Czechoslovak Mathematical Journal

Ján Jakubík

On a homogeneity condition for $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 1, 79-98
Persistent URL: http://dml.cz/dmlcz/128055

Terms of use:

© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A HOMOGENEITY CONDITION FOR $M V$-ALGEBRAS

JÁn Jakubík, Košice

(Received May 20, 2003)

Abstract. In this paper we deal with a homogeneity condition for an $M V$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to α-completeness, where α runs over the class of all infinite cardinals.

Keywords: $M V$-algebra, generalized cardinal property, projectability, orthogonal completeness, direct product

MSC 2000: 06D35

1. Introduction

We denote by \mathscr{M} the class of all $M V$-algebras. Further, let K be the class consisting of all cardinals and of the symbol ∞. For each cardinal α we put $\alpha<\infty$. A generalized cardinal property on the class \mathscr{M} is a rule that assigns to each element $\mathscr{A} \in \mathscr{M}$ an element $f(\mathscr{A})$ of K such that, whenever \mathscr{A} and \mathscr{B} are isomorphic $M V$-algebras, then $f(\mathscr{A})=f(\mathscr{B})$.

The underlying set of an $M V$-algebra \mathscr{A} will be denoted by A. Let $a \in A$. We can define in a natural way an $M V$-algebra \mathscr{A}_{a} whose underlying set is the interval $[0, a]$ of \mathscr{A}. (For definition, cf. Section 2 below.) \mathscr{A}_{a} is a substructure of \mathscr{A}.

A generalized cardinal property on \mathscr{M} is called decreasing if for each $\mathscr{A} \in \mathscr{M}$ and each substructure \mathscr{A}_{a} of \mathscr{A} the relation $f\left(\mathscr{A}_{a}\right) \geqslant f(\mathscr{A})$ is valid.

An $M V$-algebra \mathscr{A} is homogeneous with respect to a generalized cardinal property f if, whenever $a(1)$ and $a(2)$ are nonzero elements of A, then $f\left(\mathscr{A}_{a(1)}\right)=$ $f\left(\mathscr{A}_{a(2)}\right)$.

Let \mathscr{C} be the class of all $M V$-algebras $\mathscr{A} \neq\{0\}$ such that \mathscr{A} is semisimple, projectable and orthogonally complete. Each complete $M V$-algebra belongs to \mathscr{C}.

This work was supported by VEGA grant 1/9056/02.

In the present paper sufficient conditions are found for a decreasing generalized cardinal property f (cf. the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$ in Section 4) under which every $M V$-algebra belonging to \mathscr{C} can be represented as a direct product of $M V$-algebras which are homogeneous with respect to f.

We apply this result to dealing with the generalized cardinal property f_{1} which is defined by means of the notion of α-completeness (where α runs over the class of all infinite cardinals). It turns out that an $M V$-algebra \mathscr{A} is homogeneous with respect to f_{1} iff it satisfies the following condition: whenever α is an infinite cardinal and $a_{1}, a_{2}, b_{1}, b_{2} \in A, a_{1}<b_{2}, b_{1}<b_{2}$ are such that the interval [a_{1}, a_{2}] is α-complete, then $\left[b_{1}, b_{2}\right]$ is α-complete as well.

Cardinal properties of complete $M V$-algebras were studied by Pierce [14]. Cardinal properties and generalized cardinal properties of lattice ordered groups were investigated in [5] and [13]. The notion of α-completeness of pseudo $M V$-algebras was dealt with in [12].

2. Preliminaries

For the definition of $M V$-algebra, several equivalent systems of axioms were applied (cf., e.g., Cignoli, D'Ottaviano and Mundici [2], Dvurečenskij and Pulmannová [4]).

In the present paper the system from [2] will be used. Thus an $M V$-algebra $\mathscr{A}=(A ; \oplus, \neg, 0)$ is an algebraic structure of type $(2,1,0)$ such that the axioms (MV1)(MV6) from [2] are satisfied. We put $\neg 0=1$.

Let G be an abelian lattice ordered group with a strong unit u. Let A be the interval $[0, u]$ of G. For $x, y \in A$ we put

$$
x \oplus y=(x+y) \wedge u, \quad \neg x=u-x, \quad 1=u
$$

Then $(A ; \oplus, \neg, 0)$ is an $M V$-algebra; it is denoted by $\Gamma(G, u)$.
For each $M V$-algebra \mathscr{A} there exists an abelian lattice ordered group G with a strong unit u such that

$$
\begin{equation*}
\mathscr{A}=\Gamma(G, u) \tag{1}
\end{equation*}
$$

(cf. [2]). In the sequel, when speaking about \mathscr{A}, we always suppose that the relation (1) is satisfied.

The partial order \leqslant from G induces a partial order on the set A. Then $(A ; \leqslant)$ is a distributive lattice with the least element 0 and the greatest element u; we denote this lattice by $\ell(\mathscr{A})$.

We say that \mathscr{A} is complete if the lattice $\ell(\mathscr{A})$ is complete (and analogously for other lattice properties).

Let α be an infinite cardinal. Recall that a lattice L is said to be α-complete if each nonempty subset X of L with card $X \leqslant \alpha$ possesses a supremum and an infimum in L.

A nonempty subset Y of A is called orthogonal if $y_{1} \wedge y_{2}=0$ whenever y_{1} and y_{2} are distinct elements of Y. We say that \mathscr{A} is orthogonally complete if each orthogonal subset of \mathscr{A} has a supremum in $\ell(\mathscr{A})$.

Let $X \subseteq A$. We put

$$
X^{\delta(\mathscr{A})}=\left\{x_{1} \in A: x_{1} \wedge x=0 \text { for each } x \in X\right\} .
$$

The set $X^{\delta(\mathscr{A})}$ is called a polar in \mathscr{A}. If X is a one-element set, $X=\{x\}$, then $\left(X^{\delta(A)}\right)^{\delta(A)}$ is said to be a principal polar (generated by the element x).

Analogously, for $Y \subseteq G$ we denote

$$
Y^{\delta(G)}=\left\{y_{1} \in G:\left|y_{1}\right| \wedge|y|=0 \text { for each } y \in Y\right\}
$$

Then $Y^{\delta(G)}$ is a polar in G. The principal polar in G is defined similarly as in the case of \mathscr{A}.

Let $a_{1} \in A$. Put $\left[0, a_{1}\right]=A_{1}$. For each $x, y \in A_{1}$ we set

$$
x \oplus_{a_{1}} y=(x+y) \wedge a_{1}, \quad \neg a_{1} x=a_{1}-x
$$

Then $\mathscr{A}_{1}=\left(A_{1} ; \oplus_{a_{1}}, \neg a_{1}, 0\right)$ is an $M V$-algebra. We say that \mathscr{A}_{1} is a substructure (or an interval subalgebra) of \mathscr{A}. We denote $\mathscr{A}_{1}=\mathscr{A}_{a_{1}}$.

Let $\left(\mathscr{B}_{j}\right)_{j \in J}$ be an indexed system of $M V$-algebras. The direct product of this system is defined in the usual way; we denote it by $\prod_{j \in J} \mathscr{B}_{j}$. Direct product decompositions of $M V$-algebras have been investigated in [7]; cf. also [11].

Let I be a nonempty system of indices and for each $i \in I$ let \mathscr{A}_{i} be a substructure of \mathscr{A} with a greatest element a_{i} and an underlying set A_{i}. Denote $A^{\prime}=\prod_{i \in I} A_{i}$. Consider a mapping φ of A into A^{\prime} such that

$$
\varphi(x)=\left(x \wedge a_{i}\right)_{i \in I}
$$

for each $x \in A$.
If the mapping φ is an $M V$-isomorphism of \mathscr{A} onto the direct product $\prod_{i \in I} \mathscr{A}_{i}$, then we say that the indexed system $\left(\mathscr{A}_{i}\right)_{i \in I}$ determines an internal direct product
decomposition of \mathscr{A}. In such a case, the $M V$-algebras \mathscr{A}_{i} are called internal direct factors of \mathscr{A}.

Let \mathscr{A}_{1} be an internal direct factor of \mathscr{A} with a greatest element a_{1}. For $x \in A$ we denote by $x\left(\mathscr{A}_{1}\right)$ the component of x in \mathscr{A}_{1}; i.e., $x\left(\mathscr{A}_{1}\right)=x \wedge a_{1}$.

In view of [7], if $x, y, z \in A$ and $x+y=z$, where $x+y$ means the group addition taken in G restricted to \mathscr{A}, then

$$
z\left(\mathscr{A}_{1}\right)=x\left(\mathscr{A}_{1}\right)+y\left(\mathscr{A}_{1}\right) .
$$

Assume that I is a nonempty set of indices and that for each $i \in I, \mathscr{A}_{i}$ is an internal direct factor of \mathscr{A} with a greatest element a_{i}. Suppose that the system $S=\left(\mathscr{A}_{i}\right)_{i \in I}$ has the following properties:
(i) if $i(1)$ and $i(2)$ are distinct elements of I, then $a_{i(1)} \wedge a_{i(2)}=0$;
(ii) if $x \in A$ and $x \wedge a_{i}=0$ for each $i \in I$, then $x=0$.

Lemma 2.1. Let \mathscr{A} be an $M V$-algebra and let S be as above. Then $\bigvee_{i \in I} a_{i}=u$.
Proof. By way of contradiction, assume that the assertion of the lemma fails to hold. Hence there exists $b \in A$ such that $b<u$ and $a_{i} \leqslant b$ for each $i \in I$. Put $b-u=d$. Thus $d>0$ and hence there exists $i \in I$ with $a_{i} \wedge d>0$. We have

$$
\begin{gathered}
u\left(\mathscr{A}_{i}\right)=u \wedge a_{i}=a_{i}, \quad b\left(\mathscr{A}_{i}\right)=b \wedge a_{i}=a_{i} \\
u\left(\mathscr{A}_{i}\right)=(b+d)\left(\mathscr{A}_{i}\right)=b\left(\mathscr{A}_{i}\right)+d\left(\mathscr{A}_{i}\right),
\end{gathered}
$$

whence $a_{i}=a_{i}+d_{i}>a_{i}$, which is a contradiction.

Lemma 2.2. Let \mathscr{A} and S be as in 2.1. Then the system S determines an internal direct product decomposition of \mathscr{A}.

Proof. For each $x \in A$ we put $\varphi(x)=\left(x \wedge a_{i}\right)_{i \in I}$. Then φ is a mapping of \mathscr{A} into $\prod_{i \in I} \mathscr{A}_{i}$ such that $x \leqslant y$ implies $\varphi(x) \leqslant \varphi(y)$. In view of 2.1 we have

$$
x=x \wedge u=x \wedge\left(\bigvee_{i \in I} a_{i}\right)=\bigvee_{i \in I}\left(x \wedge a_{i}\right)
$$

thus

$$
\varphi(x) \leqslant \varphi(y) \Rightarrow x \leqslant y
$$

Let $z_{i} \in A_{i}$ for $i \in I$. Then $z_{i(1)} \wedge z_{i(2)}=0$ whenever $i(1)$ and $i(2)$ are distinct elements of I, whence there exists $z \in A$ with $z=\bigvee_{i \in I} z_{i}$. It is easy to verify that
$z\left(\mathscr{A}_{i}\right)=z_{i}$ for each $i \in I$. Therefore φ is an isomorphism of the lattice $\ell(\mathscr{A})$ onto the lattice $\ell\left(\prod_{i \in I} \mathscr{A}_{i}\right)$. From this and from [7] we obtain that φ is an isomorphism of \mathscr{A} onto $\prod_{i \in I} \mathscr{A}_{i}$, completing the proof.

Let $c \in A$. In accordance with the terminology applied in the lattice theory we say that c is a central element of \mathscr{A} if there exists an internal direct factor \mathscr{A}_{1} of \mathscr{A} such that c is the greatest element of \mathscr{A}_{1}.

All direct product decompositions and direct factors of \mathscr{A} considered below will be assumed to be internal; therefore, the word 'internal' will be often omitted.

In the above definition of the class \mathscr{C} (Section 1), the notions of semisimplicity, projectability and orthogonal completeness were used.

Let us remark that the notions of orthogonal completeness and of projectability have been investigated by several authors dealing with lattice ordered groups and with vector lattices (cf., e.g., Luxemburg and Zaanen [16], Bernau [1], Conrad [3] and the author [6]).

An $M V$-algebra \mathscr{A} is projectable if each principal polar of \mathscr{A} is the underlying set of some internal direct factor of \mathscr{A}.

Projectable $M V$-algebras have been dealt with by the author [10]; it was proved that for $\mathscr{A}=\Gamma(G, u), \mathscr{A}$ is projectable if and only if G is projectable.

An $M V$-algebra \mathscr{A} is semisimple (or archimedean) if, whenever $x \in A$ and $n x<u$ for each positive integer n, then $x=0$. (Other formally different but equivalent definitions were used in literature.)

We conclude this section by giving two examples of decreasing generalized cardinal properties on the class \mathscr{M} of all $M V$-algebras. Let $\mathscr{A} \in \mathscr{M}$.

Example 1. If the underlying lattice $\ell(\mathscr{A})$ of \mathscr{A} is complete, then we put $f_{1}(\mathscr{A})=\infty$. Otherwise, there exists a least cardinal α such that $\ell(\mathscr{A})$ fails to be α-complete; we put $f_{1}(\mathscr{A})=\alpha$.

Example 2. For the notions of complete distributivity and of α-distributivity of a lattice (where α is an infinite cardinal) cf., e.g., [15]. We put $f_{2}(\mathscr{A})=\infty$ if $\ell(\mathscr{A})$ is completely distributive; otherwise we set $f_{2}(\mathscr{A})=\alpha$, where α is the least ordinal such that $\ell(\mathscr{A})$ is not α-distributive.

It is easy to verify that both f_{1} and f_{2} are decreasing generalized cardinal properties on the set \mathscr{M}.

3. Auxiliary results

In this section we assume that \mathscr{A} is an $M V$-algebra belonging to the class \mathscr{C}.
Let $0<a \in A$. For $n \in \mathbb{N}$ we consider the element $n a \in G$. Since \mathscr{A} is semisimple, the lattice ordered group G is archimedean (cf., e.g., [9]). Thus there exists $n(1) \in \mathbb{N}$ such that $n(1)>1$ and

$$
n(1) a \nless u, \quad(n(1)-1) a \leqslant u .
$$

Hence $n(1) a-u \nless 0$ and thus

$$
\begin{equation*}
(n(1) a-u)^{+}>0 . \tag{1}
\end{equation*}
$$

Further, we have

$$
n(1) a=(n(1)-1) a+a, \quad 0 \leqslant(n(1)-1) a \leqslant u
$$

whence $0<n(1) a \leqslant 2 u$ and $n(1) a-u \leqslant u$. Thus $0 \leqslant(n(1) a-u) \vee 0 \leqslant u \vee 0=u$. We obtain

$$
\begin{equation*}
(n(1) a-u)^{+}=(n(1) a-u) \vee 0 \in A \tag{2}
\end{equation*}
$$

Put

$$
X_{1}=\left((n(1) a-u)^{+}\right)^{\delta(\mathscr{A}) \delta(\mathscr{A})}, \quad X_{1}^{\prime}=\left((n(1) a-u)^{+}\right)^{\delta(\mathscr{A})} .
$$

Since \mathscr{A} is projectable, it can be expressed as an internal direct product

$$
\begin{equation*}
\mathscr{A}=X_{1} \times X_{1}^{\prime} \tag{3}
\end{equation*}
$$

We denote $a_{1}=a\left(X_{1}\right)$.
If $a\left(X_{1}^{\prime}\right)=0$, then we stop our construction. (In this case we have $a=a_{1}$.)
Assume that $a\left(X_{1}^{\prime}\right) \neq 0$. In this case we perform an analogous step where instead of

$$
\mathscr{A}, a, u, n(1)
$$

we take

$$
X_{1}^{\prime}, a\left(X_{1}^{\prime}\right), u\left(X_{1}^{\prime}\right), n(2)
$$

First we want to verify that $n(2)>n(1)$. By way of contradiction, suppose that $n(2) \leqslant n(1)$.

Denote $a\left(X_{1}^{\prime}\right)=a_{2}, u\left(X_{1}\right)=u_{1}, u\left(X_{1}^{\prime}\right)=u_{2}$.
a) Let $m \in \mathbb{N}$. If $m a \leqslant u$, then $m a_{2} \leqslant u_{2}$. Therefore $n(2) \geqslant n(1)$.
b) It remains to verify that the relation $n(2)=n(1)$ cannot hold. In view of (3) and according to [7] we have

$$
G=G_{1} \times G_{1}^{\prime},
$$

where G_{1} is the convex ℓ-subgroup of G generated by the element u_{1}, and G_{2} is the convex ℓ-subgroup of G generated by the element u_{2}. From (3^{\prime}) we get

$$
\begin{equation*}
(m a-u)^{+}=\left(m a_{1}-u_{1}\right)^{+}+\left(m a_{2}-u_{2}\right)^{+} \tag{4}
\end{equation*}
$$

for each positive integer m. Take $m=n(1)$ and suppose that $n(1)=n(2)$. Then in view of the definition of X_{1} we obtain $(m a-u)^{+} \in X_{1}$, whence

$$
(m a-u)^{+}=(m a-u)^{+}\left(X_{1}\right)=\left(m a_{1}-u_{1}\right)^{+}
$$

Further, the relation $m=n(2)$ yields

$$
\left(m a_{2}-u_{2}\right)^{+}>0 .
$$

In view of (4), we have arrived at a contradiction.
Now let us write $X_{1}=\mathscr{A}_{1}, X_{1}^{\prime}=\mathscr{A}_{1}^{\prime}$. By applying the obvious induction we conclude that one of the following possibilities must occur:
α) There exists a positive integer k such that \mathscr{A} can be expressed as an internal direct product

$$
\begin{equation*}
\mathscr{A}=\mathscr{A}_{1} \times \mathscr{A}_{2} \times \ldots \times \mathscr{A}_{k} \tag{5a}
\end{equation*}
$$

and $n(1)<n(2)<\ldots<n(k)$, where for $i \in\{1,2, \ldots, k\}$ we denote by $n(i)$ the first positive integer with

$$
\left(n(i) a_{i}-u\right)^{+}>0
$$

$\left(\right.$ taking $\left.a_{i}=a\left(\mathscr{A}_{i}\right), u_{i}=u\left(\mathscr{A}_{i}\right)\right) ;$
β) for each positive integer k, the $M V$-algebra \mathscr{A} can be expressed as a direct product

$$
\begin{equation*}
\mathscr{A}=\mathscr{A}_{1} \times \mathscr{A}_{2} \times \ldots \times \mathscr{A}_{k} \times \mathscr{A}_{k}^{\prime} \tag{5b}
\end{equation*}
$$

and $n(i)<n(i+1)$ for each $i \in \mathbb{N}$, where $n(i)$ has the same meaning as in α).
In order to unify the notation, in the case α) we put $\mathscr{A}_{m}=\{0\}$ for $m \in \mathbb{N}, m>k$ and $\mathscr{A}_{m}^{\prime}=\{0\}$ for $m \geqslant k$.

Let us apply the notation as in (5b). For a positive integer i with $i \leqslant k$ let A_{i} be the underlying set of the $M V$-algebra \mathscr{A}_{i}. Similarly, let A_{k}^{\prime} be the underlying set of \mathscr{A}_{k}^{\prime}. From the above construction we obtain:
$(+)$ Let $0<x \in A_{i}$ and let n_{x} be the first positive integer with $\left(n_{x} x-u\right)^{+}>0$. Then $n_{x} \geqslant n(i)$.
$\left(+{ }_{1}\right)$ Let $0<x \in A_{k}^{\prime}$ and let n_{x} be as in (+). Then $n_{x}>n(k)$.
Further, we have
$\left(+_{2}\right)$ The indexed system $\left(a\left(\mathscr{A}_{n}\right)\right)_{n \in \mathbb{N}}$ is orthogonal.
Proof. By way of contradiction, assume that our assertion is not valid. Hence there exist $n(1), n(2) \in \mathbb{N}$ and $0<x \in A$ such that

$$
n(1)<n(2), \quad x \leqslant a\left(\mathscr{A}_{n(1)}\right) \wedge a\left(\mathscr{A}_{n(2)}\right) .
$$

Then $x \in A_{n(1)} \cap A_{n(2)}$. In view of (5b) we have

$$
\mathscr{A}=\mathscr{A}_{1} \times \mathscr{A}_{2} \times \ldots \times \mathscr{A}_{n(2)} \times \mathscr{A}_{n(2)}^{\prime} .
$$

This relation yields that $A_{n(1)} \cap A_{n(2)}=\{0\}$; thus we have arrived at a contradiction.

Lemma 3.1. Under the notation as above, we have $a=\bigvee_{n=1}^{\infty} a\left(\mathscr{A}_{k}\right)$.
Proof. If α) is valid, then

$$
a=a\left(\mathscr{A}_{1}\right)+a\left(\mathscr{A}_{2}\right)+\ldots+a\left(\mathscr{A}_{k}\right)=a\left(\mathscr{A}_{1}\right) \vee a\left(\mathscr{A}_{2}\right) \vee \ldots \vee a\left(\mathscr{A}_{k}\right) .
$$

If $m>k$, then $a\left(\mathscr{A}_{m}\right)=0$. Thus the assertion of the lemma is valid.
Let β) be valid. By way of contradiction, assume that the relation $a=\bigvee_{n=1}^{\infty} a\left(\mathscr{A}_{n}\right)$ does not hold. We obviously have $a\left(\mathscr{A}_{n}\right) \leqslant a$. Hence there exists $b \in A$ such that $a\left(\mathscr{A}_{n}\right) \leqslant b<a$ for each $n \in \mathbb{N}$. Put $c=a-b$. Hence $c>0$ and thus there exists the first positive integer m with $m c \nless u$.

In view of $\left(+_{2}\right)$, the indexed system $\left(a\left(\mathscr{A}_{n}\right)\right)_{n \in \mathbb{N}}$ is orthogonal. From this we conclude that c is orthogonal to each $a\left(\mathscr{A}_{n}\right)(n \in \mathbb{N})$. Hence $c \in \mathscr{A}_{j}^{\prime}$ for each $j \in \mathbb{N}$. Thus we have $m \geqslant n(j)$ for each $j \in \mathbb{N}$, which is impossible.

Now let $\mathscr{A} \in \mathscr{C}$ and let us apply the notation as above. From the construction of $\mathscr{A}_{n}(n \in \mathbb{N})$ we infer that the system $\left(u_{n}\right)_{n \in \mathbb{N}}$ is orthogonal. Hence the element $\bigvee_{n=1}^{\infty} u_{n}$ exists; we will denote it by u_{0}.

Lemma 3.2. $u_{0} \oplus u_{0}=u_{0}$.
Proof. From α) and β) above we conclude that whenever n and m are distinct positive integers, then $u_{n} \wedge u_{m}=0$. Thus

$$
\begin{aligned}
u_{0} \oplus u_{0} & =\left(u_{0}+u_{0}\right) \wedge u=\left(\left(\bigvee_{n \in \mathbb{N}} u_{n}\right)+\bigvee_{m \in \mathbb{N}} u_{m}\right) \wedge u \\
& =\left(\bigvee_{n \in \mathbb{N}} \bigvee_{m \in \mathbb{N}}\left(u_{n}+u_{m}\right)\right) \wedge u
\end{aligned}
$$

We have

$$
u_{n}+u_{m}= \begin{cases}u_{n} \vee u_{m} & \text { if } n \neq m \\ 2 u_{n} & \text { if } n=m\end{cases}
$$

Therefore, since $2 u_{n} \vee 2 u_{m} \geqslant u_{n} \vee u_{m}$, we obtain

$$
u_{0} \oplus u_{0}=\left(\bigvee_{n \in \mathbb{N}} 2 u_{n}\right) \wedge u=\bigvee_{n \in \mathbb{N}}\left(2 u_{n} \wedge u\right)
$$

We have already verified that the interval $\left[0, u_{n}\right]$ of \mathscr{A} is an internal direct factor of \mathscr{A}. Hence there exists a complement u_{n}^{\prime} of u_{n} in the lattice $\ell(\mathscr{A})=[0, u]$. We get

$$
2 u_{n} \wedge u=2 u_{n} \wedge\left(u_{n} \vee u_{n}^{\prime}\right)=\left(2 u_{n} \wedge u_{n}\right) \vee\left(2 u_{n} \wedge u_{n}^{\prime}\right)
$$

From $u_{n} \wedge u_{n}^{\prime}=0$ we get $2 u_{n} \wedge u_{n}^{\prime}=0$, whence

$$
2 u_{n} \wedge u=2 u_{n} \wedge u_{n}=u_{n}
$$

Thus

$$
u_{0} \oplus u_{0}=\bigvee_{n \in \mathbb{N}} u_{n}=u_{0}
$$

Lemma 3.3. The interval $\left[0, u_{0}\right]$ is the underlying lattice of an internal direct factor of \mathscr{A}.

Proof. This is a consequence of 3.2 and of the results of [11].

Corollary 3.4. The interval $\left[0, u_{0}\right]$ is a principal polar of \mathscr{A} generated by the element u_{0}.

Corollary 3.5. The element u_{0} has a complement u_{0}^{\prime} in $\ell(\mathscr{A})$ and the interval [$0, u_{0}^{\prime}$] is the underlying lattice of an internal direct factor of \mathscr{A}.

4. A generalized cardinal property f

Let K and \mathscr{M} be as in Section 1 .
As we have already remarked above, the element ∞ is considered to be the greatest element of K; for $k_{1}, k_{2} \in K$ with $k_{1} \neq \infty \neq k_{2}$, the relation $k_{1} \leqslant k_{2}$ has the usual meaning. Assume that f is a generalized cardinal property on \mathscr{M}.

Further, let us consider the following conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$ for f.
$\left(\gamma_{1}\right)$ Let $\mathscr{A} \in \mathscr{M}, \mathscr{A}=\prod_{i \in I} \mathscr{A}_{i}, \alpha \in K$. If $f\left(\mathscr{A}_{i}\right) \geqslant \alpha$ for each $i \in I$, then $f(\mathscr{A}) \geqslant \alpha$.
$\left(\gamma_{2}\right)$ Let $\mathscr{A} \in \mathscr{M}, \mathscr{A}=\Gamma(G, u)$. Whenever n is a positive integer and $\mathscr{A}_{1}=$ $\Gamma(G, n u)$, then $f\left(\mathscr{A}_{1}\right)=f(\mathscr{A})$.
In what follows we assume that f is a decreasing generalized cardinal property satisfying the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$.

Let \mathscr{A} be a fixed element of $\mathscr{M}, \mathscr{A}=\Gamma(G, u)$. Further, let a be as in Section 3.
Consider the relations (3) and (3^{\prime}) from Section 3, i.e.,

$$
\mathscr{A}=X_{1} \times X_{1}^{\prime}, \quad G=G_{1} \times G_{1}^{\prime}
$$

(meaning the internal direct product decompositions of \mathscr{A} or of G (respectively)). From the results of [7] we conclude that if $t \in A$, then we have

$$
t\left(X_{1}\right)=t\left(G_{1}\right), \quad t\left(X_{1}^{\prime}\right)=t\left(G_{1}^{\prime}\right) .
$$

Let $n(1)$ be as above; put $b=(n(1) a-u)^{+}$. In view of (2) of Section $3,0<b \in A$. Denote

$$
u\left(G_{i}\right)=u_{1}, \quad u\left(G_{1}^{\prime}\right)=u_{1}^{\prime}, \quad a\left(G_{1}\right)=a_{1}, \quad a\left(G_{1}^{\prime}\right)=a_{1}^{\prime}
$$

According to the definition of G_{1} and G_{1}^{\prime} we obtain

$$
G_{1}=\{b\}^{\delta(G) \delta(G)}, \quad G_{1}^{\prime}=\{b\}^{\delta(G)}
$$

Since $(n(1) a-u)^{-} \wedge b=0$, we get

$$
(n(1) a-u)^{-} \in\{b\}^{\delta(G)}=G_{1}^{\prime},
$$

whence $(n(1) a-u)^{-}\left(G_{1}\right)=0$. In view of

$$
n(1) a-u=(n(1) a-u)^{+}-(n(1) a-u)^{-}
$$

we obtain

$$
(n(1) a-u)\left(G_{1}\right)=(n(1) a-u)^{+}\left(G_{1}\right) .
$$

Next, we have

$$
n(1) a_{1}-u_{1}=((n(1) a-u) \vee 0)\left(G_{1}\right)=\left(n(1) a_{1}-u_{1}\right) \vee 0,
$$

whence $n(1) a_{1}-u_{1} \geqslant 0$.
If $n(1) a_{1}-u_{1}=0$, then

$$
\begin{aligned}
n(1) a-u & =(n(1) a-u)\left(G_{1}\right)+(n(1) a-u)\left(G_{1}^{\prime}\right)=(n(1) a-u)\left(G_{1}^{\prime}\right) \\
& =((n(1) a-u) \vee 0)\left(G_{1}^{\prime}\right)+((n(1) a-u) \wedge 0)\left(G_{1}^{\prime}\right)
\end{aligned}
$$

Since $(n(1) a-u) \vee 0 \in G_{1}$, we get

$$
((n(1) a-u) \vee 0)\left(G_{1}^{\prime}\right)=0
$$

thus

$$
n(1) a-u=((n(1) a-u) \wedge 0)\left(G_{1}^{\prime}\right) \leqslant 0,
$$

which is a contradiction. Therefore

$$
\begin{equation*}
n(1) a_{1}-u_{1}>0 \tag{1}
\end{equation*}
$$

From the fact that u is a strong unit of G we obtain that u_{1} is a strong unit of G_{1}. Since $n(1) a_{1}-u_{1} \in G_{1}$, (1) yields that $u_{1} \neq 0$. Then $a_{1}>0$. Clearly $a_{1}=a\left(G_{1}\right) \leqslant a$ and hence $\left[0, a_{1}\right] \subseteq[0, a]$.

For any $g \in G, g>0$ let G_{g} be the convex ℓ-subgroup of G generated by the element g. Further, we put

$$
\mathscr{A}_{g}=\Gamma\left(G_{g}, g\right) .
$$

Assume that α is an element of K such that $f\left(\mathscr{A}_{a}\right) \geqslant \alpha$. We have $a \geqslant a_{1}>0$, whence $\mathscr{A}_{a_{1}} \subseteq \mathscr{A}_{a}$. Since f is decreasing, we get $f\left(\mathscr{A}_{a_{1}}\right) \geqslant \alpha$. Further, in view of $\left(\gamma_{2}\right)$ we have $f\left(\mathscr{A}_{n(1) a_{1}}\right) \geqslant \alpha$. In view of (1) we have $\mathscr{A}_{u_{1}} \subseteq \mathscr{A}_{n(1) a_{1}}$. Thus we get

Lemma 4.1. $f\left(\mathscr{A}_{u_{1}}\right) \geqslant \alpha$.
For $n \in \mathbb{N}$ let u_{n} be as in Section 3. By analogous reasoning as for u_{1} we get

Lemma 4.2. For each $n \in \mathbb{N}, f\left(\mathscr{A}_{u_{n}}\right) \geqslant \alpha$.
Let u_{0} be as in Section 3, i.e., $u_{0}=\bigvee_{n \in \mathbb{N}} u_{n}$. We have already verified that the indexed system $\left(u_{n}\right)_{n \in \mathbb{N}}$ is orthogonal. From this we obtain by a simple calculation that the mapping $\varphi(x)=\left(x \wedge u_{n}\right)_{n \in \mathbb{N}}$ for $x \in\left[0, u_{0}\right]$ is an isomorphism of the lattice $\left[0, u_{0}\right]$ onto the lattice $\prod_{n \in \mathbb{N}}\left[0, u_{n}\right]$. Thus according to $[7]$, the mapping φ is an internal product decomposition of the $M V$-algebra $\mathscr{A}_{u_{0}}$ onto $\prod_{n \in \mathbb{N}} \mathscr{A}_{n}$. Hence 4.2 and $\left(\gamma_{1}\right)$ yield

Lemma 4.3. $f\left(\mathscr{A}_{u_{0}}\right) \geqslant \alpha$.
Lemma 4.4. Let $0<x \leqslant u_{0}$. Then $x \wedge a>0$.
Proof. By way of contradiction, assume that $x \wedge a=0$. We have

$$
x=x \wedge u_{0}=x \wedge\left(\bigvee_{n \in \mathbb{N}} u_{n}\right)=\bigvee_{n \in \mathbb{N}}\left(x \wedge u_{n}\right)
$$

Hence there is $n \in \mathbb{N}$ with $x \wedge u_{n}>0$.
In view of (1) and of the analogous relation cocnerning u_{n}, a_{n} we conclude that there exists $m \in \mathbb{N}$ such that

$$
m a_{n}-u_{n}>0
$$

Clearly $a_{n} \leqslant a$, hence $m a>u_{n} \geqslant x \wedge u_{n}>0$. Thus $m a \wedge x>0$ yielding that $a \wedge x>0$, which is a contradiction.

Lemma 4.5. $\{a\}^{\delta(\mathscr{A}) \delta(\mathscr{A})}=\left[0, u_{0}\right]$.
Proof. From the relation $\mathscr{A}=\left[0, u_{0}\right] \times\left[0, u_{0}^{\prime}\right]$ we obtain

$$
\left[0, u_{0}\right]^{\delta(\mathscr{A})}=\left[0, u_{0}^{\prime}\right]
$$

Since $a \in\left[0, u_{0}\right]$, we get

$$
\{a\}^{\delta(\mathscr{A})} \supseteq\left[0, u_{0}\right]^{\delta(\mathscr{A})}
$$

Let $x_{1} \in\{a\}^{\delta(\mathscr{A})}$. We have

$$
x_{1}=x_{1}\left(\left[0, u_{0}\right]\right) \vee x_{1}\left(\left[0, u_{0}^{\prime}\right]\right)
$$

Then $x_{1}\left(\left[0, u_{0}\right]\right) \leqslant x_{1}$, whence $x_{1}\left(\left[0, u_{0}\right]\right) \in\{a\}^{\delta(\mathscr{A})}$. Put $x_{1}\left(\left[0, u_{0}\right]\right)=x$. We have $x \leqslant u_{0}$. If $x>0$, then in view of 4.4 we get $x \wedge a>0$, yielding that $x \notin\{a\}^{\delta(\mathscr{A})}$,
which is a contradiction. Thus $x_{1}\left(\left[0, u_{0}\right]\right)=0$. Hence $x_{1}=x_{1}\left(\left[0, u_{0}^{\prime}\right]\right) \in\left[0, u_{0}^{\prime}\right]$. We obtain $\{a\}^{\delta(\mathscr{A})} \subseteq\left[0, u_{0}^{\prime}\right]$. Therefore

$$
\{a\}^{\delta(\mathscr{A})}=\left[0, u_{0}^{\prime}\right] .
$$

We get

$$
\{a\}^{\delta(\mathscr{A}) \delta(\mathscr{A})}=\left[0, u_{0}^{\prime}\right]^{\delta(\mathscr{A})}=\left[0, u_{0}\right] .
$$

Now, 4.3 and 4.5 yield

Theorem 4.6. Let $\mathscr{A} \in \mathscr{C}, 0<a \in A$. Assume that f is a decreasing generalized cardinal property on \mathscr{C} satisfying the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$. Let $\alpha \in K, f\left(\mathscr{A}_{a}\right) \geqslant$ α. Then $f\left(\{a\}^{\delta(\mathscr{A}) \delta(\mathscr{A})}\right) \geqslant \alpha$.

5. The system $S(\alpha)$

Again, let \mathscr{A} be an $M V$-algebra belonging to the class \mathscr{C}. Let $\alpha \in K$ and let f be a decreasing generalized cardinal property on \mathscr{C} satisfying the conditions (γ_{1}) and $\left(\gamma_{2}\right)$. We denote by $S(\alpha)$ the system of all elements $a \in A$ such that $a>0$ and $f\left(\mathscr{A}_{a}\right) \geqslant \alpha$. We assume that $S(\alpha) \neq \emptyset$.

We modify the notation from Section 3 and Section 4 as follows. If $a \in S(\alpha)$, then instead of the symbols u_{0} and u_{0}^{\prime} used above we write

$$
u_{0}(a, \mathscr{A}), \quad u_{0}^{\prime}(a, \mathscr{A})
$$

if no misunderstanding can occur, then we write briefly $u_{0}(a), u_{0}^{\prime}(a)$.
We apply Axiom of Choice; thus we can suppose that the system $S(\alpha)$ is written in the form

$$
S(\alpha)=\left(a^{i}\right)_{i<m},
$$

where m is an appropriate ordinal and i runs over the set of all ordinals less than m.
We put

$$
u_{0}^{1}=u_{0}\left(a^{1}\right), \quad u_{0}^{\prime 1}=u_{0}^{\prime}\left(a^{1}\right), \quad v_{0}^{1}=u_{0}^{1} .
$$

For each ordinal $i(1)<m$ we define by transfinite induction an element $v_{0}^{i(1)}$ of A such that
$\left.\alpha_{1}\right)$ the system $\left(v_{0}^{i}\right)_{i \leqslant i(1)}$ is orthogonal;
α_{2}) for $b^{i(1)}=\bigvee_{i \leqslant i(1)} v_{0}^{i}$ we have $a^{i(1)} \leqslant b^{i(1)}$;
$\left.\alpha_{3}\right)$ the interval $\left[0, b^{i(1)}\right]$ is the underlying set of a direct factor of \mathscr{A};
$\left.\alpha_{4}\right) f\left(\mathscr{A}_{v_{0}^{i(1)}}\right) \geqslant \alpha$.
From the results of Section 4 it follows that the conditions α_{1}) $-\alpha_{4}$) are valid for $i(1)=1$ (where v_{0}^{1} is defined as above). Suppose that $i(1)$ is an ordinal with $1<i(1)<m$ and that we have defined the elements v_{0}^{i} for $i<i(1)$ such that the conditions $\left.\alpha_{1}\right)-\alpha_{4}$) are satisfied (in the sense that instead of $i(1)$ we take the element i under consideration, and instead of the symbol i from $\alpha 1$) $-\alpha 4$) we take an ordinal j with $j \leqslant i$. Then the system $\left(v_{0}^{i}\right)_{i<i(1)}$ is orthogonal, hence the element

$$
b_{o}^{i(1)}=\bigvee_{i<i(1)} v_{0}^{i}
$$

exists. Similarly as we did above for the element b_{0} we can verify that the interval $\left[0, b_{0}^{i(1)}\right]$ is the underlying set of an internal direct factor of \mathscr{A}. Then $u-b_{0}^{i(1)}=b_{0}^{* i(1)}$ is the complement of $b_{0}^{i(1)}$ and $\left[0, b_{0}^{* i(1)}\right]$ is also an underlying set of a direct factor of \mathscr{A}; we have

$$
\begin{equation*}
\mathscr{A}=\left[0, b_{0}^{i(1)}\right] \times\left[0, b_{0}^{* i(1)}\right] . \tag{1}
\end{equation*}
$$

Put

$$
b^{i(1)}=a^{i(1)}\left[0, b_{0}^{* i(1)}\right] .
$$

If $b^{i(1)}=0$, then we put $v_{0}^{i(1)}=0$. Further, assume that $b^{i(1)}>0$. In this case we proceed as in Section 3 and Section 4 with the distinction that instead of the element a we now have the element $b^{i(1)}$. Instead of u_{0} we now obtain an element which will be denoted by $v_{0}^{i(1)}$.

From the definition of $v_{0}^{i(1)}$ we conclude that this element is orthogonal to all v_{0}^{i} for $i<i(1)$. Hence the system $\left(v_{0}^{i}\right)_{i \leqslant i(1)}$ is orthogonal. Thus $\left.\alpha_{1}\right)$ is valid. Put

$$
c^{i(1)}=a^{i(1)}\left[0, b_{0}^{i(1)}\right] .
$$

Then

$$
a^{i(1)}=b^{i(1)} \vee c^{i(1)}
$$

The definition of $v_{0}^{i(1)}$ also yields that $b^{i(1)} \leqslant v_{0}^{i(1)}$ (cf. the analogous relation concerning a and u_{0}). Further, $c^{i(1)} \leqslant b_{0}^{i(1)}$. Therefore α_{2}) holds.

Similarly as $u_{0}, v_{0}^{i(1)}$ is also a central element of \mathscr{A} (i.e., it belongs to the centre of the lattice $\ell(\mathscr{A}))$. Then according to $\left.\alpha_{1}\right), b^{i(1)}$ is a central element of \mathscr{A} as well. Hence α_{3}) holds.

In view of 4.3 (applied to $v_{0}^{i(1)}$), the relation $f\left(\mathscr{A}_{v_{0}^{i(1)}}\right) \geqslant \alpha$ is valid. From this and from α_{1}) we obtain $f\left(\mathscr{A}_{b}^{i(1)}\right) \geqslant \alpha$; hence α_{4}) holds.

Thus we have defined the system $\left(v_{0}^{i}\right)_{i<m}$. All elements of this system are central. Moreover, this system is orthogonal. Thus the element

$$
v(\alpha)=\bigvee_{i<m} v_{0}^{i}
$$

exists and it is central. By analogous argument as applied in connection with 4.3 we conclude that the relation $f\left(\mathscr{A}_{v(\alpha)}\right) \geqslant \alpha$ is valid. Let $v^{\prime}(\alpha)$ be the complement of $v(\alpha)$. Hence we have

$$
\begin{equation*}
\mathscr{A}=[0, v(\alpha)] \times\left[0, v^{\prime}(\alpha)\right] . \tag{2}
\end{equation*}
$$

The previous consideration was performed under the assumption that $S(\alpha) \neq \emptyset$. If $S(\alpha)=\emptyset$, then we put $v(\alpha)=0$, hence $v^{\prime}(\alpha)=u$; in this case (2) remains valid.

Theorem 5.1. Let $\mathscr{A} \in \mathscr{C}$ and let f be a decreasing cardinal property on \mathscr{C} satisfying the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$. Let $\alpha \in K$. Then there exists an internal direct product decomposition $\mathscr{A}=\mathscr{A}_{1}^{\alpha} \times \mathscr{A}_{2}^{\alpha}$ such that
(i) $f\left(\mathscr{A}_{1}\right) \geqslant \alpha$;
(ii) if b is a nonzero element of A_{2}^{α}, then $f\left(\mathscr{A}_{b}\right)<\alpha$.

Proof. Put $\mathscr{A}_{1}^{\alpha}=\mathscr{A}_{v(\alpha)}, \mathscr{A}_{2}^{\alpha}=\mathscr{A}_{v^{\prime}(\alpha)}$. We have already verified that $f\left(\mathscr{A}_{v(\alpha)}\right) \geqslant \alpha$.

Let $b \in A_{2}^{\alpha}, b>0$. By way of contradiction, assume that $f\left(\mathscr{A}_{b}\right) \geqslant \alpha$. Then there is an ordinal $i<m$ such that $b=a^{i}$. In view of the construction of $v(\alpha)$ we have $b \leqslant v(\alpha)$. Hence $b \in A_{v(\alpha)}=A_{1}^{\alpha}$. Thus $b \in A_{1}^{\alpha} \cap A_{2}^{\alpha}=\{0\}$, which is a contradiction.

6. Homogeneous direct factors

Assume that \mathscr{A} and f are as in 5.1. Our considerations would be trivial if $A=\{0\}$; therefore in the sequel we suppose that A fails to be a one-element set.

Put $K_{0}=\{\alpha \in K: \mathscr{S}(\alpha) \neq \emptyset\}$. Then K_{0} is a set.
If $\alpha=\infty \in K_{0}$, then we put $\mathscr{A}_{01}^{\alpha}=\mathscr{A}_{1}^{\alpha}$, where \mathscr{A}_{1}^{α} is as in 5.1.
Let $\alpha \in K_{0}, \alpha \neq \infty$. Denote $\beta=\alpha^{+}$(the first cardinal larger than α). We obviously have $\mathscr{A}_{1}^{\beta} \subseteq \mathscr{A}_{1}^{\alpha}$. Since both \mathscr{A}_{1}^{β} and \mathscr{A}_{1}^{α} are internal direct factors of \mathscr{A}, we conclude that \mathscr{A}_{1}^{β} is an internal direct factor of \mathscr{A}_{1}^{α}. Hence \mathscr{A}_{1}^{α} can be written in the form

$$
\begin{equation*}
\mathscr{A}_{1}^{\alpha}=\mathscr{A}_{01}^{\alpha} \times \mathscr{A}_{1}^{\beta} . \tag{+}
\end{equation*}
$$

Proposition 6.1. For each $\alpha \in K_{0}$, the $M V$-algebra $\mathscr{A}_{01}^{\alpha}$ is homogeneous with respect to f.

Proof. Let $\alpha \in K_{0}$. For $\alpha=\infty$, the assertion is obvious. Assume that $\alpha \neq \infty$. Let $0<b \in A_{01}^{\alpha}$. In view of the results of Section 5, we have $f\left(\mathscr{A}_{b}\right) \geqslant \alpha$. By the same method as in the proof of 5.1 we can verify that $f\left(\mathscr{A}_{b}\right) \supsetneqq \alpha^{+}$. Hence $f\left(\mathscr{A}_{b}\right)=\alpha$ for each $0<b \in A_{01}^{\alpha}$.

For each $\alpha \in K_{0}$ let p_{α} be the greatest element of $\mathscr{A}_{01}^{\alpha}$. Consider the systems

$$
S_{1}=\left(p_{\alpha}\right)_{\alpha \in K_{0}}, \quad S_{2}=\left(\mathscr{A}_{01}^{\alpha}\right)_{\alpha \in K_{0}} .
$$

The following two assertions are immediate consequences of the definitions of S_{1} and S_{2}.

Lemma 6.2. The system S_{1} is orthogonal.

Lemma 6.3. Each element of S_{2} is an internal direct factor of \mathscr{A}.

Lemma 6.4. Let $x \in A$. Assume that $x \wedge t=0$ whenever t is a member of S_{1}. Then $x=0$.

Proof. By way of contradiction, assume that $x>0$. If $f\left(\mathscr{A}_{x}\right)=\infty$, then $x \leqslant p_{\infty} \in S_{1}$, which is a contradiction.

Assume that $f\left(\mathscr{A}_{x}\right)=\alpha<\infty$. Then $x \in \mathscr{A}_{1}^{\alpha}$. Consider the relation (+). If $x \in$ \mathscr{A}_{1}^{β}, then $f\left(\mathscr{A}_{x}\right) \geqslant \beta$, which is impossible. Hence $x \notin \mathscr{A}_{1}^{\beta}$ and so $x\left(\mathscr{A}_{01}^{\alpha}\right)=x_{1}>0$. We have $x \wedge p_{\alpha} \geqslant x_{1} \wedge p_{\alpha}=x_{1}>0$; we have arrived at a contradiction.

Theorem 6.5. Let \mathscr{A} be an $M V$-algebra belonging to the class \mathscr{C}. Let f be a decreasing generalized cardinal property on \mathscr{C} satisfying the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$. Then \mathscr{A} is a direct product of the $M V$-algebras of the system S_{2} and all these direct factors are homogeneous with respect to f. For each $\alpha \in K_{0}$ we have $f\left(A_{01}^{\alpha}\right)=\alpha$.

Proof. This is a consequence of the definition of K_{0} and of 2.2, 6.1, 6.2, 6.3 and 6.4.

7. The α-COMPLETENESS

In the present section we deal with the generalized cardinal property f_{1} which was defined in Section 2. We have already remarked above that f_{1} is decreasing.

Proposition 7.1. f_{1} satisfies the conditions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$.
Proof. a) Let $\mathscr{A} \in \mathscr{M}, \mathscr{A}=\prod_{i \in I} \mathscr{A}_{i}, \alpha \in K$. Assume that $f_{1}\left(\mathscr{A}_{i}\right) \geqslant \alpha$ for each $i \in I$.

First suppose that $\alpha=\infty$. Hence all \mathscr{A}_{i} are completely distributive. Then \mathscr{A} is completely distributive as well; consequently, $f(A)=\infty$.

Further, suppose that $\alpha<\infty$. In view of the definition of f_{1}, if α_{1} is a cardinal with $\alpha_{1}<\alpha$, then for each $i \in I, \mathscr{A}_{i}$ is α_{1}-distributive. This yields that \mathscr{A} is α_{1}-distributive, whence $f_{1}(\mathscr{A}) \geqslant \alpha$.

We have verified that $\left(\gamma_{1}\right)$ is valid for f_{1}.
b) Let $\mathscr{A} \in \mathscr{M}, \mathscr{A}=\Gamma(G, u)$. Let n be a positive integer and $\mathscr{A}_{1}=\Gamma(G, n u)$. Put $f_{1}(\mathscr{A})=\alpha$.

Suppose that $\alpha=\infty$. Hence the lattice \mathscr{A} is complete. Then in view of [12], the lattice ordered group G is conditionally complete. This yields that the lattice $\ell(\Gamma(G, n u))$ is complete. Hence $f_{1}\left(\mathscr{A}_{1}\right)=\infty$.

Further, suppose that $\alpha<\infty$. The $M V$-algbra \mathscr{A} is a substructure of \mathscr{A}_{1}; since f_{1} is decreasing, we obtain $f\left(\mathscr{A}_{1}\right) \leqslant f(\mathscr{A})$. By way of contradiction, assume that $f\left(\mathscr{A}_{1}\right)<f(\mathscr{A})=\alpha$. Then \mathscr{A}_{1} is α-complete. By using [12] again we get that G is conditionally α-complete. Thus \mathscr{A} is α-complete, which is a contradiction. Hence $f\left(\mathscr{A}_{1}\right)=f(\mathscr{A})$ and hence $\left(\gamma_{2}\right)$ is satisfied.

Let $\mathscr{A} \in \mathscr{M}$. Assume that a_{1}, a_{2} are elements of A with $a_{1}<a_{2}$. Put $a=a_{2}-a_{1}$. Thus the intervals $[0, a]$ and $\left[a_{1}, a_{2}\right]$ of the lattice $\ell(\mathscr{A})$ are isomorphic. Thus from the definition of f_{1} we immediately obtain that the $M V$-algebra \mathscr{A} is homogeneous with respect to f_{1} if and only if the following condition is satisfied:
$(*)$ Whenever $a_{1}, a_{2}, b_{1}, b_{2}$ are elements of A with $a_{1}<a_{2}, b_{1}<b_{2}$ and α is a cardinal such that the interval $\left[a_{1}, a_{2}\right]$ is α-complete then the interval $\left[b_{1}, b_{2}\right]$ is α-complete as well.
Let $\mathscr{A} \in \mathscr{C}$. In view of 7.1, the assertion of 6.5 is valid for the generalized cardinal property f_{1}. Let us apply the notation as in 6.5 . We will show that in this case, the set \mathscr{S}_{2} has at most two elements.

Theorem 7.2 (cf. [13]). Let \mathscr{B} be an $M V$-algebra. Then the following conditions are equivalent:
(i) \mathscr{B} is complete.
(ii) \mathscr{B} is σ-complete and orthogonally complete.

Corollary 7.3. Let $\mathscr{A} \in \mathscr{C}$. If \mathscr{A} is σ-complete, then it is complete.

Theorem 7.4. Let A be an $M V$-algebra belonging to the class \mathscr{C}. Then \mathscr{A} can be expressed as a direct product $\mathscr{A}=\mathscr{A}_{1} \times \mathscr{A}_{2}$ such that
(i) \mathscr{A}_{1} is complete;
(ii) if $0<x \in A_{2}$, then the interval $[0, x]$ fails to be σ-complete.

Proof. Consider the direct product decomposition from 6.5 for the case $f=f_{1}$. It suffices to verify that $K_{0} \subseteq\left\{\aleph_{0}, \infty\right\}$. By way of contradiction, assume that there exists $\alpha \in K_{0}$ such that $\aleph_{0}<\alpha<\infty$. Then $\mathscr{A}_{01}^{\alpha} \neq\{0\}$. Since $\alpha>\aleph_{0}$ we get that $\mathscr{A}_{01}^{\alpha}$ is σ-complete, thus in view of 7.3 it is complete, whence $f_{1}\left(A_{01}^{\alpha}\right)=\infty$, which is a contradiction.

Recall that in defining the class \mathscr{C} we have used the following conditions for an element \mathscr{A} of \mathscr{C} : (i) \mathscr{A} is semisimple; (ii) \mathscr{A} is projectable; (iii) \mathscr{A} is orthogonally complete.

In connection with 7.4, let us consider two examples dealing with these conditions.
Example 1. Let $G=\mathbb{Z} \circ \mathbb{Z}$ (where \circ denotes the lexicographic product and \mathbb{Z} is the additive group of all integers with the natural linear order). Put $u=(1,0)$ and $\mathscr{A}=\Gamma(G, u)$. Denote $a_{1}=(0,1), a_{2}=u$. The interval $\left[0, a_{1}\right]$ of \mathscr{A} is complete and the interval $\left[0, a_{2}\right]=A$ fails to be σ-complete. The $M V$-algebra \mathscr{A} is not semisimple, but it is projectable and orthogonally complete. If $\mathscr{A}_{1} \neq\{0\}$ is an internal direct factor of \mathscr{A}, then $\mathscr{A}_{1}=\mathscr{A}$. Hence \mathscr{A} cannot be represented as an internal direct product of direct factors which are homogeneous with respect to f_{1}.

Example 2. Let 2 be a two-element Boolean algebra and let m be an infinite cardinal. Put $\mathscr{B}=\mathbf{2}^{m}$. The elements of \mathscr{B}_{1} will be written in the form $x=\left(x_{i}\right)_{i \in I}$, where $x_{i} \in \mathbf{2}$ and card $I=m$. Thus \mathscr{B}_{1} is a complete Boolean algebra. Denote

$$
\begin{gathered}
I_{0}(x)=\left\{i \in I: x_{i}=0\right\}, \quad I_{1}(x)=\left\{i \in I: x_{i}=1\right\}, \\
B^{1}=\left\{x \in \mathscr{B}: I_{0}(x) \text { is finite }\right\}, \quad B^{0}=\left\{x \in \mathscr{B}: I_{1}(x) \text { is finite }\right\}, \\
\mathscr{B}^{\prime}=B^{1} \cup B^{0} .
\end{gathered}
$$

Hence \mathscr{B}^{\prime} is a subalgebra of \mathscr{B}. Thus there exists a semisimple $M V$-algebra \mathscr{A} such that $\ell(\mathscr{A})=\mathscr{B}^{\prime}$. It is obvious that \mathscr{A} is not orthogonally complete. For $a \in \ell(\mathscr{A})$ let a^{\prime} be the complement of \mathscr{A}. Thus $\ell(\mathscr{A})=[0, a] \times\left[0, a^{\prime}\right]$. By applying [7] we obtain that the $M V$-algebra \mathscr{A} is projectable.

Suppose that \mathscr{A} can be expressed as an internal direct product of $M V$-algebras \mathscr{A}_{j} $(j \in J)$ such that each \mathscr{A}_{j} is homogeneous with respect to f_{1}. Without loss of generality we can assume that all \mathscr{A}_{j} are nonzero. We denote by u_{j} the greatest element of \mathscr{A}_{j}. Thus the underlying set A_{j} of \mathscr{A}_{j} is the interval $\left[0, u_{j}\right]$ of \mathscr{A}. We have $u_{j} \neq 0$ for each $j \in J$. Hence for each $j \in J$ there exists an atom a^{j} in $\ell\left(\mathscr{A}_{j}\right)$.

Since the interval $\left[0, a^{j}\right]$ of \mathscr{A}_{j} is complete, in view of the homogeneity of \mathscr{A}_{j} we conclude that $\ell\left(\mathscr{A}_{j}\right)$ is a complete lattice.

If $j \in J$ and $u_{j} \in B^{1}$, then it is obvious that $\ell\left(\mathscr{A}_{j}\right)$ is not σ-complete, which is a contradiction. Hence $u_{j} \in B^{0}$ for each $j \in J$ and then A_{j} is finite; therefore \mathscr{A}_{j} is complete. Thus \mathscr{A} is complete as well. But, in view of the definition of \mathscr{A}, we get that \mathscr{A} is not σ-complete; we have arrived at a contradiction.

In Section 1 we have remarked that each complete $M V$-algebra belongs to \mathscr{C}. The following example shows that if $\mathscr{A} \in \mathscr{C}$, then \mathscr{A} need not be complete.

Example 3. Let G be the additive group of all rationals with the natural linear order. Put $u=1$ and consider the $M V$-algebra $\mathscr{A}=\Gamma(G, u)$. Then \mathscr{A} belongs to \mathscr{C}, but it fails to be complete. Also, if \mathscr{A}_{1} is a direct product of $M V$-algebras isomorphic to \mathscr{A}, then $\mathscr{A}_{1} \in \mathscr{C}$ and \mathscr{A}_{1} is not complete.

References

[1] S. J. Bernau: Lateral and Dedekind completion of archimedean lattice groups. J. London Math. Soc. 12 (1976), 320-322.

Zbl 0333.06008
[2] R. Cignoli, I. M. I. D'Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.

Zbl 0937.06009
[3] P. F. Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444-480.

Zbl 0937.06009
[4] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers and Ister Science, Dordrecht and Bratislava, 2000. Zbl 0987.81005
[5] J. Jakubik: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85-98.

Zbl 0259.06015
[6] J. Jakubik: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math. J. 28 (1978), 484-504.

Zbl 0391.06014
[7] J. Jakubik: Direct product decompositions of MV-algebras. Czechoslovak Math. J. 44 (1994), 725-739.

Zbl 0821.06011
[8] J. Jakubik: On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473-480.
Zbl 0841.06010
[9] J. Jakubik: On archimedean $M V$-algebras. Czechoslovak Math. J. 48 (1998), 575-582. Zbl 0951.06011
[10] J. Jakubik: Retract mappings of projectable $M V$-algebras. Soft Computing 4 (2000), 27-32.

Zbl 1005.06007
[11] J. Jakubik: Direct product decompositions of pseudo $M V$-algebras. Archivum Math. 37 (2001), 131-142.

Zbl pre02185316
[12] J. Jakubik: On the α-completeness of pseudo $M V$-algebras. Math. Slovaca 52 (2002), 511-516.

Zbl 1030.06009
[13] J. Jakubik: Generalized cardinal properties of lattices and lattice ordered groups. Czechoslovak Math. J 54 (2004), 1035-1053.
[14] R.S. Pierce: Some questions about complete Boolean-algebras. Proc. Sympos. Pure Math. 2 (1961), 129-140.

Zbl 0101.27104
[15] E. C. Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334-346.
[16] W. A. Luxemburg, A. C. Zaanen: Riesz Spaces, Vol. 1. North Holland, Amsterdam, 1971. Zbl 0231.46014

Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: kstefan@saske.sk.

