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Abstract. A dominating set in a graph G is a connected dominating set of G if it induces
a connected subgraph of G. The minimum number of vertices in a connected dominating
set of G is called the connected domination number of G, and is denoted by γc(G). Let G
be a spanning subgraph of Ks,s and let H be the complement of G relative to Ks,s; that
is, Ks,s = G ⊕H is a factorization of Ks,s. The graph G is k-γc-critical relative to Ks,s

if γc(G) = k and γc(G + e) < k for each edge e ∈ E(H). First, we discuss some classes
of graphs whether they are γc-critical relative to Ks,s. Then we study k-γc-critical graphs
relative to Ks,s for small values of k. In particular, we characterize the 3-γc-critical and
4-γc-critical graphs.

Keywords: connected domination number, connected domination critical graph relative
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1. Introduction

Let G = (V, E) be a simple connected graph. The degree, neighborhood and
closed neighborhood of a vertex v in the graph G are denoted by d(v), N(v) and
N [v] = N(v) ∪ {v}, respectively. The minimum degree and maximum degree of the
graph G are denoted by δ(G) and ∆(G), respectively. The graph induced by S ⊆ V

is denoted by 〈S〉. Let Pn, Cn, K1,n−1 and Kn denote the path, cycle, star and
complete graph with n vertices, respectively. Let Kn,m denote the complete bipartite

graph.

A dominating set S is a set of vertices where every vertex of G is in N [v] for some
v ∈ S. The domination number γ(G) is the minimum cardinality of a dominating
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set. A dominating set in a graph G is a connected dominating set of G if it induces a

connected subgraph of G. The connected domination number γc(G) is the minimum
cardinality of a connected dominating set. If S is a minimum connected dominating
set, we call S a γc-set of G.

If G is a spanning subgraph of F , then the graph F −E(G) is the complement of
G relative to F with respect to a fixed embedding of G into F . The idea of a relative

complement of a graph was suggested by Cockayne [1] and is studied in [2]. We shall
assume that the complete bipartite graph Ks,s has partite sets A and B, and that

G⊕H = Ks,s is a factorization of Ks,s. (If G and H are graphs on the same vertex
set but with disjoint edge sets, then G⊕H denotes the graph whose edge set is the

union of their edge sets.) Notice that if G is uniquely embeddable in Ks,s, then H

is unique. We henceforth consider only spanning subgraphs G of Ks,s such that G

is uniquely embeddable in Ks,s. We denote the relative complement H of G by G.

Haynes and Henning [3] studied domination critical graphs with respect to the

relative complement, that is, the graphs G such that γ(G + e) = γ(G) − 1 for all
e ∈ E(G). Hayness, Henning and Van der Merwe [4]–[5] studied total domination
edge critical graphs with respect to the relative complement, or just kt-critical graphs,
that is, the graphs G such that γt(G + e) < γt(G) = k for any edge e ∈ E(G).
In this paper we study the same concept for connected domination. We say that

a graph G is connected domination critical relative to Ks,s, or just k-γc-critical, if
γc(G + e) < γc(G) = k for any edge e ∈ E(G).
We use the following notation. An endvertex is a vertex of degree one and its

neighbor is called a support vertex. An endvertex of a tree is also called a leaf. For

a set S, X ⊆ V , if S dominates X , then we write S � X , while if 〈S〉 is connected
and S dominates X , we write S �c X . If v, u are adjacent vertices, then we write

v ⊥ u. Otherwise, we write v ± u.

First, we discuss some classes of graphs whether they are γc-critical relative to
Ks,s. Then we study k-γc-critical graphs relative to Ks,s for small values of k. In

particular, we characterize the 3-γc-critical and 4-γc-critical graphs.

2. Main results

Whereas the addition of an edge from the complement G can change the domina-
tion number of G by at most one, it can change the connected domination number

by as much as two.

Theorem 1. Let G be a connected graph. Then for any edge e ∈ E(G), γc(G)−
2 6 γc(G + e) 6 γc(G).
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���������
. It is clear that γc(G + e) 6 γc(G). Now we only prove γc(G) − 2 6

γc(G + e) for any edge e ∈ E(G). Let e = vu. Let S ′ be a connected dominating set
of G + e with minimum cardinality.

Case 1. v, u /∈ S′. Then S′ is a connected dominating set of G. Hence, γc(G) 6
γc(G + e).

Case 2. v ∈ S′ and u /∈ S′. If u is adjacent to at least one vertex in S ′ − {v},
then S′ is a connected dominating set of G. Hence, γc(G) 6 γc(G+e). So we assume
that u is not adjacent to any vertex in S ′ − {v}. Since G is a connected graph, u is

not an isolated vertex in G. Let t ∈ N(u). Then t ∈ V (G)−S ′ and t is dominated by
at least one vertex in S ′. Then S′ ∪ {t} is a connected dominating set of G. Hence,
γc(G) 6 γc(G + e) + 1.

Case 3. u ∈ S′ and v /∈ S′. In a similar way as Case 2, it is easy to prove.

Case 4. v ∈ S′ and u ∈ S′ . If vu is not a cut edge of 〈S ′〉, then S′ is a connected
dominating set of G. Hence, γc(G) 6 γc(G + e). If vu is a cut edge of 〈S ′〉, then
let S

′
1 and S

′
2 be the two components of 〈S ′〉 − vu. If there exists a vertex w in

V (G)−S′ such that w ∈ (N(S
′
1)∩N(S

′
2)), then S′ ∪ {w} is a connected dominating

set of G. Hence, γc(G) 6 γc(G + e) + 1. So we assume that there is no vertex
w in V (G) − S′ such that w ∈ (N(S

′
1) ∩ N(S

′
2)). Since G is a connected graph,

there exist two vertices w1 and w2 such that w1 ∈ N(S
′
1), w2 ∈ N(S

′
2) and w1 and

w2 are adjacent. Hence, S ′ ∪ {w1, w2} is a connected dominating set of G. Hence,

γc(G) 6 γc(G + e) + 2. �

Observation 1. If γc(G + vu) < γc(G) for a connected graph and an edge
vu ∈ E(G), then every γc(G + vu)-set S contains at least one of u and v. Moreover,

if without loss of generality, v ∈ S and u /∈ S, then v is the only neighbor of u in S.

Observation 2. If γc(G + vu) = γc(G) − 2 for a connected graph and an edge
vu ∈ E(G), then every γc(G + vu)-set S contains both v and u.

For any edge vu ∈ E(G), when we write [v, S] 7−→c u it is understood that S∪{v}
is a connected dominating set of G− {u} and u is not dominated by S.
Since adding the edge between the two end leaves of a path Pn yields a cycle Cn

and γc(Pn) = γc(Cn), we have the following lemma.

Lemma 1. Let G be a path or a cycle. Then

(1) P2s is not γc-critical relative to Ks,s for s > 2.
(2) C2s is γc-critical relative to Ks,s.

Now, we prove that a tree is not γc-critical relative to Ks,s.
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Theorem 2. Let T be a tree with n > 4 vertices. Then T is not γc-critical

relative to Ks,s.
���������

. Suppose T is a γc-critical tree relative to Ks,s. Let L = {v ∈ V (T ) :
d(v) = 1} and I = V (T )− L.

Claim 1. No two support vertices are adjacent.

Suppose that u and v are support vertices of u′ and v′, respectively, and that u

and v are adjacent. Consider T ′ = T + u′v′ and let S′ be a connected dominating
set of T ′. If both u′ and v′ are in S′, then (S′ − {u′, v′}) ∪ {u, v} is a connected
dominating set of T , a contradiction since |S ′| < γc(T ). Hence we may assume that
u′ ∈ S′ and v′ /∈ S′, implying that u ∈ S′ and u′ is the only neighbor of v′ in T ′ that

belongs to S′. But then (S′ − {u′}) ∪ {v} is a connected dominating set of T , again
a contradiction.

Claim 2. No vertex is adjacent to two or more leaves.

Let a support vertex v ∈ A be adjacent to two leaves v1 and v2. Since a tree is a
connected graph and |A| = |B|, v has at least one neighbor u in B that is not a leaf.

Let u1 ∈ N(u)−{v}. By Claim 1, u1 is not a leaf. Consider T ′ = T +u1v1 and let S′

be a γc-set of T ′. Since v and u1 are cutvertices of T ′, it is obvious that v, u1 ∈ S′. If

v1 ∈ S′, then (S′−{v1})∪{u} is a connected dominating set of T , contradicting the
fact that T is γc-critical. If v1 /∈ S′, then u ∈ S′ and S′ is a connected dominating

set of T , contradicting the fact that T is γc-critical. Hence, each support vertex is
adjacent to only one leaf.

Let LA and LB denote the set of leaves in T that belong to A and B, respectively.

Claim 3. LA 6= ∅ and LB 6= ∅.

If there is no leaf in A, then each vertex in A has degree at least 2 in T , and so T

has at least 2s edges, which contradicts the fact that T is a tree of order 2s. Hence,
LA 6= ∅. Similarly, LB 6= ∅.
Let u ∈ L(A) and v ∈ L(B), and let P : u = v1, v2, . . . , vt = v denote the longest

path in T between u and v. By Claim 1, t > 6. Since T is a γc-critical tree relative

to Ks,s, T is not isomorphic to P2s by Lemma 1. Hence, there exists at least one
vertex vi ∈ V (P ) such that d(vi) > 3. Since d(v2) = d(vt−1) = 2 by Claim 2, we
have 3 6 i 6 t − 2. Consider T ′ = T + v1vt and let S′ be a γc-set of T ′. It follows
that vi ∈ S′. If v1, vt ∈ S′, then either {v1, v2, . . . , vi} ⊆ S′ or {vi, vi+1, . . . , vt} ⊆ S′.

Without loss of generality, assume {v1, v2, . . . , vi} ⊆ S′. Then {vi+1, vi+2, . . . , vt} has
at most two adjacent vertices, say vj , vj+1, such that vj /∈ S′ and vj+1 /∈ S′. Hence,

(S′−{v1, vt})∪{vj , vj+1} is a connected dominating set of T , contradicting the fact
that T is γc-critical. If there exists exactly one vertex in {v1, vt}, say v1 ∈ S′, then
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{v1, v2, . . . , vi} ⊆ S′. It follows that {vi+1, vi+2, . . . , vt−1} has at most one vertex
vt−1 such that vt−1 /∈ S′. Then (S′ − {v1}) ∪ {vt−1} is a connected dominating set
of T , contradicting the fact that T is γc-critical. �

It is obvious that 1-γc-critical graph relative to Ks,s is K1,1. For 2-γc-critical
graphs relative to Ks,s it is Ks,s for s > 2. For 3-γc-critical graphs relative to Ks,s,

we have the following theorem.

Theorem 3. Let Ks,s have partite sets A and B. For s > 3, a graph G is

3-γc-critical relative to Ks,s if and only if

(1) there exists a vertex v of A such that d(v) = s, and

(2) each vertex of B has degree s− 1.
���������

. We first prove the necessity. Assume that G is 3-γc-critical relative to
Ks,s and let S = {x, y, z} be a γc(G)-set. Since S induces a P3, we may assume that
x ∈ A and {y, z} ⊂ B. So, d(x) = s.

Let v be a vertex of degree s in G. We may assume that v ∈ A, that is, v � B.
Since γc(G) = 3, no vertex in B dominates A. Hence, d(u) 6 s− 1 for each u ∈ B.

For each u ∈ B, let ū denote a vertex in A that is not adjacent to u in G. Let S

be a γc(G + uū)-set. Since G is 3-γc-critical relative to Ks,s, we have |S| = 2 and
at least one of u and ū is in S. If u /∈ S, then S = {ū, x} where x ∈ B − {u}. But
then d(x) = s, a contradiction. If u ∈ S, then S = {u, x} where x ∈ A. Hence,

d(u) = s− 1 for all u ∈ B.

Conversely, let G be a graph with the two properties listed in the theorem. Clearly,

no two adjacent vertices dominate G, and so γc(G) > 3. For each u ∈ B, let ū denote
a vertex in A that is not adjacent to u in G. Let w ∈ N(ū). Then {v, u, w} is a
connected dominating set of G. Hence, γc(G) = 3. For every edge uū ∈ E(G), {v, u}
is a connected dominating set of G + uū. Hence, γc(G + uū) = 2. Hence, the graph
G is 3-γc-critical relative to Ks,s. �

Let A and B be partite sets of Ks,s, and let η be the family of graphs G such that
G is a connected spanning subgraph of Ks,s for s > 3 and the following conditions
hold:

(1) there exists a vertex in A with degree s,

(2) no pair of vertices in B dominates A, and

(3) for each nonadjacent pair u ∈ A and v ∈ B, there exists a vertex w ∈ B such
that {v, w} � A− {u}.
Let τ be the family of spanning subgraphs G of Ks,s such that the relative com-

plement of G is the disjoint union of at least three nontrivial stars.
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Theorem 4. A connected graph G is 4-γc-critical relative to Ks,s if and only if

G ∈ η ∪ τ .

���������
. Suppose G ∈ η ∪ τ . We first show that γc(G) > 4. Clearly, no two

adjacent vertices dominate G, and so γc(G) > 3. Suppose that S = {x, y, z} is a
γc(G)-set. Since S induces a P3, we may assume that x ∈ A and {y, z} ⊂ B. Hence,

x � B, and so d(x) = s, while {y, z} � A. But then G /∈ η ∪ τ , a contradiction.
Hence, γc(G) > 4.

Case 1. G ∈ η. Let x ∈ A be a vertex of G such that x � B. Since γc(G) > 4,
there exists a pair of nonadjacent vertices u ∈ A and v ∈ B. Moreover, there

is a vertex w ∈ B such that {v, w} � A − {u}. Thus, {x, v, w, z} �c G where
z ∈ N(u) implying that γc(G) = 4. By condition (3), for each nonadjacent pair
u ∈ A and v ∈ B there exists a vertex w ∈ B such that {v, w} � A − {u}. Thus,
{v, w, x} �c G + uv, and so γc(G + uv) 6 3. Then G is 4-γc-critical relative to Ks,s.

Case 2. G ∈ τ . Each vertex of G is either the center of a star or an endvertex of
a star in G. If G = sK2, then it is clear that G is 4-γc-critical relative to Ks,s. Hence

we may assume that there is a vertex u ∈ A that is the center of a star, say S1, in
G of order at least 3. Since |A| = |B|, there is a vertex v ∈ B that is the center of a

star, S2, in G of order at least 3. Let u1 (v1) be adjacent to u (v, respectively) in G.
Let S3 be another star in G distinct from S1 and S2. Let x, y ∈ V (S3) and x ∈ A,

y ∈ B. Then {x, y, u1, v1} is a connected dominating set of G. Hence, γc(G) = 4.
For an arbitrary edge uv ∈ G, assume u ∈ A and v ∈ B. Suppose u is the center and

v is the endvertex of the same star in G. Then {u, u′, v} �c G + uv for any vertex
u′ ∈ A− {u}, and so γc(G + uv) 6 3. Then G is 4-γc-critical relative to Ks,s.

Conversely, we consider two cases.

Claim 1. If G has a vertex of degree s, then G ∈ η.

Without loss of generality, we may assume that z ∈ A has degree s. Since γc(G) =
4, it follows that no vertex in B has degree s, and no pair of vertices in B dominate
A. Hence conditions (1) and (2) hold. Since G is connected, every vertex in A has a

neighbor in B implying that no vertex in B can have degree s−1. Hence, d(v) 6 s−2
for each v ∈ B.

Let u ∈ A be a vertex not adjacent to v ∈ B. Since d(v) 6 s− 2, it is impossible
that {v, u} �c G + vu. If there exists a vertex x such that {v, u, x} �c G + vu, then
x ∈ B. So {x, v} � A and {x, v, z} �c G, which is a contradiction. Hence there exist

two vertices x and y such that {v, x, y} �c G + vu or {u, x, y} �c G + vu.

If {u, x, y} �c G + vu, then, since each vertex in B has degree at most s − 2,
both x and y must belong to B. But then {x, y, z} �c G, a contradiction. Hence,
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{v, x, y} �c G + vu. Then, we may assume that x ∈ B and y ∈ A. Thus, {v, x} �
A− {u}, and condition (3) holds. Hence, G ∈ η.

Claim 2. If G has no vertex of degree s, then G ∈ τ .

Let u ∈ A and v ∈ B be two nonadjacent vertices in G. We first prove that at least

one of u and v has degree s−1 in G. Suppose d(u) 6 s−2. Hence, {u, v} 6�c G+uv.
If there exists a vertex w ∈ A such that {u, v, w} �c G + uv, then d(v) = s − 1. If
there exist two vertices w, z distinct from u and v such that {u, w, z} �c G + uv,
then there exists exactly one vertex in {w, z} that belongs to A. Without loss of
generality, assume w ∈ A and z ∈ B. Then d(z) = s, which is a contradiction. If

there exist two vertices w, z distinct from u and v such that {v, w, z} �c G + uv,
then w, z ∈ A. Hence d(v) = s− 1.
It follows from the above fact that at least one of u and v is a leaf in G. This

is true for every pair of nonadjacent vertices with one vertex in A and the other in

B. Hence, since each vertex of G has degree at least 1, G is the disjoint union of
nontrivial stars. Moreover, since G is a connected subgraph of Ks,s, G is the disjoint

union of at least three nontrivial stars. Thus, G ∈ τ .
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