uw(R).
���������

. Suppose that ax+ b = 1 with a ∈ 1 + I , x, b ∈ R. Then a(x+ b) + (1−
a)b = 1. Clearly, 1− a ∈ I . Since I is an exchange ideal, there exists an idempotent
e ∈ R such that e = (1 − a)bs and 1− e = (1 − (1 − a)b)t = a(x + b)t for s, t ∈ R.
Hence (1− e)a(x+ b)t+ e = 1. Since a ∈ 1 + I , we deduce that (1− e)a ∈ 1 + I is

regular. So we have c ∈ R such that (1− e)a = (1− e)ac(1− e)a and c = c(1− e)ac.
Clearly, 1 − c = (1 − (1 − e)a) − (1 − (1 − e)a)c(1 − e)a − c(1 − (1 − e)a) ∈ I ;

hence c ∈ 1 + I . Set f = 1 − (1 − e)ac and g = 1 − c(1 − e)a. Then f, g ∈ I ;
hence, (1 − e)a = (1 − e)ac(1 − e)a = (1 − e)ac(1 − e)ac(1 − e)a = (1 − f)((1 −
f)(1 − e)a)(1 − g) ∈ (1 − f)R(1 − g). Likewise, c ∈ (1 − g)R(1 − e). Thus we
have u ∈ B(R) such that ueR .⊕ ufR and (1 − u)fR .⊕ (1 − u)eR. Similarly
to [6, Theorem 2], there exists w ∈ Uw(R) such that (1 − e)a = (1 − e)aw(1 − e)a.
Furthermore, uw ∈ Ur(uR) and (1 − u)w ∈ Ul((1− u)R). Set (1− e)aw = l. Then
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u(1− e)a = ulq with uwq = u. It follows by ulq + ue = u(1− e)a(x + b)t+ ue = u

that u(a+ e(y− a)) = u((1− e)a+ ey) = u(1+ lq(1− l))−1q ∈ Ul(uR). Assume now
that dw = 1. Then h(x + b)t + we = w; hence, h((x + b)t) + (1 − h)we = w. Set
k = (1− h)wed(1− h). Then hk = kh = 0, h = h2 and k = k2. So h((x+ b)t) = hw

and (1− h)we = k(1− h)we = kw. This implies that

w(a + (1− a)bs(d(1− h)(1 + hwed(1− h))− a))(1− hwed(1− h))w

= w((1 − e)a+ ed(1− h)(1 + hwed(1− h)))(1− hwed(1− h))w

= (h+ wed(1− h)(1 + hwed(1− h)))(1− hwed(1− h))w

= (h(1− hwed(1− h)) + wed(1− h))w

= (h+ (1− h)wed(1− h))w = (h+ k)w = w.

From dw = 1, we see that a + (1 − a)bs(d(1 − h)(1 + hwed(1 − h)) − a) ∈ Ur(R).
Applying the consideration to (1−u)R, we get a z ∈ R such that x+(1+z(1−a))b =
(x + b) + z(1 − a)b ∈ Uw(R) by [5, Proposition 1]. Consequently, we have a q ∈ R

such that a+ bq ∈ Uw(R), as asserted. �

Let I be an exchange ideal of a ring R. If I satisfies related comparability, by
Lemma 1 and [3, Lemma 4.1], we show that I is a separative ideal.

Lemma 2. Let R be a ring. Then Uw(R) ⊆ Ul(R)Ur(R).
���������

. Suppose that w ∈ Uw(R). Then there exists e ∈ B(R) such that
ew ∈ Ur(eR) and (1 − e)w ∈ Ul((1 − e)R). Assume that ewes = e and (1 − e)t(1 −
e)w = 1 − e for some s, t ∈ R. Set u = e + (1 − e)t and v = es + (1 − e). Then
we check that uwv = (e + (1 − e)t)w(es + (1 − e)) = 1. In addition, we have
(wv)(uw) = (e+ (1− e)w)(ew + (1 − e)) = w, hence w ∈ Uw(R) ⊆ Ul(R)Ur(R), as
required. �

The pair (a, b) is called right unimodular if aR + bR = R. We say that a right
unimodular pair (a, b) is right quasi-reducible if there exists y ∈ R such that a+by ∈
Ul(R)Ur(R).

Lemma 3. Let (a, b) be a right unimodular row in a ring R. Let u, v ∈ U(R) and
c ∈ R. Then (vau + vbc, vb) is also right unimodular. Furthermore, (a, b) is right
quasi-reducible if and only if so is (au+ vbc, vb).
���������

. It follows by [4, Lemma 6.3] that (vau + vbc, vb) is right unimodular.
Assume that (a, b) is right quasi-reducible. Then there is a y ∈ R such that a+ by ∈
Ul(R)Ur(R). Set z = yu−c. We have (vau+vbc)+(vb)z = v(a+by)u ∈ Ul(R)Ur(R);
whence, (au+ vbc, vb) is right quasi-reducible. Conversely, assume that there exists
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a z ∈ R such that vau + vbc + vbz ∈ Ul(R)Ur(R). Then v(a + b(c + z)u−1)u ∈
Ul(R)Ur(R), and a + b(c + z)u−1 ∈ Ul(R)Ur(R). Therefore (a, b) is right quasi-
reducible. �

Analogously to [9, Theorem 6], we can derive the following result.

Lemma 4. Let I be an exchange ideal of a ring R. Suppose that I satisfies related
comparability. If AX +B = In with A ∈ In +Mn(I) and B ∈ Mn(I), then we have
Y ∈Mn(R) such that A+BY ∈ Ul(Mn(R))Ur(Mn(R)).
���������

. Suppose that AX + B = In with A ∈ In +Mn(I), X ∈ Mn(R) and
B ∈ Mn(I). We will show that A+ BY ∈ Ul(Mn(R))Ur(Mn(R)) for a Y ∈ Mn(R).
Since I is an exchange ideal, so is Mn(I) for all n ∈ � . According to Lemma 1 and
Lemma 2, the result holds for n = 1. Assume inductively that the result holds for n.
It suffices to show that the result also holds for n+ 1. Suppose that




a11 a12 . . . a1(n+1)

a21 a22 . . . a2(n+1)

...
...

. . .
...

a(n+1)1 a(n+1)2 . . . a(n+1)(n+1)







b11 b12 . . . b1(n+1)

b21 b22 . . . b2(n+1)

...
...

. . .
...

b(n+1)1 b(n+1)2 . . . b(n+1)(n+1)


(∗)

+




c11 c12 . . . c1(n+1)

c21 c22 . . . c2(n+1)

...
...

. . .
...

c(n+1)1 c(n+1)2 . . . c(n+1)(n+1)


 = diag(1, 1, . . . , 1)

in Mn+1(R), where




a11 a12 . . . a1(n+1)

a21 a22 . . . a2(n+1)

...
...

. . .
...

a(n+1)1 a(n+1)2 . . . a(n+1)(n+1)


 ∈ diag(1, 1, . . . , 1) +Mn+1(I),




c11 c12 . . . c1(n+1)

c21 c22 . . . c2(n+1)

...
...

. . .
...

c(n+1)1 c(n+1)2 . . . c(n+1)(n+1)


 ∈Mn+1(I).

Obviously, a11b11 + a12b21 + . . . + a1(n+1)b(n+1)1 + c11 = 1 with a11 ∈ 1 + I . Since

I satisfies related comparability, from Lemma 1, there is a z1 ∈ R such that a11 +
(a12b21 + . . . + a1(n+1)b(n+1)1 + c11)z1 ∈ Ul(R)Ur(R). Furthermore, we have a11 +
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(a12b21+. . .+a1(n+1)b(n+1)1+c11)z1 ∈ 1+I since a11 ∈ 1+I, a12, . . . , a1(n+1), c11 ∈ I .
Using Lemma 3, (∗) is right quasi-reducible if and only if this is so for the row with
elements




a11 a12 a13 . . . a1(n+1)

a21 a22 a23 . . . a2(n+1)

a31 a32 a33 . . . a3(n+1)

...
...

...
. . .

...
a(n+1)1 a(n+1)2 a(n+1)3 . . . a(n+1)(n+1)







1 0 0 . . . 0
b21z1 1 0 . . . 0
b31z1 0 1 . . . 0
...

...
...
. . .

...

b(n+1)1z1 0 0 . . . 1




+




c11 c12 c13 . . . c1(n+1)

c21 c22 c23 . . . c2(n+1)

c31 c32 c33 . . . c3(n+1)

...
...

...
. . .

...

c(n+1)1 c(n+1)2 c(n+1)3 . . . c(n+1)(n+1)







z1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...
0 0 0 . . . 1




and



c11 c12 c13 . . . c1(n+1)

c21 c22 c23 . . . c2(n+1)

c31 c32 c33 . . . c3(n+1)

...
...

...
. . .

...
c(n+1)1 c(n+1)2 c(n+1)3 . . . c(n+1)(n+1)



.

Thus we assume that a11 ∈ (Ul(R)Ur(R)) ∩ (1 + I) in (∗). Since a11 ∈ Ul(R)Ur(R),
there exist u, v, s, t ∈ R such that a11 = uv, su = 1 and vt = 1. So sa11t = 1. From
a11 ∈ 1 + I , we see that st ∈ 1 + I . Clearly, we may assume that




a33 . . . a3(n+1)

a43 . . . a4(n+1)

...
. . .

...

a(n+1)3 . . . a(n+1)(n+1)


 ∈ diag(1, 1, . . . , 1) +Mn−1(I),




c33 . . . c3(n+1)

c43 . . . c4(n+1)

...
. . .

...

c(n+1)3 . . . c(n+1)(n+1)


 ∈Mn−1(I).

13



It is easy to check that




s 0 0 . . . 0
1− a11ts a11t 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...

0 0 0 . . . 1







a11 a12 a13 . . . a1(n+1)

a21 a22 a23 . . . a2(n+1)

a31 a32 a33 . . . a3(n+1)

...
...

...
. . .

...

a(n+1)1 a(n+1)2 a(n+1)3 . . . a(n+1)(n+1)




×




t 1− tsa11 0 . . . 0
0 sa11 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




=




1 b12 b13 . . . b1(n+1)

b21 b22 b23 . . . b2(n+1)

b31 b32 ∗ . . . ∗
...

...
...
. . .

...

b(n+1)1 b(n+1)2 ∗ . . . ∗



,

and that




s 0 0 . . . 0
1− a11ts a11t 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




=




a11t 1− a11ts 0 . . . 0
0 s 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




−1

,




t 1− tsa11 0 . . . 0
0 sa11 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




=




sa11 0 0 . . . 0
1− tsa11 t 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




−1

∈ GLn+1(R).

Thus (∗) is right quasi-reducible if and only if this is so for the row with elements



1 b12 b13 . . . b1(n+1)

b21 b22 b23 . . . b2(n+1)

b31 b32 ∗ . . . ∗
...

...
...
. . .

...

b(n+1)1 b3(n+1) ∗ . . . ∗



,




s 0 0 . . . 0
1− a11ts at 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...

0 0 0 . . . 1




×




c11 c12 c13 . . . c1(n+1)

c21 c22 c23 . . . c2(n+1)

c31 c32 c33 . . . c3(n+1)

...
...

...
. . .

...

c(n+1)1 c(n+1)2 c(n+1)3 . . . c(n+1)(n+1)



.
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Clearly, all bij ∈ I for i 6= j. Furthermore, b22 = ((1 − a11ts)a11 + a11ta21)(1 −
tsa11) + ((1 − a11ts)a12 + a11ta22)sa11. Since a11, a22, st ∈ 1 + I and a12 ∈ I , we
deduce that b22 ≡ (1−ts)(1−ts)+ts ≡ 1(mod I). Hence b22 ∈ 1+I . Using Lemma 3
again, (∗) is right quasi-reducible if and only if this is so for the row with elements




1 0 0 . . . 0
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
...
...
...
. . .

...

0 ∗ ∗ . . . ∗



,




1 0 0 . . . 0
∗ 1 0 . . . 0
∗ 0 1 . . . 0
...
...
...
. . .

...

∗ 0 0 . . . 1







s 0 0 . . . 0
1− ats at 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...

0 0 0 . . . 1




×




c11 c12 c13 . . . c1(n+1)

c21 c22 c23 . . . c2(n+1)

c31 c32 c33 . . . c3(n+1)

...
...

...
. . .

...

c(n+1)1 c(n+1)2 c(n+1)3 . . . c(n+1)(n+1)



.

Thus, we assume that a11 = 1, a1i = 0 = ai1 for i = 2, . . . , n + 1 in (∗). Moreover,
we may assume that (∗) is in the following form:

(
1 01×n

0n×1 D

) (
b11 B12

B21 B22

)
+

(
c11 C12

C21 C22

)
=

(
1 0
0 In

)
,

where D ∈ diag(1, 1, . . . , 1) + Mn(I). Clearly, we have DB22 + C22 = In. By the

induction hypothesis, we can find a Z2 ∈Mn(R) such that D+C22Z2 ∈ Ul(R)Ur(R);
hence, we pass to the right unimodular row with elements

(
1 01×n

0n×1 D

)
+

(
c11 C12

C21 C22

) (
0 01×n

0n×1 Z2

)
,

(
c11 C12

C21 C22

)
.

So it suffices to show that the right unimodular row with elements

(
1 C12Z2

0n×1 D + C22Z2

)
and

(
c11 C12

C21 C22

)

is quasi-reducible. Inasmuch as D + C22Z2 ∈ Ul(Mn(R))Ur(Mn(R)), we see that(
1 C12Z2

0 D + C22Z2

)
∈ Ul(Mn(R))Ur(Mn(R)). By induction, we conclude that A +

BY ∈ Ul(Mn(R))Ur(Mn(R)) for a Y ∈Mn(R). �

15



Lemma 5. Let I be an exchange ideal of a ring R. If I satisfies related compa-
rability, then the following hold:

(1) For any regular A,B ∈ Mn(I), AMn(R) = BMn(R) implies that there exists
U ∈ Ul(R)Ur(R) such that A = BU .

(2) For any regular A,B ∈ Mn(I), Mn(R)A = Mn(R)B implies that there exists
U ∈ Ul(R)Ur(R) such that A = UB.

���������
. (1) Suppose that AMn(R) = BMn(R) with regular A,B ∈ Mn(I).

Then A = BX and B = AY for X,Y ∈ Mn(R). Since A and B are regular, we
may assume that X,Y ∈Mn(I). Furthermore, we have B(X + (In−XY )) = BX =
A. Thus we may assume that X ∈ In +Mn(I). Likewise, we may assume that
Y ∈ In +Mn(I). Since XY + (In−XY ) = In, by Lemma 4, we have Z ∈ Mn(R)
such that X + (In − XY )Z = U ∈ Ul(Mn(R))Ur(Mn(R)). Therefore A = BX =
B(X + (In −XY )Z) = BU , as asserted.

(2) Let e, f ∈ R be idempotents. Clearly, eR ∼= fR if and only if Re ∼= Rf and
eR .⊕ fR if and only if Re .⊕ Rf . We know that I satisfies related comparability

as an ideal of R if and only if Iop satisfies related comparability as an ideal of Rop.
Applying (1) to the opposite ring Rop of R, we get the result. �

Lemma 6. For any regular a, b ∈ R, if ψ : aR ∼= bR, then Ra = Rψ(a) and
ψ(a)R = bR.

���������
. Since ψ : aR ∼= bR, we have ψ(a) ∈ bR, and so ψ(a)R ⊆ bR. On

the other hand, there exists r ∈ R such that b = ψ(ar) = ψ(a)r ∈ ψ(a)R; hence,
bR ⊆ ψ(a)R. Thus, ψ(a)R = bR. As b ∈ R is regular, we have an idempotent e ∈ R
such that bR = eR; hence, ψ(a)R = eR. This implies that ψ(a) ∈ R is regular.
So we have a c ∈ R such that ψ(a) = ψ(a)cψ(a) = ψ(acψ(a)). It follows that
a = acψ(a) ∈ Rψ(a), whence Ra ⊆ Rψ(a). One the other hand, we have a = ada

for a d ∈ R. This shows that ψ(a) = ψ(a)da ∈ Ra; hence, Rψ(a) ⊆ Ra. Therefore

we conclude that Ra = Rψ(a), as asserted. �

Theorem 7. Let I be an exchange ideal of a ring R. If I satisfies related compa-
rability, then for any regular matrix A ∈ Mn(I), there exist left invertible U1, U2 ∈
Mn(R) and right invertible V1, V2 ∈Mn(R) such that U1V1AU2V2 = diag(e1, . . . , en)
for idempotents e1, . . . , en ∈ I .
���������

. Given any regular A ∈ Mn(I), we have E = E2 ∈ Mn(I) such that
AMn(R) = EMn(R). Clearly, ERn is a generated projective right R-module. Since

I is an exchange ideal, there are idempotents e1, . . . , en ∈ I such that ERn ∼=
e1R ⊕ . . . ⊕ enR ∼= diag(e1, . . . , en)Rn as right R-modules, so we have ERn×1 ∼=
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diag(e1, . . . , en)Rn×1, where Rn×1 = {(x1 . . . xn) 	 ; x1, . . . , xn ∈ R} is a right R-
module and a left Mn(R)-module. Let R1×n = {(x1, . . . , xn) ; x1, . . . , xn ∈ R}.
Then R1×n is a left R-module and a rightMn(R)-module; hence, (ERn×1)

⊗
RR

1×n

∼= diag(e1, . . . , en)Rn×1
⊗

R R
1×n. One easily checks that Rn×1

⊗
R1×n ∼= Mn(R)

as right Mn(R)-modules. Hence ψ : AMn(R) ∼= diag(e1, . . . , en)Mn(R). It is easy
to show that all ei ∈ R. In view of Lemma 6, Mn(R)A = Mn(R)ψ(A) and
ψ(A)Mn(R) = diag(e1, . . . , en)Mn(R). According to Lemma 5, we have left invert-
ible U1, U2 ∈ Mn(R) and right invertible V1, V2 ∈ Mn(R) such that U1V1A = ψ(A)
and ψ(A)U2V2 = diag(e1, . . . , en). Consequently, U1V1AU2V2 = diag(e1, . . . , en), as
required. �

Let R be a generalized stable regular ring. For any A ∈ Mn(R), there ex-
ist right invertible U1, U2 ∈ Mn(R) and left invertible V1, V2 ∈ Mn(R) such that
U1V1AU2V2 = diag(e1, . . . , en) for idempotents e1, . . . , en ∈ R (see [9, Theorem 16]).
As an immediate consequence of Theorem 7, we can derive the following.

Corollary 8. Let R be an exchange ring satisfying related comparability. Then
for any regular A ∈ Mn(R), there exist left invertible U1, U2 ∈ Mn(R) and right
invertible V1, V2 ∈ Mn(R) such that U1V1AU2V2 = diag(e1, . . . , en) for idempotents
e1, . . . , en ∈ R.

Let R be a right self-injective, regular ring (see [10]). Then R is an exchange ring
satisfying related comparability. By Corollary 8, we show that for any square matrix
A over R, there exist left invertible U1, U2 ∈ Mn(R) and right invertible V1, V2 ∈
Mn(R) such that U1V1AU2V2 = diag(e1, . . . , en) for idempotents e1, . . . , en ∈ R.

Corollary 9. Let I be a purely infinite, simple ideal of a ring R. Then for
any regular A ∈ Mn(I), there exist left invertible U1, U2 ∈ Mn(R) and right in-
vertible V1, V2 ∈ Mn(R) such that U1V1AU2V2 = diag(e1, . . . , en) for idempotents
e1, . . . , en ∈ I .
���������

. By Ara’s result, every purely infinite, simple ideal of a ring is an

exchange ideal. Clearly, I satisfies related comparability. Using Theorem 7, we
complete the proof. �
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