## Czechoslovak Mathematical Journal

## Eunice Goo Mphako <br> Circuit and cocircuit partitions of binary matroids

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 1, 19-25

Persistent URL: http: //dml.cz/dmlcz/128051

## Terms of use:

(C) Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

# CIRCUIT AND COCIRCUIT PARTITIONS OF BINARY MATROIDS 

Eunice Gogo Mphako, Zomba

(Received March 8, 2003)


#### Abstract

We give an example of a class of binary matroids with a cocircuit partition and we give some characteristics of a set of cocircuits of such binary matroids which forms a partition of the ground set.


Keywords: binary matroid, affine matroid, cocircuit, Eulerian, circuit partition
MSC 2000: 05B35

## 1. Introduction

Matroid theory draws heavily on both graph theory and linear algebra for its notation and basic examples. Thus a matroid can be defined in several ways. For example we can define a matroid using the properties of its set of independent sets or its set of circuits. For further details we refer to [3]. Thus studying such type of sets as the set of circuits of a matroid enriches the field. The result of Welsh [4] below is an example of such a study. A matroid $M$ is Eulerian if its ground set $E(M)$ has a partition into circuits.

Furthermore, each matroid $M$ has a corresponding matroid $M^{*}$ called the dual. The circuits of the dual matroid $M^{*}$ are called the cocircuits of the matroid $M$. For a good introduction to duality theory, we refer to [5]. Thus studying the set of cocircuits gives information on both the matroid and its dual. But studying the set of cocircuits for a general matroid is not very easy, so in this paper we restrict our study to a well known class of binary matroids, see [3], [5].

In this paper we give a class of binary matroids whose ground set has a cocircuit partition and we give some characteristics of a set of cocircuits which forms a partition.

## 2. Circuit and cocircuit partitions of matroids

A matroid is a collection of objects with a certain function of rank defined just like in graphs and matrices. A matroid $M(E)$ is a set $E$ with a rank function $r$, for which the following properties hold
(R1) If $X \subseteq E$, then $0 \leqslant r(X) \leqslant|X|$.
(R2) If $X \subseteq Y \subseteq E$, then $r(X) \leqslant r(Y)$.
(R3) If $X$ and $Y$ are subsets of $E$, then

$$
r(X \cup Y)+r(X \cap Y) \leqslant r(X)+r(Y)
$$

The set $E$ is called the ground set of $M(E)$. A circuit of $M(E)$ is a non-empty subset $X$ of $E$ such that for all $x$ in $X, r(X-x)=|X|-1=r(X)$. For each matroid $M(E)$ there is another matroid associated with it. The dual of a matroid $M(E)$, denoted by $M^{*}(E)$, is a matroid with the rank function $r^{*}$ such that for all $X \subseteq E$,

$$
r^{*}(X)=|X|-r(M)+r(E-X) .
$$

The circuits of $M^{*}$ are called the cocircuits of $M$. A function cl from $2^{E}$ into $2^{E}$ defined for all $X \subseteq E$ by $\operatorname{cl}(X)=\{x \in E: r(X \cup x)=r(X)\}$ is called the closure operator of $M$. Let $P G(r-1, q)$ be the projective space of rank $r$ over a finite field $G F(q)$ as described by Oxley [3, Chapter 6]. An affine space of rank $r$, denoted $A G(r-1, q)$, is obtained from the projective space $P G(r-1, q)$ by deleting all the points of a hyperplane. A simple matroid $M$ is affine over $G F(q)$ if it is isomorphic to a submatroid of $A G(r-1, q)$. In general, a loopless matroid $M$ is affine over $G F(q)$ if its associated simple matroid is affine over $G F(q)$. A binary matroid is a matroid that is representable over $G F(2)$. A circuit partition of a matroid $M$ is a partition of the ground set of $M$ into circuits. A cocircuit partition of a matroid $M$ is a partition of the ground set of $M$ into cocircuits.

If $M$ has a loop it is clear that the ground set of $M$ cannot be partitioned into cocircuits. Recall that $\operatorname{si}(M)$ denotes the simple matroid associated with the matroid $M$. Recall that a matroid $M$ is Eulerian if its ground set $E(M)$ has a partition into circuits. Also we say that a matroid $M$ is bipartite if every circuit has even cardinality. The next theorem summarizes the relationship between binary Eulerian matroids and binary bipartite matroids, see Welsh [4] and for other details see Brylawski [1] and Heron [2].

Theorem 2.1 (Welsh 1969). Let $M$ be a binary matroid. The following are equivalent:
(i) $M$ is Eulerian.
(ii) Every cocircuit of $M$ has even cardinality.
(iii) $M^{*}$ is bipartite.
(iv) $M^{*}$ has a partition into cocircuits.

The next theorem is well known.
Theorem 2.2. A binary matroid $M$ is affine over $G F(2)$ if and only if $M$ is bipartite.

Thus a binary affine matroid has a cocircuit partition.

## 3. A THEOREM ON BINARY AFFINE MATROIDS

In this section we prove the main theorem of this paper. This theorem is on the characteristic of a binary affine matroid with a cocircuit partition.

Throughout this section $M$ denotes a binary affine matroid of rank $r$ represented over $G F(2)$ by a set $E$ of points of $P G(r-1,2)$ and $H$ denotes the unique hyperplane of $P G(r-1,2)$ such that $H \cap E=\emptyset$. Refer to the definitions in Section 2. For a subset $A$ of $E$, the closure of $A$ in $M$ is denoted by $\operatorname{cl}_{M}(A)$ and the closure of $A$ in $P G(r-1,2)$ is denoted by $\operatorname{cl}_{P}(A)$.

Theorem 3.1. Let $M$ be a binary affine matroid of rank $r$ represented over $G F(2)$ by a set $E$ of points of $\operatorname{PG}(r-1,2)$ and let $H$ denote the unique hyperplane of $P G(r-1,2)$ such that $H \cap E=\emptyset$. Let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a set of pairwise disjoint cocircuits of $M$. Then $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is a partition of $E$ if and only if

$$
r\left(\left(\operatorname{cl}_{P}\left(C_{1}\right) \cap H\right) \cup\left(\operatorname{cl}_{P}\left(C_{2}\right) \cap H\right) \cup \ldots \cup\left(\mathrm{cl}_{P}\left(C_{k}\right) \cap H\right)\right)=r-k
$$

To ease notation in what follows, for a subset $C$ of $E$, the set $\mathrm{cl}_{P}(C) \cap H$ will be denoted by $C^{\prime}$. Before proving Theorem 3.1 we will need the following propositions and lemmas. The next claim follows immediately from the fact that all flats in a projective geometry are modular.

Claim 3.2. Let $F$ be a flat and $H^{\prime}$ a hyperplane of $P G(n, q)$ such that $F \nsubseteq H^{\prime}$. Then

$$
r\left(F \cap H^{\prime}\right)=r(F)-1
$$

The next claim follows from the fact that intersections of flats in a matroid are flats.

Claim 3.3. Let $M^{\prime}$ be a binary matroid and suppose $X$ is the intersection of a three point line and a hyperplane in $M^{\prime}$. Then $|X| \in\{1,3\}$.

Recall that throughout this section $M$ denotes a binary affine matroid.
Lemma 3.4. Let $C$ be a cocircuit of $M$. Then

$$
C^{\prime} \subseteq \operatorname{cl}_{P}(E-C)
$$

Proof. We can regard elements of $\operatorname{PG}(r-1,2)$ as vectors in $V(r, 2)$. Let $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{m}}$ be vectors that form a basis of $M \mid C$. First, let $\mathbf{b}_{\mathbf{1}}$ be the only such vector. In this case $\operatorname{cl}_{P}(C)$ is a parallel class of $\mathbf{b}_{\mathbf{1}}$. Hence $C^{\prime}$ is empty. Thus $C^{\prime} \subseteq \operatorname{cl}_{P}(E-C)$. Now consider $\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}}$ for $i=2,3, \ldots, m$. It is obvious that $\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}} \in \mathrm{cl}_{P G}(C)$. It follows that $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{i}}, \mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}}\right\}$ is a three point line. But $\mathbf{b}_{\mathbf{1}}$ and $\mathbf{b}_{\mathbf{i}}$ are not in $H$, hence by applying Proposition $3.3, \mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}} \in H$. Hence $\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}} \in C^{\prime}$.

We now show that the set $B=\left\{\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{3}}, \ldots, \mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{m}}\right\}$ is independent. Consider a sum of the form $\sum_{i=2}^{m} a_{i}\left(\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}}\right)$ where at least one $a_{i}$ is non-zero. Let $J=\left\{j \in\{2,3, \ldots, m\}: a_{j} \neq 0\right\}$. Then

$$
\sum_{j \in J} a_{j}\left(\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{j}}\right)= \begin{cases}\mathbf{b}_{\mathbf{1}}+\sum_{j \in J} \mathbf{b}_{\mathbf{j}} & \text { if }|J| \text { is odd } \\ \sum_{j \in J} \mathbf{b}_{\mathbf{j}} & \text { otherwise }\end{cases}
$$

Moreover, $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{m}}$ are independent. Hence both $\mathbf{b}_{\mathbf{1}}+\sum_{j \in J} \mathbf{b}_{\mathbf{j}} \neq 0$ and $\sum_{j \in J} \mathbf{b}_{\mathbf{j}} \neq$ 0 . Therefore, we have $\sum_{j \in J} a_{j}\left(\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{j}}\right) \neq 0$. Hence $B$ is an independent set. Furthermore, $|B|=r(C)-1$. But by Proposition 3.2, $r\left(C^{\prime}\right)=r\left(\operatorname{cl}_{P}(C)\right)-1=r(C)-1$. Hence $B$ is a maximal independent set of $C^{\prime}$. Hence $B$ is a basis for $C^{\prime}$.

Next we show that for all $i \in\{1,2, \ldots, m\}$ we have $\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}} \in \operatorname{cl}_{P}(E-C)$. We know $E-C$ is a hyperplane of $M$, so $\operatorname{cl}_{P}(E-C)$ is a hyperplane of $P G(r-1,2)$. But $\operatorname{cl}_{P}(E-C) \cap E=E-C$. Hence $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{i}} \notin \mathrm{cl}_{P}(E-C)$. So by applying Proposition 3.3 we deduce that $\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{i}} \in \mathrm{cl}_{P}(E-C)$. Hence $B \subseteq \operatorname{cl}_{P}(E-C)$. It follows that $\operatorname{cl}_{P}(B) \subseteq \operatorname{cl}_{P}(E-C)$. Hence $C^{\prime} \subseteq \operatorname{cl}_{P}(E-C)$.

Lemma 3.5. Let $C_{1}, C_{2}, \ldots, C_{k}$ be a set of pairwise disjoint cocircuits of $M$, let $F$ be the set $C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}$ and let $M_{1}=P G(r-1,2) \mid E \cup F$. Then $C_{i}$ is a cocircuit of $M_{1}$ for $i=1,2, \ldots, k$.

Proof. Consider $\mathrm{cl}_{P}\left(E-C_{i}\right)$. For all $j \neq i$ and $C_{j} \subseteq\left(E-C_{i}\right)$ we have $\operatorname{cl}_{P}\left(C_{j}\right) \subseteq$ $\operatorname{cl}_{P}\left(E-C_{i}\right)$. Hence $C_{j}^{\prime} \subseteq \operatorname{cl}_{P}\left(E-C_{i}\right)$. But by Lemma 3.4, $C_{i}^{\prime} \subseteq \operatorname{cl}_{P}\left(E-C_{i}\right)$. Thus $\operatorname{cl}_{M_{1}}\left(E-C_{i}\right)=\left(E-C_{i}\right) \cup F$. Therefore $C_{i}$ is a cocircuit of $M_{1}$.

Evidently if $C$ is a circuit of $M$ and $A \cap C=\emptyset$, then $C$ is a circuit of $M \backslash A$. By duality we therefore have the following claim.

Claim 3.6. Let $C$ be a cocircuit of a matroid $M$, let $H=E-C$, and $A \subseteq H$. Then $C$ is a cocircuit in $M / A$

The next proposition is a direct application of Claim 3.6 in our context.
Proposition 3.7. Let $C_{1}, C_{2}, \ldots, C_{k}$ be cocircuits of $M$, let $F$ be the set $C_{1}^{\prime} \cup$ $C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}$ and let $M_{1}=P G(r-1,2) \mid E \cup F$. Then $C_{i}$ is a cocircuit of $M_{1} / F$ for $i=1,2, \ldots, k$.

Proof. By Lemma 3.5, $C_{i}$ is a cocircuit of $M_{1}$. Thus $\left(E-C_{i}\right) \cup F$ is a hyperplane of $M_{1}$. But $F \subseteq\left(E-C_{i}\right) \cup F$. Hence the result follows by applying Proposition 3.6.

Lemma 3.8. Let $C_{1}, C_{2}, \ldots, C_{k}$ be cocircuits of $M$ such that $r\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)=$ $r-k$. Let $M_{1}=P G(r-1,2) \mid\left(E \cup C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$. Then
(i) $r\left(M_{1} /\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)\right)=k$;
(ii) $C_{i}$ is a parallel class of $M_{1} /\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$ for $i \in\{1,2, \ldots, k\}$.

Proof. Let $F=C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}$. Consider (i). $r\left(M_{1}\right) / F=r\left(M_{1}\right)-r(F)$. But $r\left(M_{1}\right)=r(M)$ and $r(F)=r(M)-k$. Hence $r\left(M_{1} / F\right)=k$.

Now consider (ii). For any cocircuit, $C_{i}$ of $M_{1}$, we have $r_{M_{1} / C_{i}}\left(C_{i}\right)=r_{M_{1}}\left(C_{i} \cup\right.$ $\left.C_{i}^{\prime}\right)-r_{M_{1}}\left(C_{i}^{\prime}\right)$. But by definition we know that $C_{i}^{\prime} \subseteq \operatorname{cl}_{M_{1}}\left(C_{i}\right)$. Hence $r_{M_{1}}\left(C_{i} \cup C_{i}^{\prime}\right)=$ $r_{M_{1}}\left(C_{i}\right)$. We also know that $r_{M_{1}}\left(C_{i}^{\prime}\right)=r_{M_{1}}\left(C_{i}\right)-1$ by applying Proposition 3.2. Hence $r_{M_{1} / C_{i}}\left(C_{i}\right)=1$. It follows that $r_{M_{1} / F}\left(C_{i}\right) \leqslant 1$. But no element of $C_{i}$ is in $\operatorname{cl}_{P G}(F)$. Thus no element of $C_{i}$ is a loop of $M_{1} / F$. Therefore $r_{M_{1} / F}\left(C_{i}\right)=1$. Thus $C_{i}$ is a parallel class of $M_{1} / F$.

Lemma 3.9. Let $M$ be a rank- $k$ loopless matroid containing $k$ parallel classes $P_{1}, P_{2}, \ldots, P_{k}$ of which each $P_{i}$ is a cocircuit of $M$. Then $E(M)=P_{1} \cup P_{2} \cup \ldots \cup P_{k}$.

Proof. For each $P_{i}$ there is a corresponding hyperplane $H_{i}$ such that $E(M)-$ $H_{i}=P_{i}$. Thus $\bigcup_{i}\left(E(M)-H_{i}\right)=P_{1} \cup P_{2} \cup \ldots \cup P_{k}$. But $\bigcup_{i}\left(E(M)-H_{i}\right)=$ $E(M)-\bigcap_{i}\left(H_{i}\right)$.

Next we show that $\bigcap_{i}\left(H_{i}\right)=\emptyset$. Consider a set of hyperplanes $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$. The cocircuit $P_{k}$ is contained in all hyperplanes, $H_{j}$, such that $k \neq j$. Hence $P_{k} \subseteq$ $\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1}\right)$. Moreover, we know that $P_{k} \nsubseteq H_{k}$. Hence

$$
\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1} \cap H_{k}\right) \subset\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1}\right) .
$$

But we know that any set which is an intersection of flats is a flat. Thus $\left(H_{1} \cap\right.$ $\left.H_{2} \cap \ldots \cap H_{k-1} \cap H_{k}\right)$ and $\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1}\right)$ are flats. We also know that for any two flats $F_{1}$ and $F_{2}$ such that $F_{1} \subset F_{2}$ we have $r\left(F_{1}\right)<r\left(F_{2}\right)$. Without loss of generality, it follows that $r\left(H_{1} \cap H_{2}\right)<r\left(H_{1}\right)$. Hence $r\left(H_{1} \cap H_{2}\right)<k-1 \leqslant k-2$. It follows by recursion that $r\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1} \cap H_{k}\right) \leqslant k-k=0$. But the rank of a set can not be negative. Thus $r\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1} \cap H_{k}\right)=0$. Since $M$ is loopless $\left(H_{1} \cap H_{2} \cap \ldots \cap H_{k-1} \cap H_{k}\right)=\emptyset$. Hence $E(M)=P_{1} \cup P_{2} \cup \ldots \cup P_{k}$.

Proposition 3.10. Let $M$ be a binary affine matroid with a partition $C_{1}, C_{2}, \ldots$, $C_{k}$ of $E(M)$ into cocircuits. Then $C_{i}$ is a flat of $M$ for all $i \in\{1,2, \ldots, k\}$.

Proof. Consider the following set of hyperplanes, $\left\{H_{i}: H_{i}=E(M)-C_{i}, i \in\right.$ $1,2, \ldots, k\}$, of $M$. Without loss of generality let $i=k$. Then $H_{k}=C_{1} \cup C_{2} \cup \ldots \cup$ $C_{k-1}$. Moreover for any $k \neq j$, we have $C_{k} \subseteq H_{j}$. Thus $C_{k} \subseteq H_{1} \cap H_{2} \cap \ldots \cap H_{k-1}$. Furthermore, we know by definition that no element of $C_{j}$ is contained in $H_{j}$. Hence $H_{1} \cap H_{2} \cap \ldots \cap H_{k-1}=C_{k}$. Hence $C_{k}$ is a flat since it is an intersection of flats.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Let $C_{1}, C_{2}, \ldots, C_{k}$ be a set of pairwise disjoint cocircuits of $M$ and let $M_{1}=P G(r-1,2) \mid E \cup\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$.

Assume that $r\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)=r(M)-k$. By Lemma 3.7, each $C_{i}$ for $i \in\{1,2, \ldots, k\}$ is a cocircuit of $M_{1} /\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$. By Lemma 3.8, each $C_{i}$ for $i \in\{1,2, \ldots, k\}$ is a parallel class of $M_{1} /\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$. Moreover, the ground set of $M_{1} /\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)$ is $E$. Thus $E=C_{1} \cup C_{2} \cup \ldots \cup C_{k}$ by Lemma 3.9. But we know that $C_{1}, C_{2}, \ldots, C_{k}$ are pairwise disjoint cocircuits of $M$ and $E$ is the ground set of $M$. Hence $C_{1}, C_{2}, \ldots, C_{k}$ is a partition of $E(M)$ into cocircuits.

Assume that $C_{1}, C_{2}, \ldots, C_{k}$ is a partition of $E(M)$ into cocircuits. Then $M$ is a loopless matroid since a cocircuit does not contain loops. We use induction on the number of cocircuits of $M$. Let $M$ be a matroid with one cocircuit $C_{1}$. Then $M$ is a matroid with a single parallel class. Thus $H=\emptyset$. Therefore $C_{1}^{\prime}=\emptyset$. Hence $r\left(C_{1}^{\prime}\right)=0=r-1$. Therefore it holds for a matroid with a single cocircuit.

Assume that for every binary matroid $M$ with a cocircuit partition $C_{1}, C_{2}, \ldots, C_{n}$ of $E(M)$ we have $r\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{n}^{\prime}\right)=r-n$ for $n \geqslant 1$.

Now let $M$ be a binary affine matroid with a partition $C_{1}, C_{2}, \ldots, C_{n}, C_{n+1}$ of $E(M)$. Then by Claim 3.6, $C_{1}, C_{2}, \ldots, C_{n}$ is a cocircuit partition of $M / C_{n+1}$. Let $M_{1}=P G(r-1,2) \mid E \cup C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{n+1}^{\prime}$. Hence by the induction assumption,

$$
r_{M_{1} / C_{n+1}}\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{n}^{\prime}\right)=r\left(M_{1} / C_{n+1}\right)-n
$$

It is clear that $C_{n+1}^{\prime}$ is a collection of loops of $M_{1} / C_{n+1}$. Let $X$ denote $C_{1}^{\prime} \cup$ $C_{2}^{\prime} \cup \ldots \cup C_{n+1}^{\prime}$. Hence

$$
\begin{equation*}
r_{M_{1} / C_{n+1}}(X)=r\left(M_{1} / C_{n+1}\right)-n \tag{3.1}
\end{equation*}
$$

But

$$
\begin{equation*}
r_{M_{1} / C_{n+1}}(X)=r_{M_{1}}\left(X \cup C_{n+1}\right)-r_{M_{1}}\left(C_{n+1}\right) \tag{3.2}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
r_{M_{1}}\left(X \cup C_{n+1}\right)=r_{M_{1}}(X)+1 \tag{3.3}
\end{equation*}
$$

Certainly, $r_{M_{1}}\left(X \cup C_{n+1}\right)>r_{M_{1}}(X)$ because $C_{n+1} \nsubseteq \operatorname{cl}_{M_{1}}(X)$. But $r_{M_{1}}\left(C_{n+1} \cup\right.$ $\left.C_{n+1}^{\prime}\right)=r_{M_{1}}\left(C_{n+1}^{\prime}\right)+1$ thus $C_{n+1}$ and $C_{n+1}^{\prime}$ is a modular pair of flats. Thus

$$
r_{M_{1}}\left(X \cup C_{n+1}\right)+r_{M_{1}}\left(X \cap C_{n+1}\right) \leqslant r_{M_{1}}(X)+r_{M_{1}}\left(C_{n+1}\right) .
$$

Hence

$$
r_{M_{1}}\left(X \cup C_{n+1}\right) \leqslant r_{M_{1}}(X)+1
$$

Hence Equation 3.3 holds. Using Equations 3.1, 3.2, 3.3, we see that

$$
\begin{aligned}
r\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{n+1}^{\prime}\right) & =r_{M_{1}}\left(X \cup C_{n+1}\right)-1 \\
& =r_{M_{1} / C_{n+1}}(X)+r_{M_{1}}\left(C_{n+1}\right)-1 \\
& =r\left(M_{1} / C_{n+1}\right)-n+r_{M_{1}}\left(C_{n+1}\right)-1 \\
& =r\left(M_{1}\right)-n-1=r-1-n=r-(n+1) .
\end{aligned}
$$

Therefore any binary affine matroid $M$ with a cocircuit partition $C_{1}, C_{2}, \ldots, C_{k}$ has $r\left(C_{1}^{\prime} \cup C_{2}^{\prime} \cup \ldots \cup C_{k}^{\prime}\right)=r-k$.

## References

[1] T. H. Brylawski: A decomposition for combinatorial geometries. Trans. Amer. Math. Soc. 171 (1972), 235-282.

Zbl 0224.05007
[2] A. P. Heron: Some topics in matroid theory. PhD. thesis. University of Oxford, 1972.
[3] J. G. Oxley: Matroid Theory. Oxford University Press, New York, 1992.
Zbl 0784.05002
[4] D. J. A. Welsh: Euler and bipartite matroids. J. Combin. Theory 6 (1969), 375-377.
Zbl 0169.01901
[5] D. J. A. Welsh: Matroid Theory. Academic Press, London-New York, 1976.
Zbl 0343.05002
Author's address: Department of Mathematical Sciences, University of Malawi, Zomba, Malawi, e-mail: mphakobandae@ukzn.ac.za.

