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Abstract. We give an example of a class of binary matroids with a cocircuit partition
and we give some characteristics of a set of cocircuits of such binary matroids which forms
a partition of the ground set.
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1. Introduction

Matroid theory draws heavily on both graph theory and linear algebra for its
notation and basic examples. Thus a matroid can be defined in several ways. For

example we can define a matroid using the properties of its set of independent sets or
its set of circuits. For further details we refer to [3]. Thus studying such type of sets

as the set of circuits of a matroid enriches the field. The result of Welsh [4] below is
an example of such a study. A matroid M is Eulerian if its ground set E(M) has a
partition into circuits.

Furthermore, each matroid M has a corresponding matroid M ∗ called the dual.
The circuits of the dual matroid M∗ are called the cocircuits of the matroid M .

For a good introduction to duality theory, we refer to [5]. Thus studying the set of
cocircuits gives information on both the matroid and its dual. But studying the set

of cocircuits for a general matroid is not very easy, so in this paper we restrict our
study to a well known class of binary matroids, see [3], [5].

In this paper we give a class of binary matroids whose ground set has a cocir-

cuit partition and we give some characteristics of a set of cocircuits which forms a
partition.
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2. Circuit and cocircuit partitions of matroids

A matroid is a collection of objects with a certain function of rank defined just
like in graphs and matrices. A matroid M(E) is a set E with a rank function r, for

which the following properties hold

(R1) If X ⊆ E, then 0 6 r(X) 6 |X |.
(R2) If X ⊆ Y ⊆ E, then r(X) 6 r(Y ).

(R3) If X and Y are subsets of E, then

r(X ∪ Y ) + r(X ∩ Y ) 6 r(X) + r(Y ).

The set E is called the ground set of M(E). A circuit of M(E) is a non-empty
subset X of E such that for all x in X , r(X − x) = |X | − 1 = r(X). For each ma-
troidM(E) there is another matroid associated with it. The dual of a matroid M(E),
denoted by M∗(E), is a matroid with the rank function r∗ such that for all X ⊆ E,

r∗(X) = |X | − r(M) + r(E −X).

The circuits of M∗ are called the cocircuits of M . A function cl from 2E into 2E

defined for all X ⊆ E by cl(X) = {x ∈ E : r(X ∪ x) = r(X)} is called the closure
operator of M . Let PG(r − 1, q) be the projective space of rank r over a finite

field GF (q) as described by Oxley [3, Chapter 6]. An affine space of rank r, denoted
AG(r − 1, q), is obtained from the projective space PG(r − 1, q) by deleting all the
points of a hyperplane. A simple matroid M is affine over GF (q) if it is isomorphic
to a submatroid of AG(r−1, q). In general, a loopless matroidM is affine overGF (q)
if its associated simple matroid is affine over GF (q). A binary matroid is a matroid
that is representable over GF (2). A circuit partition of a matroidM is a partition of

the ground set ofM into circuits. A cocircuit partition of a matroidM is a partition
of the ground set of M into cocircuits.

If M has a loop it is clear that the ground set of M cannot be partitioned into

cocircuits. Recall that si(M) denotes the simple matroid associated with the ma-
troidM . Recall that a matroidM is Eulerian if its ground set E(M) has a partition
into circuits. Also we say that a matroid M is bipartite if every circuit has even
cardinality. The next theorem summarizes the relationship between binary Eule-

rian matroids and binary bipartite matroids, see Welsh [4] and for other details see
Brylawski [1] and Heron [2].
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Theorem 2.1 (Welsh 1969). Let M be a binary matroid. The following are

equivalent:

(i) M is Eulerian.

(ii) Every cocircuit of M has even cardinality.

(iii) M∗ is bipartite.

(iv) M∗ has a partition into cocircuits.

The next theorem is well known.

Theorem 2.2. A binary matroid M is affine over GF (2) if and only if M is

bipartite.

Thus a binary affine matroid has a cocircuit partition.

3. A theorem on binary affine matroids

In this section we prove the main theorem of this paper. This theorem is on the

characteristic of a binary affine matroid with a cocircuit partition.
Throughout this section M denotes a binary affine matroid of rank r represented

over GF (2) by a set E of points of PG(r−1, 2) and H denotes the unique hyperplane
of PG(r − 1, 2) such that H ∩ E = ∅. Refer to the definitions in Section 2. For a
subset A of E, the closure of A in M is denoted by clM (A) and the closure of A

in PG(r − 1, 2) is denoted by clP (A).

Theorem 3.1. LetM be a binary affine matroid of rank r represented overGF (2)
by a set E of points of PG(r − 1, 2) and let H denote the unique hyperplane of

PG(r− 1, 2) such that H ∩E = ∅. Let {C1, C2, . . . , Ck} be a set of pairwise disjoint
cocircuits of M . Then {C1, C2, . . . , Ck} is a partition of E if and only if

r((clP (C1) ∩H) ∪ (clP (C2) ∩H) ∪ . . . ∪ (clP (Ck) ∩H)) = r − k.

To ease notation in what follows, for a subset C of E, the set clP (C) ∩ H will be
denoted by C ′. Before proving Theorem 3.1 we will need the following propositions

and lemmas. The next claim follows immediately from the fact that all flats in a
projective geometry are modular.

Claim 3.2. Let F be a flat and H ′ a hyperplane of PG(n, q) such that F 6⊆ H ′.

Then

r(F ∩H ′) = r(F ) − 1.

The next claim follows from the fact that intersections of flats in a matroid are

flats.
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Claim 3.3. Let M ′ be a binary matroid and suppose X is the intersection of a

three point line and a hyperplane in M ′. Then |X | ∈ {1, 3}.

Recall that throughout this section M denotes a binary affine matroid.

Lemma 3.4. Let C be a cocircuit of M . Then

C ′ ⊆ clP (E − C).

���������
. We can regard elements of PG(r − 1, 2) as vectors in V (r, 2). Let

b1,b2, . . . ,bm be vectors that form a basis of M
∣∣C. First, let b1 be the only such

vector. In this case clP (C) is a parallel class of b1. Hence C ′ is empty. Thus

C ′ ⊆ clP (E − C). Now consider b1 + bi for i = 2, 3, . . . , m. It is obvious that
b1 +bi ∈ clPG(C). It follows that {b1,bi,b1 +bi} is a three point line. But b1 and

bi are not in H , hence by applying Proposition 3.3, b1+bi ∈ H . Hence b1+bi ∈ C ′.
We now show that the set B = {b1 + b2,b1 + b3, . . . ,b1 + bm} is independent.

Consider a sum of the form
m∑

i=2

ai(b1 + bi) where at least one ai is non-zero. Let

J = {j ∈ {2, 3, . . . , m} : aj 6= 0}. Then

∑

j∈J

aj(b1 + bj) =





b1 +
∑
j∈J

bj if |J | is odd,
∑
j∈J

bj otherwise.

Moreover, b1,b2, . . . ,bm are independent. Hence both b1 +
∑
j∈J

bj 6= 0 and
∑
j∈J

bj 6=

0. Therefore, we have
∑
j∈J

aj(b1 + bj) 6= 0. Hence B is an independent set. Further-

more, |B| = r(C) − 1. But by Proposition 3.2, r(C ′) = r(clP (C)) − 1 = r(C) − 1.
Hence B is a maximal independent set of C ′. Hence B is a basis for C ′.

Next we show that for all i ∈ {1, 2, . . . , m} we have b1 + bi ∈ clP (E − C). We
know E−C is a hyperplane ofM , so clP (E−C) is a hyperplane of PG(r−1, 2). But
clP (E−C)∩E = E−C. Hence b1,bi 6∈ clP (E−C). So by applying Proposition 3.3
we deduce that b1 + bi ∈ clP (E − C). Hence B ⊆ clP (E − C). It follows that
clP (B) ⊆ clP (E − C). Hence C ′ ⊆ clP (E − C). �

Lemma 3.5. Let C1, C2, . . . , Ck be a set of pairwise disjoint cocircuits of M , let

F be the set C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k and let M1 = PG(r − 1, 2)

∣∣E ∪ F . Then Ci is a

cocircuit of M1 for i = 1, 2, . . . , k.
���������

. Consider clP (E−Ci). For all j 6= i and Cj ⊆ (E−Ci) we have clP (Cj) ⊆
clP (E −Ci). Hence C ′

j ⊆ clP (E −Ci). But by Lemma 3.4, C ′
i ⊆ clP (E −Ci). Thus

clM1(E − Ci) = (E − Ci) ∪ F . Therefore Ci is a cocircuit of M1. �
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Evidently if C is a circuit of M and A ∩ C = ∅, then C is a circuit of M \A. By

duality we therefore have the following claim.

Claim 3.6. Let C be a cocircuit of a matroid M , let H = E − C, and A ⊆ H .

Then C is a cocircuit in M/A

The next proposition is a direct application of Claim 3.6 in our context.

Proposition 3.7. Let C1, C2, . . . , Ck be cocircuits of M , let F be the set C ′
1 ∪

C ′
2 ∪ . . . ∪ C ′

k and let M1 = PG(r − 1, 2)
∣∣E ∪ F . Then Ci is a cocircuit of M1/F for

i = 1, 2, . . . , k.
���������

. By Lemma 3.5, Ci is a cocircuit of M1. Thus (E − Ci) ∪ F is a

hyperplane of M1. But F ⊆ (E − Ci) ∪ F . Hence the result follows by applying
Proposition 3.6. �

Lemma 3.8. Let C1, C2, . . . , Ck be cocircuits ofM such that r(C ′
1∪C ′

2∪. . .∪C ′
k) =

r − k. Let M1 = PG(r − 1, 2)
∣∣(E ∪ C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

k). Then
(i) r(M1/(C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

k)) = k;

(ii) Ci is a parallel class of M1/(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k) for i ∈ {1, 2, . . . , k}.

���������
. Let F = C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

k. Consider (i). r(M1)/F = r(M1) − r(F ).
But r(M1) = r(M) and r(F ) = r(M)− k. Hence r(M1/F ) = k.

Now consider (ii). For any cocircuit, Ci of M1, we have rM1/Ci
(Ci) = rM1(Ci ∪

C ′
i)−rM1(C ′

i). But by definition we know that C
′
i ⊆ clM1(Ci). Hence rM1(Ci∪C ′

i) =
rM1(Ci). We also know that rM1(C ′

i) = rM1(Ci) − 1 by applying Proposition 3.2.
Hence rM1/Ci

(Ci) = 1. It follows that rM1/F (Ci) 6 1. But no element of Ci is

in clPG(F ). Thus no element of Ci is a loop of M1/F . Therefore rM1/F (Ci) = 1.
Thus Ci is a parallel class of M1/F . �

Lemma 3.9. Let M be a rank-k loopless matroid containing k parallel classes

P1, P2, . . . , Pk of which each Pi is a cocircuit ofM . Then E(M) = P1 ∪P2 ∪ . . .∪Pk .
���������

. For each Pi there is a corresponding hyperplane Hi such that E(M)−
Hi = Pi. Thus

⋃
i

(E(M) − Hi) = P1 ∪ P2 ∪ . . . ∪ Pk. But
⋃
i

(E(M) − Hi) =

E(M)−⋂
i

(Hi).

Next we show that
⋂
i

(Hi) = ∅. Consider a set of hyperplanes {H1, H2, . . . , Hk}.
The cocircuit Pk is contained in all hyperplanes, Hj , such that k 6= j. Hence Pk ⊆
(H1 ∩H2 ∩ . . . ∩Hk−1). Moreover, we know that Pk 6⊆ Hk. Hence

(H1 ∩H2 ∩ . . . ∩Hk−1 ∩Hk) ⊂ (H1 ∩H2 ∩ . . . ∩Hk−1).
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But we know that any set which is an intersection of flats is a flat. Thus (H1 ∩
H2 ∩ . . . ∩Hk−1 ∩Hk) and (H1 ∩H2 ∩ . . . ∩Hk−1) are flats. We also know that for
any two flats F1 and F2 such that F1 ⊂ F2 we have r(F1) < r(F2). Without loss of
generality, it follows that r(H1 ∩ H2) < r(H1). Hence r(H1 ∩ H2) < k − 1 6 k − 2.
It follows by recursion that r(H1 ∩H2 ∩ . . .∩Hk−1 ∩Hk) 6 k− k = 0. But the rank
of a set can not be negative. Thus r(H1 ∩ H2 ∩ . . . ∩ Hk−1 ∩ Hk) = 0. Since M is

loopless (H1 ∩H2 ∩ . . . ∩Hk−1 ∩Hk) = ∅. Hence E(M) = P1 ∪ P2 ∪ . . . ∪ Pk. �

Proposition 3.10. LetM be a binary affine matroid with a partition C1, C2, . . . ,

Ck of E(M) into cocircuits. Then Ci is a flat of M for all i ∈ {1, 2, . . . , k}.
���������

. Consider the following set of hyperplanes, {Hi : Hi = E(M) − Ci, i ∈
1, 2, . . . , k}, of M . Without loss of generality let i = k. Then Hk = C1 ∪ C2 ∪ . . . ∪
Ck−1. Moreover for any k 6= j, we have Ck ⊆ Hj . Thus Ck ⊆ H1 ∩H2 ∩ . . . ∩Hk−1.
Furthermore, we know by definition that no element of Cj is contained in Hj . Hence

H1 ∩H2 ∩ . . .∩Hk−1 = Ck . Hence Ck is a flat since it is an intersection of flats. �

We are now in a position to prove Theorem 3.1.
���������

of Theorem 3.1. Let C1, C2, . . . , Ck be a set of pairwise disjoint cocir-
cuits of M and let M1 = PG(r − 1, 2)

∣∣E ∪ (C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k).

Assume that r(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k) = r(M) − k. By Lemma 3.7, each Ci for

i ∈ {1, 2, . . . , k} is a cocircuit of M1/(C ′
1 ∪C ′

2∪ . . .∪C ′
k). By Lemma 3.8, each Ci for

i ∈ {1, 2, . . . , k} is a parallel class of M1/(C ′
1 ∪C ′

2 ∪ . . .∪C ′
k). Moreover, the ground

set of M1/(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k) is E. Thus E = C1 ∪ C2 ∪ . . . ∪ Ck by Lemma 3.9.

But we know that C1, C2, . . . , Ck are pairwise disjoint cocircuits of M and E is the

ground set of M . Hence C1, C2, . . . , Ck is a partition of E(M) into cocircuits.

Assume that C1, C2, . . . , Ck is a partition of E(M) into cocircuits. Then M is
a loopless matroid since a cocircuit does not contain loops. We use induction on

the number of cocircuits of M . Let M be a matroid with one cocircuit C1. Then
M is a matroid with a single parallel class. Thus H = ∅. Therefore C ′

1 = ∅. Hence
r(C ′

1) = 0 = r − 1. Therefore it holds for a matroid with a single cocircuit.
Assume that for every binary matroidM with a cocircuit partition C1, C2, . . . , Cn

of E(M) we have r(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
n) = r − n for n > 1.

Now let M be a binary affine matroid with a partition C1, C2, . . . , Cn, Cn+1

of E(M). Then by Claim 3.6, C1, C2, . . . , Cn is a cocircuit partition ofM/Cn+1. Let

M1 = PG(r − 1, 2)
∣∣E ∪ C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

n+1. Hence by the induction assumption,

rM1/Cn+1(C
′
1 ∪ C ′

2 ∪ . . . ∪ C ′
n) = r(M1/Cn+1)− n.
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It is clear that C ′
n+1 is a collection of loops of M1/Cn+1. Let X denote C ′

1 ∪
C ′

2 ∪ . . . ∪ C ′
n+1. Hence

(3.1) rM1/Cn+1(X) = r(M1/Cn+1)− n.

But

(3.2) rM1/Cn+1(X) = rM1(X ∪ Cn+1)− rM1(Cn+1).

We now show that

(3.3) rM1(X ∪ Cn+1) = rM1(X) + 1.

Certainly, rM1 (X ∪ Cn+1) > rM1(X) because Cn+1 6⊆ clM1(X). But rM1(Cn+1 ∪
C ′

n+1) = rM1(C ′
n+1) + 1 thus Cn+1 and C ′

n+1 is a modular pair of flats. Thus

rM1(X ∪ Cn+1) + rM1 (X ∩ Cn+1) 6 rM1(X) + rM1(Cn+1).

Hence
rM1(X ∪ Cn+1) 6 rM1(X) + 1.

Hence Equation 3.3 holds. Using Equations 3.1, 3.2, 3.3, we see that

r(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
n+1) = rM1 (X ∪ Cn+1)− 1

= rM1/Cn+1(X) + rM1 (Cn+1)− 1

= r(M1/Cn+1)− n + rM1 (Cn+1)− 1

= r(M1)− n− 1 = r − 1− n = r − (n + 1).

Therefore any binary affine matroid M with a cocircuit partition C1, C2, . . . , Ck has

r(C ′
1 ∪ C ′

2 ∪ . . . ∪ C ′
k) = r − k. �
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