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Abstract. In this paper, the concepts of indecomposable matrices and fully indecompos-
able matrices over a distributive lattice L are introduced, and some algebraic properties of
them are obtained. Also, some characterizations of the set Fn(L) of all n × n fully inde-
composable matrices as a subsemigroup of the semigroup Hn(L) of all n× n Hall matrices
over the lattice L are given.
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1. Introduction

The concept of indecomposable nonnegative matrices first appeared in 1912 in a
paper by Frobenius [1] dealing with the spectral properties of nonnegative matrices,

and the concept of fully indecomposable nonnegative matrices was introduced by
Marcus and Minc [2]. Their properties and characterizations have been studied by

many authors.
In 1973, Š. Schwarz [3] was the first to introduce the concepts of indecomposable

Boolean matrices (or indecomposable relations) and fully indecomposable Boolean
matrices (or fully indecomposable relations), and obtained some algebraic properties

of them. Since then, a number of works in this area were published (see e.g. [4]–[10]).

In this paper we shall develop these concepts, introduce the concepts of indecom-
posable matrices and fully indecomposable matrices over a distributive lattice L and

This work was supported by Foundation to the Educational Committee of Fujian
(JB03056, JB02081), China, and the Natural Science Foundation of Fujian Province,
China.
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give some algebraic properties and characterizations of them. In Section 3, we ob-

tain some algebraic properties of indecomposable matrices and fully indecomposable
matrices over the lattice L. In Section 4, we shall show that the set Fn(L) of all n×n

fully indecomposable matrices over the lattice L forms a nilpotent semigroup having

the universal matrix as the zero element and that the index of nilpotency of Fn(L) is
equal to the number n− 1. Also, we show that Fn(L) is the maximal nilpotent ideal
of the semigroup Hn(L) of all n × n Hall matrices over the lattice L. Some results
obtained in this paper generalize former results on Boolean matrices in [3].

2. Definitions and preliminary lemmas

Let (L, 6,∨,∧) be a distributive lattice with the least and the greatest elements 0
and 1, respectively. The join a∨ b and the meet a∧ b of a, b in L will be denoted by
a+b and a ·b (or ab), respectively. It is clear that if L is a linear lattice, especially the

Boolean algebra B0 = {0, 1} or the fuzzy algebra F = [0, 1], then a + b = max{a, b}
and ab = min{a, b} for all a and b in L.

Let Vn(L) (n > 1) denote the set of all n-tuples (n-vectors) over the lattice L.

For α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) in Vn(L) we define α + β = (a1 +
b1, a2 + b2, . . . , an + bn) and α 6 β ⇐⇒ ai 6 bi for i = 1, 2, . . . , n; we also define
α < β ⇐⇒ α 6 β and there exists i ∈ {1, 2, . . . , n} such that ai < bi. The norm of

a vector α is defined by ‖α‖ =
n∑

i=1

ai. Let 0 = (0, 0, . . . , 0) and e = (1, 1, . . . , 1). The

vector 0 is called the zero vector of Vn(L). Let ei denote the n-tuple with 1 as its
ith coordinate, 0 otherwise.

The multiplication of a vector α by a scalar λ in L is defined by λα = (λa1, . . . ,

λan). The vector α is called a constant vector if α = λe = (λ, λ, . . . , λ) for some λ

in L, otherwise, α is called nonconstant.

Let Mn(L) (n > 1) be the set of n × n matrices over L (lattice matrices). We
shall denote by Aij or aij the element of L which is the (i, j)-entry of A in Mn(L).
We define:

A + B = C iff cij = aij + bij for i, j = 1, 2, . . . , n, A 6 B iff aij 6 bij for
i, j = 1, 2, . . . , n, A < B iff A 6 B and aij < bij for some couple i, j ∈ {1, 2, . . . , n},
AB = C iff cij =

n∑
k=1

aikbkj for i, j = 1, 2, . . . , n, AT = C iff cij = aji for i, j =

1, 2, . . . , n,

In = (δij), δij =

{
1 if i = j,

0 if i 6= j,
i, j = 1, 2, . . . , n,

Jn = (aij), where aij = 1 for i, j = 1, 2, . . . , n. Jn is called the universal matrix.
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Further, A0 = In, Ak+1 = AkA, k = 0, 1, 2, . . .. We shall denote by ak
ij the element

at the (i, j)-entry of Ak.

The following properties are derived immediately from these definitions.

a) Mn(L) is a monoid with respect to multiplication.
b) (Mn(L), +, ·) is a semiring and for any A, B, C and D in Mn(L), A + A = A,
and if A 6 B and C 6 D then AC 6 BD.

A matrix in Mn(L) is called a permutation matrix if one of the elements of its
every row and every column is 1 and the others are 0. A matrix A in Mn(L) is
called invertible if there exists a matrix B in Mn(L) such that AB = BA = In. The

matrix B is called the inverse of A and is denoted by A−1.

It is clear that the set Sn(L) of all invertible matrices in Mn(L) is the group of
the units of the monoid Mn(L).

Remark 2.1. A square matrix A over the Boolean algebra B0 is invertible iff A is

a permutation matrix.

A matrix A in Mn(L) is called a Hall matrix (see [11]) if there exists a matrix P

in Sn(L) such that P 6 A. The matrix A is called reflexive if In 6 A. It is clear
that the set Hn(L) of all n × n Hall matrices over L forms a subsemigroup of the

semigroup Mn(L) and contains the group Sn(L).
A set S = {a1, a2, . . . , am} of elements in L is called a decomposition of 1 in L

if
m∑

i=1

ai = 1; S is called orthogonal if aiaj = 0 holds for all i and j provided that

i 6= j; S is called an orthogonal decomposition of 1 in L if it is orthogonal and a

decomposition of 1 in L.

A semigroup S with zero element z0 is called nilpotent with the index of nilpotency l

if Sl = {z0} while Sl−1 6= {z0}. A two-sided ideal (or ideal) Q of a semigroup S is
called a prime ideal if V ·W ⊆ Q implies either V ⊆ Q or W ⊆ Q for all two-sided

ideals V , W of S, where V ·W = {vw : v ∈ V, w ∈ W} and S l = {s1s2 . . . sl : si ∈
S, i = 1, 2, . . . , l}.
The following lemmas will be used:

Lemma 2.1. Let L be a distributive lattice. Then

(1) for a, a1, a2, . . . , an, b1, b2, . . . , bn in L, we have

n∑

i=1

aibi =
∏

U⊆N

(∑

i∈U

ai +
∑

j∈N−U

bj

)
and a +

n∏

i=1

ai =
n∏

i=1

(a + ai)

where N = {1, 2, . . . , n};
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(2) for aij ∈ L, i = 1, 2, . . . , n, j = 1, 2, . . . , m, we have

∏

i∈N

(∑

j∈M

aij

)
=

∑

σ∈m(N,M)

∏

i∈N

aiσ(i)

where M = {1, 2, . . . , m} and m(N, M) is the set of all maps from N to M .
���������

. (1) can be obtained from Lemma 2.1 in [12]; (2) is the dual of
Lemma 2.1 (2) in [13]. �

Lemma 2.2. Let A ∈ Mn(L). Then the following statements are all equivalent.
(1) A is invertible;

(2) AAT = AT A = In;

(3) there exists a positive integer l such that Al = In;

(4) each row and each column of A is an orthogonal decomposition of 1 in L.
���������

. The proof of Lemma 2.2 can be found in [14]. �

Remark 2.2. Note that if A is invertible in Mn(L) then A−1 = AT .

Lemma 2.3. Let P = (pij) ∈ Sn(L). Then
(1) for any α, β ∈ Vn(L), α < β ⇒ αP < βP ;

(2) for any α in Vn(L), α is a constant vector iff αP is a constant vector;

(3)
∑

i∈U, j∈V

pij = 1 for any U, V ⊆ N with |U |+ |V | > n + 1.

���������
. (1) First, it is clear that α < β implies αP 6 βP . Suppose that

αP = βP . Then αPP−1 = βPP−1, and so α = β, which contradicts our hypothesis.

This proves (1).
(2) Let α = λe for some λ in L. Then αP = (λe)P = λe (by Lemma 2.2 (4)).

Conversely, if αP = λe for some λ ∈ L then α = (λe)P−1 = λe. This proves (2).
(3) Since pi1 + pi2 + . . . + pin = 1 for any i ∈ U , we have

1 =
∏

i∈U

( ∑

j∈N−V

pij +
∑

j∈V

pij

)

6
∏

i∈U

( ∑

k∈N−V

pik +
∑

i∈U, j∈V

pij

)

=
∏

i∈U

( ∑

k∈N−V

pik

)
+

∑

i∈U, j∈V

pij (by Lemma 2.1 (1))

=
∑

σ∈m(U,N−V )

∏

i∈U

piσ(i) +
∑

i∈U, j∈V

pij (by Lemma 2.1 (2)),

where m(U, N − V ) is the set of all maps of U to N − V .
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Since |U | > (n − |V |) + 1 = |N − V | + 1, for any σ ∈ m(U, N − V ) there must
be a couple s, t ∈ U such that σ(s) = σ(t). Therefore

∏
i∈U

piσ(i) = 0 for all σ in

m(U, N − V ) (by Lemma 2.2 (4)). Hence
∑

i∈U, j∈V

pij = 1. This proves (3). �

Lemma 2.4. Let A ∈ Hn(L). Then
(1) there exists a matrix P in Sn(L) such that α 6 α(PA) for any α in Vn(L);
(2) if In 6 A, then Ak = An−1 holds for k > n.
���������

. (1) Let A ∈ Hn(L). Then there exists a matrix Q in Sn(L) such that
Q 6 A. Let Q−1 = P . Then P ∈ Sn(L) and In 6 PA. Clearly, α 6 α(PA) for
any α in Vn(L).
(2) can be obtained from Theorem 4 in [14]. �

3. Indecomposable lattice matrices and fully

indecomposable lattice matrices

In this section, we shall introduce the concepts of indecomposable matrices and

fully indecomposable matrices over a lattice L, and discuss some of their properties.
To do this, we first recall the notions of indecomposable Boolean matrices and

fully indecomposable Boolean matrices and give some of their characterizations.

Definition 3.1. Let A ∈ Mn(B0). A is said to be decomposable if there exists
a permutation matrix P such that

PAP T =
[

B O

C D

]

where B and D are square. Otherwise, A is called indecomposable; A is said to be
partly decomposable if there exist permutation matrices P and Q such that

PAQ =
[

B O

C D

]

where B and D are square. Otherwise, A is called fully indecomposable.

Remark 3.1. Note that a matrix A ∈ Mn(B0) is indecomposable if and only if
there is no proper nonempty subset U of the set N = {1, 2, . . . , n} such that aij = 0
for all i ∈ U and j ∈ N − U .

Remark 3.2. Note that any fully indecomposable Boolean matrix is indecom-
posable.
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Proposition 3.1. Let A ∈ Mn(B0). Then
(1) A is indecomposable if and only if

(In + A)n−1 = Jn,

(2) A is fully indecomposable if and only if for any k in {1, 2, . . . , n−1}, every k×n

(n × k) submatrix of A has at least k + 1 columns (k + 1 rows) which are not
zero vectors,

(3) A is fully indecomposable if and only if there exists a permutation matrix P

such that In 6 PA and PA is indecomposable.
���������

. (1) Sufficiency : Suppose that A is decomposable. Then, by Remark 3.1,
there exists a proper nonempty subset U of N such that aij = 0 for all i ∈ U and j ∈
N−U . Now let u ∈ U and v ∈ N−U . Since Jn = (In +A)n−1 = In +A+ . . .+An−1,
we have (In +A+ . . .+An−1)uv = 1, and so there exists a k in {1, 2, . . . , n− 1} such
that (Ak)uv = 1. But

(Ak)uv =
∑

16i1,...,ik−16n

aui1ai1i2 . . . aik−1v ,

hence there exists a sequence i1, . . . , ik−1 such that aui1 = ai1i2 = . . . = aik−1v = 1.
Let it be the last member in the sequence i0, i1, . . . , ik−1, ik which is in U (taking

i0 = u and ik = v). Then it ∈ U and it+1 ∈ N −U . But aitit+1 = 1, a contradiction.
Necessity : Suppose that A is indecomposable. Then by Proposition 5.2.3 in [15]

we have that for any i, j ∈ N , there exists a sequence γ1, . . . , rk(i,j)−1 such that
aiγ1 = aγ1γ2 = . . . = aγk(i,j)−1j = 1 (including the empty sequence with aij = 1).
Therefore (Ak(i,j))ij = 1. Let k = max

i,j∈N
{k(i, j)}. Then ((In + A)k)ij = (In +

A + . . . + Ak)ij = 1 for all i, j in N , and so (In + A)k = Jn. Since In 6 In + A, we

have (In + A)m = (In + A)n−1 for all m > n (by Lemma 2.4 (2)). If k > n, then
(In + A)n−1 = (In + A)k = Jn; if k 6 n − 1, then Jn = (In + A)k 6 (In + A)n−1,

and so (In + A)n−1 = Jn. This proves (1).
(2) By Definition 3.1, A is partly decomposable if and only if A contains an

s×(n−s) zero submatrix with 1 6 s 6 n−1. That is to say, A is fully indecomposable
if and only if for any s× t zero submatrix of A we have s+ t 6 n−1. Therefore, A is
fully indecomposable if and only if for any k in {1, 2, . . . , n− 1}, every k× n (n× k)
submatrix of A has at least k + 1 columns (k + 1 rows) which are not zero vectors.
This proves (2).
(3)Sufficiency : Let B = PA. Then In 6 B and B is indecomposable. Let B[U |V ]

denote the |U |×|V | submatrix of B consisting precisely of those elements bij of B for
which i ∈ U and j ∈ V , where U and V are nonempty subsets of the set N . Then for
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any proper nonempty subset U of N , the matrix B[U |N −U ] is not the zero matrix
(by Remark 3.1) and Ik 6 B[U |U ], where k = |U |, and so the matrix B[U |N ] has at
least k + 1 columns which are not zero vectors. By (2), B is fully indecomposable
and so is A.

Necessity : Suppose that A is fully indecomposable. Then the first row of A has at

least two elements which are 1, say a1j1 = a1j′1 = 1, where j1 6= j′1. By (2), the j1th
column of A has at least two elements which are 1. Assume that a1j1 = a2j1 = 1
without loss of generality. By (2), the second row of A has at least two elements a2j2

and a2j′2
such that a2j2 = a2j′2

= 1 and j2 6= j1. Similarly, the kth row (3 6 k 6 n)
of A has at least two elements akjk

and akj′k
such that akjk

= akj′k
= 1 and jk 6∈

{j1, j2, . . . , jk−1}. Therefore, we have that a1j1 = a2j2 = . . . = anjn = 1 and that
j1, j2, . . . , jn are distinct. Now put Ā = (āil)n×n such that

āil =

{
ail if l = ji,

0 if l 6= ji.

It is clear that Ā is a permutation matrix and Ā 6 A. Let P = (Ā)−1. Then
P is a permutation matrix and In 6 PA. Clearly, PA is indecomposable. This

proves (3). �

By Proposition 3.1, the indecomposable Boolean matrices and the fully indecom-

posable Boolean matrices can be described as follows:

Definition 3.1′. Let A ∈ Mn(B0). A is called indecomposable if (In + A)n−1 =
Jn; A is called fully indecomposable if there exists a permutation matrix P such that
In 6 PA and PA is indecomposable.

Now we introduce the concepts of indecomposable matrices and fully indecompos-
able matrices over a lattice L.

Definition 3.2. Let A ∈ Mn(L). A is said to be indecomposable if (In+A)n−1 =
Jn; A is said to be fully indecomposable if there exists a P in Sn(L) such that In 6 PA

and PA is indecomposable.

The sets of indecomposable matrices and fully indecomposable matrices inMn(L)
are denoted by In(L) and Fn(L), respectively.

Example 3.1. Consider the lattice L = {0, a, b, c, d, 1} whose diagram is shown
below:

It is easy to see that L is a distributive lattice.
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Now let

A =




0 d b

c 0 d

d 1 0




and

0

b

1

d

a

c

B =




b 1 d

d b 1
1 d b


 .

Then

I3 + A =




1 d b

c 1 d

d 1 1


 and (I3 + A)2 = J3,

and so A is indecomposable.

Let P =




0 0 1
1 0 0
0 1 0


. It is clear that P ∈ Sn(L) and PB =




1 d b

b 1 d

d b 1


.

Therefore In 6 PB. Since (PB)2 = J3, we have that A is fully indecomposable.

Proposition 3.2. Let A ∈ In(L). Then
(1) for any P in Sn(L), we have PAP T ∈ In(L);

(2) if
n∑

i=1

aii = 1, then A2n−1 = Jn.

���������
. (1) Let A ∈ In(L). Then (In + A)n−1 = Jn. Therefore

(In + PAP T )n−1 = (P (In + A)P T )n−1 = P (In + A)n−1P T = PJnP T = Jn,

and so

PAP T ∈ In(L).

This proves (1).

(2) Since A = (aij) ∈ In(L) we have

In + A + A2 + . . . + An−1 = Jn,

and so

(3.1) aij + a2
ij + . . . + an−1

ij = 1 for all i 6= j.
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For any i and j in N = {1, 2, . . . , n}, we have

a2n−1
ij =

∑

16i1,...,i2n−26n

aii1ai1i2 . . . ai2n−2j >
n∑

k=1

∑

p+d+r=2n−1

ap
ikad

kkar
kj

>
n∑

k=1

akk

∑

p+r62n−2

ap
ikar

kj (because ad
kk > akk)

>
n∑

k=1

akk

(n−1∑

p=1

ap
ik

)(n−1∑

r=1

ar
kj

)
.

Case I : i 6= j. In this case

a2n−1
ij >

∑

k 6=i,j

akk + aii

(n−1∑

p=1

ap
ii

)
+ ajj

(n−1∑

r=1

ar
jj

)
(by (3.1))

=
n∑

k=1

akk = 1.

Case II : i = j. In this case

a2n−1
ii >

∑

k 6=i

akk + aii

(n−1∑

p=1

ap
ii

)
=

n∑

k=1

akk = 1.

Therefore A2n−1 = Jn. This proves (2). �

Proposition 3.3. Let A = (aij) ∈ Fn(L). Then
(1) A ∈ Hn(L) ∩ In(F );
(2) for any P1, P2 in Sn(L), P1AP2 ∈ Fn(L);
(3) for any nonempty subsets U , V of N = {1, 2, . . . , n} with |U |+ |V | > n, we have

∑

i∈U, j∈V

aij = 1.

���������
. (1) Clearly, A ∈ Hn(L). Now we shall show that A ∈ In(L). Since

A ∈ Fn(L), there exists a matrix P in Sn(L) such that In 6 PA and PA is inde-
composable. Therefore

In + A = In + P−1(PA) = In + P−1(In + PA) (because In 6 PA)

= (In + A) + (In + P−1).
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By Lemma 2.2 (3), there exists a positive integer l such that P l = In. Thus P l−1 =
P−1. Since the integers l and l − 1 are relatively prime, there exists a positive
integer u such that u(l − 1) ≡ 1 (mod l), and so P u(l−1) = P . Now

(In + A)u = ((In + A) + (In + P l−1))u > (In + A)u + (In + P l−1)u

> A + P u(l−1) = A + P.

Thus

(In + A)2u > (A + P )2 > PA = In + PA,

and so

(In + A)n−1 = (In + A)2u(n−1) (by Lemma 2.4 (2))

> (In + PA)n−1 = Jn (because PA is indecomposable).

Then (In + A)n−1 = Jn, i.e., A is indecomposable. This proves (1).
(2) Let A ∈ Fn(L). Then there exists a P in Sn(L) such that In 6 PA and

PA ∈ In(L). Let Q = P−1
2 PP−1

1 . Then Q ∈ Sn(L) and

Q(P1AP2) = (P−1
2 PP−1

1 )(P1AP2) = P−1
2 (PA)P2 > P−1

2 InP2 = In.

Furthermore, Q(P1AP2) = P−1
2 (PA)P2 is indecomposable since PA is indecompos-

able. Therefore, P1AP2 is fully indecomposable. This proves (2).

(3) By the definition of A, there exists P in Sn(L) such that In 6 PA and PA is
indecomposable. Thus, we have In < PA. Let PA = B = (bij). Then

bii = 1 for i = 1, 2, . . . , n,

and so ∑

i∈U, j∈V

bij = 1 for any U and V with U ∩ V 6= ∅.

If U ∩ V = ∅, then U ∪ V = N . Let now α =
∑
i∈U

ei + λ
∑
i∈V

ei, where λ ∈ L and

λ 6= 1. Then

αB =
(∑

i∈U

bi1 + λ
∑

i∈V

bi1, . . . ,
∑

i∈U

bin + λ
∑

i∈V

bin

)
.

For any j ∈ N , if j ∈ U , then
∑
i∈U

bij + λ
∑
i∈V

bij = 1; if j ∈ V , then
∑
i∈U

bij +

λ
∑
i∈V

bij =
∑
i∈U

bij + λ. Since α < αB, there is j ∈ V such that
∑
i∈U

bij + λ > λ, and

so
∑

i∈U, j∈V

bij + λ > λ for all λ ∈ L with λ 6= 1. Thus
∑

i∈U, j∈V

bij = 1.
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Now A = P−1B. Let P−1 = (dij). Then

∑

i∈U, j∈V

aij =
∑

i∈U

∑

j∈V

n∑

t=1

ditbtj =
n∑

t=1

(∑

i∈U

dit

)(∑

j∈V

btj

)

=
∏

W⊆N

( ∑

i∈U, s∈W

dis +
∑

j∈V, t∈N−W

btj

)
(by Lemma 2.1 (1)).

Let ∆(W ) =
∑

i∈U, s∈W

dis +
∑

j∈V, t∈N−W

btj .

If (N − W ) ∩ V 6= ∅ or |V | + |N − W | > n, then
∑

j∈V, t∈N−W

btj = 1, and so

∆(W ) = 1.
If (N−W )∩V = ∅ and |V |+ |N−W | 6 n−1, then V � W , and so |W | > |V |+1.

Thus |U |+ |W | > |U |+ |V |+ 1 > n + 1, and so
∑

i∈U, s∈W

dis = 1 (by Lemma 2.3 (3)).

Therefore ∆(W ) = 1 for any W ⊆ N . Hence
∑

i∈U, j∈V

aij = 1. This proves (3). �

Proposition 3.4. Let A ∈ Mn(L). Then A ∈ Fn(L) iff there exists a P in Sn(L)
such that

α < αPA

for any nonconstant vector α in Vn(L).
���������

. Suppose that there exists a matrix P in Sn(L) such that α < αPA for
any nonconstant vector α in Vn(L). Take α = e1, e2, . . . , en. Then




e1

e2
...

en


 <




e1

e2
...

en


PA.

Therefore, we have In < PA, and so α 6 αPA 6 . . . 6 α(PA)n−1 6 α(PA)n

for any α in Vn(L). By Lemma 2.4 (2), we have (PA)n−1 = (PA)n. Therefore
α(PA)n−1 = α(PA)n−1(PA) for any α in Vn(L), and so α(PA)n−1 = λαe for

some λα in L. If we take α = e1, e2, . . . , en, then ei(PA)n−1 = e, and so




e1

e2
...

en


 (PA)n−1 = Jn.

Thus (In + PA)n−1 = (PA)n−1 = Jn. Hence A ∈ Fn(L).
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Conversely, suppose that A ∈ Fn(L). Then there exists a matrix P in Sn(L) such
that In 6 PA and PA ∈ In(L), and so α 6 αPA for all vectors α in Vn(L). If
α = αPA, then

α = αPA = α(PA)2 = . . . = α(PA)n−1 = αJn = ‖α‖e.

Therefore α < αPA for any nonconstant vector α in Vn(L). This proves the propo-
sition. �

At the end of this section, we will introduce the concepts of weakly indecomposable
matrices and weakly fully indecomposable matrices over the lattice L.

Definition 3.3. Let A ∈ Mn(L). A is called weakly decomposable if there exists
a matrix P in Sn(L) such that

PAP T =
[

B O

C D

]

where B and D are square. Otherwise, A is called weakly indecomposable; A is called

weakly partly decomposable if there exist matrices P and Q in Sn(L) such that

PAQ =
[

B O

C D

]

where B and D are square. Otherwise, A is called weakly fully indecomposable.

Remark 3.3. Note that any indecomposable matrix is weakly indecomposable
and any fully indecomposable matrix is weakly fully indecomposable over the lat-
tice L. However, the converse is not true.

Example 3.2. Consider the lattice L from Example 3.1. Let A =
[

a c

d b

]
,

B =
[

a c

d a

]
∈ M2(L). For any P =

[
p11 p12

p21 p22

]
and D =

[
d11 d12

d21 d22

]
in Sn(L),

using Lemma 2.2 (4), we have

PAP T =
(

p11a + p12b p12p21d + p11p22c

p11p22d + p12p21c p21a + p22b

)
.

Since

p12p21d + p11p22c > (p11p22 + p12p21)a

= (p12 + p11p22)(p21 + p11p22)a (by Lemma 2.1 (1))

= (p12 + p11)(p12 + p22)(p21 + p11)(p21 + p22)a

(by Lemma 2.1 (1))

= a (by Lemma 2.2 (4)) > 0,

310



A is weakly indecomposable. But (I2 + A)2−1 =
[

1 c

d 1

]
6= J2, hence A is not

indecomposable.

Also,

PBD >
[

p11 p12

p21 p22

] [
a a

a a

][
d11 d12

d21 d22

]

=
[

(p11 + p12)a (p11 + p12)a
(p21 + p22)a (p21 + p22)a

] [
d11 d12

d21 d22

]

=
[

a a

a a

] [
d11 d12

d21 d22

]
(by Lemma 2.2 (4))

=
[

(d11 + d21)a (d12 + d22)a
(d11 + d21)a (d12 + d22)a

]
=

[
a a

a a

]
(by Lemma 2.2 (4)).

Therefore, B is weakly fully indecomposable.

For any P =
(

p11 p12

p21 p22

)
∈ Sn(L), we have

PB =
[

p11a + p12d p11c + p12a

p21a + p22d p21c + p22a

]
.

Since p11a + p12d 6 a + d = d < 1 and p21c + p22a 6 c + a = c < 1, we have that
I2 66 PB. Thus B is not fully indecomposable.

Remark 3.4. If L is the Boolean algebra B0, then the concept of indecomposable

matrices concides with that of weakly indecomposable matrices and the concept of
fully indecomposable matrices concides with that of weakly fully indecomposable

mtrices over L.

4. The semigroup of fully indecomposable

lattice matrices

In this section, we shall give some charactorizations of Fn(L) as a semigroup.

Theorem 4.1.
(1) Fn(L) is a nilpotent semigroup having Jn as the zero element.

(2) The index of nilpotency of Fn(L) is equal to the number n− 1.
���������

. (1) Jn is clearly the zero element of Fn(L) since Jn ∈ Fn(L) and for
any A ∈ Fn(L) we have AJn = JnA = Jn. Suppose that A, B ∈ Fn(L). Then
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there exist P1, P2 in Sn(L) such that In 6 P1A, In 6 P2B, (P1A)n−1 = Jn and

(P2B)n−1 = Jn. Therefore

In 6 P2B = P2InB 6 P2(P1A)B = (P2P1)(AB),

Jn = (P2B)n−1 = (P2InB)n−1 6 (P2(P1A)B)n−1 = ((P2P1)(AB))n−1,

and so

Jn = ((P2P1)(AB))n−1.

Let now P = P2P1. Then P ∈ Sn(L), In 6 P (AB) and Jn = (P (AB))n−1, and so

AB ∈ Fn(L). Hence, Fn(L) is a semigroup.
Suppose that A1, A2, . . . , An−1 ∈ Fn(L). Let T = A1A2 . . . An−1, Al = (a(l)

ij ),
l = 1, 2, . . . , n− 1. Then

tij =
∑

16i1,...,in−26n

a
(1)
ii1

a
(2)
i1i2

. . . a
(n−1)
in−2j .

Let ∆(0)
ij = tij and ∆(l)

ilj
=

∑
16il+1,...,in−26n

a
(l+1)
ilil+1

. . . a
(n−1)
in−2j , l = 1, 2, . . . , n− 2. It is

clear that

∆(l)
ilj

=
n∑

il+1=1

a
(l+1)
ilil+1

∆(l+1)
il+1j .

Hence

tij =
n∑

i1=1

a
(1)
ii1

∆(1)
i1j

=
∏

U1⊆N

( ∑

i1∈U1

a
(1)
ii1

+
∑

j1∈N−U1

∆(1)
j1j

)
(by Lemma 2.1 (1))

=
∏

U1⊆N

( ∑

i1∈U1

a
(1)
ii1

+
∑

j1∈N−U1

( n∑

i2=1

a
(2)
j1i2

∆(2)
i2j

))

=
∏

U1⊆N

( ∑

i1∈U1

a
(1)
ii1

+
n∑

i2=1

( ∑

j1∈N−U1

a
(2)
j1i2

)
∆(2)

i2j

)

=
∏

U1⊆N

( ∑

i1∈U1

a
(1)
ii1

+
∏

U2⊆N

( ∑

i2∈U2

( ∑

j1∈N−U1

a
(2)
j1i2

)
+

∑

j2∈N−U2

∆(2)
j2j

))

=
∏

U1,U2⊆N

( ∑

i1∈U1

a
(1)
ii1

+
∑

i2∈U2

∑

j1∈N−U1

a
(2)
j1i2

+
∑

j2∈N−U2

∆(2)
j2j

)

(by Lemma 2.1 (1)).
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Repeating this process we can obtain that

tij =
∏

U1,...,Un−2⊆N

( ∑

i1∈U1

a
(1)
ii1

+
∑

i2∈U2, j1∈N−U1

a
(2)
j1i2

+ . . .

+
∑

in−2∈Un−2, jn−3∈N−Un−3

a
(n−2)
jn−3in−2

+
∑

jn−2∈N−Un−2

a
(n−1)
jn−2j

)
.

For any U1, U2, . . . , Un−2 ⊆ N , let

∆(U1, . . . , Un−2) =
∑

i1∈U1

a
(1)
ii1

+
∑

i2∈U2, j1∈N−U1

a
(2)
j1i2

+ . . .

+
∑

in−2∈Un−2, jn−3∈N−Un−3

a
(n−2)
jn−3in−2

+
∑

jn−2∈N−Un−2

a
(n−1)
jn−2j .

If |U1| > n−1, then
∑

i1∈U1

a
(1)
ii1

= 1 (by Proposition 3.3 (3)), and so∆(U1, . . . , Un−2) =

1. Similarly, if |N − Un−2| > n − 1, we have that
∑

jn−2∈N−Un−2

a
(n−1)
jn−2j = 1, and so

∆(U1, . . . , Un−2) = 1. This means that ∆(U1, . . . , Un−2) = 1 if |U1| > n − 1 or
|N − Un−2| > n− 1. Let now |U1| 6 n− 2 and |N − Un−2| 6 n− 2. Since

|U1|+ (|U2|+ |N − U1|) + . . . + (|Un−2|+ |N − Un−3|) + |N − Un−2| = (n− 2)n,

we have

(|U2|+ |N − U1|) + . . . + (|Un−2|+ |N − Un−3|) > (n− 2)n− 2(n− 2) = (n− 2)2.

Hence there must be an l in {1, 2, . . . , n− 3} such that |Ul+1|+ |N −Ul| > n. Since
Al+1 ∈ Fn(L), we have

∑

il+1∈Ul+1, jl∈N−Ul

a
(l+1)
jlil+1

= 1 (by Proposition 3.3 (3)),

and so ∆(U1, . . . , Un−2) = 1.
Therefore, we have ∆(U1, . . . , Un−2) = 1 for all U1, . . . , Un−2 ⊆ N , and so

tij =
∏

U1,U2,...,Un−2⊆N

∆(U1, . . . , Un−2) = 1, i.e., T = Jn.

Hence Fn(L) is a nilpotent semigroup having Jn as the zero element and
(Fn(L))n−1 = {Jn}. This proves (1).

313



(2) By (1), the index of nilpotency of Fn(L) 6 n − 1. To show that the index of
nilpotency is exactly n − 1, it is sufficient to show that for any n > 1 there is an
A ∈ Fn(L) such that An−2 6= Jn. It is easy to prove that the matrix

A =




1 1 0 . . . 0 0
0 1 1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 1 1
1 0 0 . . . 0 1




has this property. This proves (2). �

Remark 4.1. Theorem 4.1 is a generalization of Theorem 1.2 in [3].

Corollary 4.1. For any A ∈ Fn(L) we have An−1 = Jn.

We now give some characterizations of Fn(L) as a subsemigroup of Hn(L).

Theorem 4.2. The set Fn(L) is a two-sided ideal of Hn(L).
���������

. Suppose that A ∈ Fn(L) and B ∈ Hn(L). Then there exist P1 and P2

in Sn(L) such that In 6 P1A, In 6 P2B and (P1A)n−1 = Jn. Therefore In 6 P2B 6
P2(P1A)B = (P2P1)(AB), In 6 P1A 6 P1(P2B)A = (P1P2)(BA), Jn = (P1A)n−1 6
(P1(P2B)A)n−1 = ((P1P2)(BA))n−1, and so ((P1P2)(BA))n−1 = Jn. Also,

Jn = (P1A)n−1 6 ((P1A)(BP2))n−1 = (P1(AB)P2)n−1 = P−1
2 ((P2P1)(AB))n−1P2.

This implies Jn 6 ((P2P1)(AB))n−1. Thus ((P2P1)(AB))n−1 = Jn. Since

P1P2, P2P1 ∈ Sn(L), we have AB, BA ∈ Fn(L). This proves that Fn(L) is a
two-sided ideal of Hn(L). �

Remark 4.2. Theorem 4.2 is a generalization of Theorem 2.3 in [3].

Definition 4.1. A matrix A in Hn(L) is called strongly nilpotent if P1AP2 is

nilpotent for any P1 and P2 in Sn(L), i.e., (P1AP2)k = Jn for some positive integer k.

Theorem 4.3. The semigroup Fn(L) is exactly the set of all strongly nilpotent
elements in Hn(L).
���������

. Let A ∈ Fn(L). Then by Proposition 3.3 (2), P1AP2 ∈ Fn(L) for any P1,
P2 in Sn(L), and so P1AP2 is nilpotent for any P1, P2 in Sn(L) by Corollary 4.1.
Conversely, let A ∈ Hn(L) and let P1AP2 be nilpotent for any P1, P2 in Sn(L).

Since A ∈ Hn(L), there exists a P in Sn(L) such that In 6 PA, and so α 6 αPA
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for any α in Vn(L). If α = αPA, then α = α(PA) = α(PA)2 = . . . = α(PA)k = . . ..

But PA is nilpotent, hence there exists an integer k such that (PA)k = Jn and
so α = α(PA)k = αJn = ‖α‖e. Therefore α < α(PA) if α is noncostant, and so
A ∈ Fn(L) by Proposition 3.4. �

Theorem 4.4.
(1) Fn(L) is the maximal nilpotent ideal of Hn(L).
(2) The semigroup Fn(L) is precisely the intersection of all prime ideals of Hn(L).
���������

. (1) Suppose that U is a nilpotent ideal of Hn(L) and Fn(L) � U . Then

there is a nilpotent element A ∈ U − Fn(L). Since A ∈ U , we have also P1AP2 ∈ U

for any P1, P2 in Sn(L) ⊆ Hn(L). On the other hand, since A 6∈ Fn(L), A is not

strongly nilpotent, and so there is a couple P3, P4 in Sn(L) such that (P3AP4)k < Jn

for all k. That is, P3AP4 is not nilpotent, a contradiction with the supposition that

U is nilpotent.
(2) We first prove that Fn(L) is contained in any prime ideal of Hn(L). Let Q be

a prime ideal of Hn(L). Since Fn(L)n−1 = {Jn} and Jn ∈ Q, Fn(L) · Fn(L)n−2 ⊆ Q

implies either Fn(L) ⊆ Q, in which case our statement is proved, or Fn(L)n−2 ⊆ Q.

This implies Fn(L) ·Fn(L)n−3 ⊆ Q, hence again either Fn(L) ⊆ Q or Fn(L)n−3 ⊆ Q.
Repeating this argument we find Fn(L) ⊆ Q.

Our assertion will be proved if we are able to prove that for any B ∈ Hn(L)−Fn(L)
there is a prime ideal QB such that B 6∈ QB .

Note first that if B ∈ Hn(L)− Fn(L), then P1BP2 ∈ Hn(L)− Fn(L) for any P1,
P2 in Sn(L). For, if there were P3BP4 ∈ Fn(L) for some P3, P4 in Sn(L), this would
imply P−1

3 (P3BP4)P−1
4 = B ∈ Fn(L), contrary to the choice of B.

Now since B 6∈ Fn(L), there are P5, P6 in Sn(L) such that the matrix C = P5BP6

is not nilpotent. Hence no member of the sequence

(4.1) C, C2, . . . , Ck, . . .

is contained in Fn(L).
Let QB be the largest ideal of Hn(L) which does not meet any element of the

sequence (4.1). Then QB is not empty since it contains Fn(L). We state that QB is
a prime ideal of Hn(L). Suppose for an indirect proof that there are two ideals V

andW of Hn(L) such that V 6⊆ QB, W 6⊆ QB and V ·W ⊆ QB . Since QB � QB ∪V

and QB � QB ∪ W , there are some powers Cu and Cv such that Cu ∈ QB ∪ V ,

Cv ∈ QB ∪W , and so Cu ∈ V , Cv ∈ W . Therefore Cu+v ∈ V ·W ⊆ QB, contrary
to the construction of QB. Now B is not contained in the ideal QB , since otherwise

P5BP6 = C would be contained in QB , contrary to the choice of C. This completes
the proof of our statement. �
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Remark 4.3. Theorem 4.4 generilizes Theorems 2.7 and 2.8 in [3].

Acknowledgements. The author thanks the referees for their suggestions which
have made the paper more readable.
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