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Abstract. The existence of positive solutions for a nonlocal boundary-value problem with
vector-valued response is investigated. We develop duality and variational principles for
this problem. Our variational approach enables us to approximate solutions and give a
measure of a duality gap between the primal and dual functional for minimizing sequences.
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1. Introduction

We are dealing with the nonlinear problem of the form

(1) x′′(t) + Gx(t, x(t)) = 0 a.e. in (0, 1).

Our aim is to answer the question when the above differential equation possesses a
positive solution x : [0, 1] → � n such that

(2) x(0) = 0

and the non-local boundary condition

(3) x(1) =
∫ β

α

x(s) dg(s)
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hold, where α, β ∈ (0, 1), g = (g1, . . . , gn) : [0, 1] −→ � n and
∫ β

α x(s) dg(s) =
[
∫ β

α
xi(s) dgi(s)]i∈{1,...,n}. Speaking precisely, (1)–(2)–(3) is the system of n BVPs





x′′i (t) + Gxi(t, x(t)) = 0 a.e. in [0, 1],

xi(0) = 0 for i = 1, . . . , n,

xi(1) =
∫ β

α xi(s) dgi(s)

with the integrals
∫ β

α
xi(s) dgi(s) meant in the sense of Riemann-Stieltjes.

Investigation of similar problems was initiated by V. Il’in and E.Moiseev (see [12],
[13]) who studied the existence of solutions for (1) being an equation of Sturm-
Liouville type with (2) and the multi-point condition

(4) x′(1) =
m∑

i=1

aix
′(ζi)

where a1, . . . , am ∈ �
have the same sign. These results were motivated by [2] and

[3] (due to Bitsadze and Bitsadze and Samarskii). Since then more general multi-
point BVPs have been studied, among others by C.Gupta ([7], [9], [10]), C.Gupta,
S.K.Ntouyas and P.Ch.Tsamatos ([8]), R.Ma ([19]) and R.Ma and N.Castaneda
([20]). In [21] R.Ma presents the extension of Erbe’s and Wang’s results for two-
point BVPs and his own results for three-point BVPs. That paper is devoted to the
existence of positive solutions for the m-point boundary value problem





u′′ + h(t)f(u) = 0 for 0 < t < 1,

αu(0)− βu′(0) =
m−2∑
i=1

aiu(ξi),

γu(1)− δu′(1) =
m−2∑
i=1

biu(ξi),

where the constants α, β, γ, δ > 0 and functions ϕ(t) = β + αt, ϕ(t) = γ + δ − γt

for t ∈ [0, 1], ξi ∈ (0, 1), ai, bi ∈ (0,∞) for i ∈ {1, . . . , m− 2} satisfy some additional
assumptions.
The problem like (1)–(2) with the non-local boundary condition

(5) x′(1) =
∫ 1

t0

x′(s) dg(s)

is widely discussed, among others, in [15], where the one-dimensional case is consid-
ered, G has the special form Gx(t, x) = q(t)f(x) for some functions q : [0, 1] → [0,∞),
f :

� → �
, with q, f being continuous, f—nonnegative for x > 0 and such that
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sup
x∈[0,v]

{f(x)} 6 θv for some positive v and θ. The last inequality is the continuous

version of (4). Moreover, (5) becomes (4) when g is a piece-wise constant, increas-
ing function having a finitely many jumps. The above works present topological
approach and use methods associated with the fixed point theorem in cones due
to Krasnoselskii (see [18]). Many of these papers are devoted to the problem con-
taining restrictions on the slope of the solution (see, e.g. [14]–[16]), where rather
mild conditions lead to a positive integral operator. We have also discussed (1)–(2)
with a nonlocal condition similar to (3) with x′ instead of x (see [24]). Now we
want to study a more difficult situation concerning the case when the restrictions
are made on the solutions themselves. Then the integral condition (3) does not give,
in general, the positivity of the corresponding integral operator. Our investigations
are justified by the large number of papers associated with similar problems, among
others, [1], [4], [5], [6], [11], [15], [16], [21], [27]. This work is motivated mainly
by [17]. The approach presented here is based on methods of calculus of variations
which is of great importance in many disciplines of science and the starting point
for various approximate numerical schemes such as Ritz, finite difference, and finite
element methods. In this article some numerical results are also presented. Speaking
precisely, our approach enables us to numerically characterize approximate solutions
and give, also in the superlinear case, a measure of a duality gap between the primal
and dual functional for minimizing sequences.
We shall use the following notation:
(n1): for all x, y ∈ � n we say that x > y if xi − yi > 0 for i = 1, . . . , n; n > 0 is

a given integer number ;
(n2): for all x, y ∈ � n by xy we mean the vector [xiyi]i=1,...,n and by 〈x, y〉 the

scalar product of x and y : 〈x, y〉 :=
n∑

i=1

xiyi;

(n3): for all w = (w1, . . . , wn) ∈ � n and 0 < w we define the sets

P0,w = {x = (x1, . . . , xn) ∈ � n , 0 < xi < wi for all i = 1, . . . , n}

and

P 0,w = {x = (x1, . . . , xn) ∈ � n , 0 6 xi 6 wi for all i = 1, . . . , n} ;

(n4): A denotes the space of absolutely continuous functions x : [0, T ] → � n with
x′ ∈ L2([0, T ],

� n);
(n5): A0 is the subspace of A consisting of all x ∈ A such that x(0) = 0 with the

norm ‖x‖A0
= (

∫ 1

0 |x′(t)|
2 dt)1/2;

(n6): A0b := {x ∈ A0, such that x satisfies (3)};
and assumptions:
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(g): g = (g1, . . . , gn) : [0, 1] −→ � n , for all i = 1, . . . , n gi are increasing func-
tions such that gi(α) = 0 and 1− βgi(β) > 0,

[
1−

∫ β

α t dgi(t)
]

> 0;
(G1): G(t, ·) is convex and continuously differentiable in P 0,w for a certain w

given as in (n3) and for a.a. t ∈ [0, 1], G(·, x) is measurable in [0, 1] for all
x ∈ P 0,w;

(G2): Gx(t, ·) is nonnegative in P 0,w for a.a. t ∈ [0, 1];
(G3):

∫ 1

0
Gx(t, 0) dt 6= 0, −∞ <

∫ 1

0
G(t, 0) dt,

∫ 1

0
G(t, w) dt < +∞.

Throughout the paper we shall assume conditions (g), (G1)–(G3). We would
like to stress that because of (G1) and (G2), xj 7→ G(t, (x1, . . . , xj , . . . xn)) and
xj 7→ Gxi(t, (x1, . . . , xj , . . . xn)) for each i = 1, . . . , n and j = 1, . . . , n, t ∈ [0, 1], are
increasing functions if (x1, . . . , xj , . . . xn) lies in P 0,w.

We consider the general case when G satisfies hypotheses (G1)–(G3), so that our
assumptions are not strong enough to use the results discussed above: n > 1, t and
x are not separated in the nonlinearity, Gx(·, x) is measurable only, Gx(t, ·) is not,
in general, quiet at infinity. We are also able to omit the condition g(t0+) > 0. It
turns out that these weaker assumptions are still sufficient to conclude the existence
of solutions for (1).

Since we will propose an approach based on variational methods, we treat our
equation as the Euler-Lagrange equation for the integral functional J : A0 →

�
of

the form

(6) J(x) =
∫ T

0

(
−G(t, x(t)) +

1
2
|x′(t)|2

)
dt− 〈x(1), x′(1)〉 .

However, we believe that our paper may contribute some new look at this problem.
This is because we propose to study (1)–(2)–(3) by duality methods in a way, to some
extent, analogous to the methods developed in sublinear cases [22], [23]. Since the
functional (6) is, in general, unbounded in A0 (especially in the superlinear case), it
is obvious that we must look for critical points of J of “minmax” type. The main
difficulties which appear here are: what kind of sets we should choose over which we
wish to calculate “minmax” of J and then to link this value with critical points of
J . The methods based on the mountain pass theorems, the saddle point theorems
(see e.g. [22], [25], [28]), the Morse theory, cannot be applied directly to find critical
points of J , because of the boundary condition (3). So we develop a duality theory
which relates the infimum of the energy functional associated with the problem on a
special set X , to the infimum of the dual functional on a corresponding set Xd. The
links between the minimizers of the two functionals give a variational principle and,
in consequence, their relation to our BVP. We also present the numerical version of
the variational principle.
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Remark 1.1. We are interested in the solvability of (1)–(2)–(3) in the set

X = {x ∈ A0b : x′ belongs to A, x(t) > 0

for all t ∈ [0, 1] and x′′(t) 6 0 a.e. on (0, 1)}.

Before we use the variational approach, we have to prove some auxiliary re-
sults which come from the topological methods based on any fixed point theorems.
Namely, we are looking for an operator A defined on X with the property that A
maps X into X and (1)–(2)–(3) is equivalent to the problem of existence of a fixed
point of A in X. We will construct the operator A in a way similar to that used in
[17]. Thus we calculate from (1)

−x′(t) =
∫ t

0

Gx(s, x(s)) ds− x′(0)

and further

x(t) = x(1) +
∫ 1

t

∫ r

0

Gx(s, x(s)) ds dr − (dx + x(1))(1 − t),

where dx :=
∫ 1

0 (1− s)Gx(s, x(s)) ds and x′(0) = dx + x(1). Integrating by parts, we
arrive at

∫ 1

t

∫ r

0

Gx(s, x(s)) ds dr =
[
r

∫ r

0

Gx(s, x(s)) ds

]1

t

−
∫ 1

t

rGx(r, x(r)) dr

=
∫ 1

0

Gx(s, x(s)) ds− t

∫ t

0

Gx(s, x(s)) ds

−
∫ 1

0

rGx(r, x(r)) dr +
∫ t

0

rGx(r, x(r)) dr

=
∫ 1

0

(1− s)Gx(s, x(s)) ds−
∫ t

0

(t− s)Gx(s, x(s)) ds

= dx −
∫ t

0

(t− s)Gx(s, x(s)) ds,

so that

(7) x(t) = tx(1) + dxt−
∫ t

0

(t− s)Gx(s, x(s)) ds.

Taking into account (3) we obtain

x(1) = x(1)c + cdx −
∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)
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and

(8) x(1) = bcdx − b

∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)

with c :=
[∫ β

α t dgi(t)
]

i=1,...,n
and b := [1− ci]

−1
i=1,...,n . Substituting (8) into (7) yields

x(t) = tbcdx − tb

∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)

+ t

∫ 1

0

(1− s)Gx(s, x(s)) ds−
∫ t

0

(t− s)Gx(s, x(s)) ds

= tb

∫ 1

0

(1− s)Gx(s, x(s)) ds− tb

∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)

−
∫ t

0

(t− s)Gx(s, x(s)) ds.

On account of the above consideration it is easy to show that the existence of the
fixed point of A defined in the set X by

Ax(t) = tb

∫ 1

0

(1− s)Gx(s, x(s)) ds− tb

∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)

−
∫ t

0

(t− s)Gx(s, x(s)) ds

is equivalent to the solvability of our problem.

Definition 1.2. We say that a nonempty set X ⊂ X has property (P) if AX ⊂
X , namely for each x ∈ X there exists w ∈ X such that w = Ax.

We need the following auxiliary lemma, which is a direct consequence of Lemma 2.3
from [17]:

Lemma 1.3. If x ∈ C0(I,
� n ), x(0) = 0 and each component xi : [0, 1] → �

, i =
{1, . . . , n}, is a concave function satisfying the condition

xi(1) =
∫ β

α

xi(s) dgi(s),

where α, β ∈ (0, 1), gi : [0, 1] −→ �
are increasing functions with 1 − βgi(β) > 0,

then there exists µ > 0 with the following property: for all i = 1, . . . , n we have

xi(t) > µ‖xi‖C0([0,1], � )
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for t ∈ [α, 1] with µ := min{γ, 1 − β, (β − α)γg1(β), . . . , (β − α)γgn(β)}, γ :=
min{α, 1− β, (1− β)(1− α)−1}, and

xi(t) > 0

for all t ∈ [0, 1].

Lemma 1.4. If x ∈ X and x(t) ∈ [0, w] for t ∈ [0, 1], then Ax ∈ X.
�������	�

. Indeed, fix x ∈ X such that x(t) ∈ [0, w] for t ∈ [0, 1]. Thus, by the
definition of operator A, we obtain that Ax belongs to A and satisfies conditions (2)
and (3), so that x ∈ A0b. Moreover,

(Ax)′′(t) = −Gx(t, x(t)) 6 0

for a.a. t ∈ [0, 1], which means that each component ofAx is a concave function. Now
applying Lemma 1.3 to each component of Ax we infer Ax(t) > 0 for all t ∈ [0, 1].
Moreover, the definition of A gives

(Ax)′(t) = b

∫ 1

0

(1− s)Gx(s, x(s)) ds− b

∫ β

α

∫ t

0

(t− s)Gx(s, x(s)) ds dg(t)

−
∫ t

0

Gx(s, x(s)) ds

which implies (together with the assumption x(t) ∈ [0, w]) that (Ax)′ belongs to A.

Summarizing: Ax ∈ A0b, (Ax)′ ∈ A, Ax(t) > 0 and (Ax)′′(t) 6 0 for a.a. t ∈ [0, 1],
so that Ax ∈ X. �

Remark 1.5. Let us note that, in the general case described by hypotheses
(G1)–(G3), J is not necessarily bounded in X.

Our plans are to prove that in each set X ⊂ X satisfying the conditions
MH1 : X has the property (P);
MH2 : for each x ∈ X : x(t) ∈ P 0,w for all t ∈ [0, 1];

the functional J possesses at least one minimizer which is a solution of our problem.
We shall describe a sequence of disjoint subsets of X for which, as we will show in
the last section, conditions (MH1)–(MH2) are valid. This will imply the existence of
multiple distinguished solutions. To this effect let us assume in Sections 2, 3, 4 and
5 that
MH: there exists a nonempty subset X of X for which (MH1)–(MH2) hold.
In the last part of this paper we impose some additional conditions on G, which

guarantee the existence of such X.

In the sequel X is a fixed set satisfying (MH1)–(MH2).
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2. Duality results

In this section we shall develop the duality which describes the relations between
the critical value of J and the infimum of the dual functional JD : Xd −→ �

given
by

(9) JD(p) = −
∫ 1

0

1
2
|p(t)|2 +

∫ 1

0

G∗(t,−p′(t)) dt,

where G∗ is the Fenchel conjugate of G with respect to the second variable and

Xd = {p ∈ A : there exists x ∈ X such that p(t) = x′(t) for t ∈ [0, 1]}.

Now we formulate a remark which describes the links between the elements of the
sets X and Xd and follows directly from the definition of A and X :

Remark 2.1. Under condition (MH1), for each x ∈ X there exists p ∈ Xd such
that p′(·) = −Gx(·, x(·)) and therefore

∫ 1

0

〈−p′(t), x(t)〉 dt−
∫ 1

0

G∗(t,−p′(t)) dt =
∫ 1

0

G(t, x(t)) dt.

To describe the duality we need a kind of perturbation Jx : L2([0, 1],
� n)× � n → �

of J and convexity of the function considered on a whole space. Thus let us define
for each x ∈ X the perturbation of J by

Jx(y, a) =
∫ 1

0

(
G̃(t, x(t) + y(t))− 1

2
|x′(t)|2

)
dt + 〈x(1)− a, x′(1)〉

=
∫ 1

0

(
G̃(t, x(t) + y(t))− 1

2
|x′(t)|2

)
dt + 〈x(1), x′(1)〉 − 〈a, x′(1)〉 ,

with

G̃(t, x) =

{
G(t, x) if x ∈ P 0,w, t ∈ [0, T ],

+∞ if x /∈ P 0,w, t ∈ [0, T ].
We need this notation only for the purpose of duality and we will not change the
notation for the functional J containing G or G̃ for y ∈ L2([0, 1],

� n ), a ∈ � n . This
follows from the fact that our investigation reduces to the set X and for all x ∈ X

we have x(t) ∈ P 0,w on [0, 1].
For x ∈ X and p ∈ Xd we define a type of a conjugate of Jx by

J#
x (p) = sup

y∈L2,a∈ � n

( ∫ 1

0

〈y(t), p′(t)〉 dt + 〈p(1), a〉 − Jx(y, a)
)

(10)

= sup
y∈L2

{ ∫ 1

0

〈y(t), p′(t)〉 dt−
∫ 1

0

G̃(t, x(t) + y(t)) dt

}

+ sup
a∈ � n

{〈a, p(1)〉+ 〈a, x′(1)〉}+
∫ 1

0

1
2
|x′(t)|2 dt− 〈x(1), x′(1)〉 .
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From the definition of Fenchel’s conjugate G∗ of G̃ with respect to the second vari-
able, we get

J#
x (p) = −

∫ 1

0

〈x(t), p′(t)〉 dt +
1
2

∫ 1

0

|x′(t)|2 dt(11)

+
∫ 1

0

G∗(t, p′(t)) dt− 〈x(1), x′(1)〉+ l(x′(1) + p(1))

=
∫ 1

0

〈x′(t), p(t)〉 dt− 〈x(1), p(1)〉+
1
2

∫ 1

0

|x′(t)|2 dt

+
∫ 1

0

G∗(t, p′(t)) dt− 〈x(1), x′(1)〉+ l(x′(1) + p(1)),

where l :
� n → {0, +∞}

l(b) =

{
0 for b = 0,

+∞ for b 6= 0.

Now we prove two auxiliary equalities. First of them is obtained as “min” from
J#

x (p) with respect to x ∈ X. The other one is a consequence of calculation of
“min” of J#

x (p) over the set Xd. To this effect we use Fenchel’s conjugate, but the
main difficulty which appears here is: how to calculate the conjugate with respect to
nonlinear spaces X and Xd. We need some trick based upon the special structure of
the sets X and Xd. First we observe that for each p ∈ Xd there exists xp ∈ X such
that ∫ 1

0

〈
x′p(t), p(t)

〉
dt−

∫ 1

0

1
2

∣∣x′p(t)
∣∣2 dt =

∫ 1

0

1
2k(t)

|p(t)|2 dt

and further
∫ 1

0

〈
x′p(t), p(t)

〉
dt−

∫ 1

0

1
2

∣∣x′p(t)
∣∣2 dt

6 sup
x∈{z∈X,p(1)=z′(1)}

{ ∫ 1

0

〈x′(t), p(t)〉 dt−
∫ 1

0

1
2
|x(t)′|2 dt

}

6 sup
x∈X

{ ∫ 1

0

〈x′(t), p(t)〉 dt−
∫ 1

0

1
2
|x(t)′|2 dt

}

6 sup
x′∈L2

{ ∫ 1

0

〈x′(t), p(t)〉 dt−
∫ 1

0

1
2
|x′(t)|2 dt

}
=

∫ 1

0

1
2
|p(t)|2 dt.

So all inequalities above are equalities. Finally, we infer for all p ∈ Xd that

sup
x∈X

(
−J#

x (−p)
)

= sup
x∈X

{ ∫ 1

0

〈x′(t), p(t)〉 dt− 1
2

∫ 1

0

|x′(t)|2 dt

−
∫ 1

0

G∗(t,−p′(t)) dt− 〈x(1), p(1)〉+ 〈x(1), x′(1)〉 − l(x′(1)− p(1))
}

.
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Therefore

(12) sup
x∈X

(
−J#

x (−p)
)

= −
∫ 1

0

G∗(t,−p′(t)) dt +
∫ 1

0

1
2
|p(t)|2 dt = −JD(p).

The other assertion, which is necessary in the proof of the duality principle, has the
following form: for all x ∈ X ,

(13) sup
p∈Xd

(
−J#

x (−p)
)

6 −J(x).

To obtain this fix x ∈ X. Then Remark 2.1 leads to the existence of p̄ ∈ Xd such
that ∫ 1

0

〈−p̄′(t), x(t)〉 dt−
∫ 1

0

G∗(t,−p̄′(t)) dt =
∫ 1

0

G̃(t, x(t)) dt.

Because of the definition of G∗ the chain of relations

∫ 1

0

〈−p̄′(t), x(t)〉 dt−
∫ 1

0

G∗(t,−p̄′(t)) dt

6 sup
p∈Xd

{ ∫ 1

0

〈−p′(t), x(t)〉 dt−
∫ 1

0

G∗(t,−p′(t)) dt

}

= sup
p′∈L2

{ ∫ 1

0

〈−p′(t), x(t)〉 dt−
∫ 1

0

G∗(t,−p′(t)) dt

}
=

∫ 1

0

G̃(t, x(t)) dt,

holds and finally

sup
p∈Xd

(
−J#

x (−p)
)

= sup
p∈Xd

{ ∫ 1

0

〈x(t),−p′(t)〉 dt−
∫ 1

0

G∗(t,−p′(t)) dt

− l(x′(1)− p(1))
}

+ 〈x(1), x′(1)〉

− 1
2

∫ 1

0

|x′(t)|2 dt 6 sup
p∈Xd

{−l(x′(1)− p(1))}

+ sup
p∈Xd

{ ∫ 1

0

〈x(t),−p′(t)〉 dt−
∫ 1

0

G∗(t,−p′(t)) dt

}

+ 〈x(1), x′(1)〉 − 1
2

∫ 1

0

|x′(t)|2 dt = −
∫ 1

0

(−G̃(t, x(t))

+
1
2
|x′(t)|2) dt + 〈x(1), x′(1)〉 = −J(x),

which is our claim.
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As a consequence of assertions (13) and (12) we infer

inf
x∈X

J(x) = − sup
x∈X

(−J(x)) 6 − sup
x∈X

sup
p∈Xd

(
−J#

x (−p)
)

= − sup
p∈Xd

sup
x∈X

(
−J#

x (−p)
)

= − sup
p∈Xd

(−JD(p)) = inf
p∈Xd

JD(p).

So we obtain the duality principle in the form of an inequality:

Theorem 2.2. For functionals J and JD we have the duality relation

(14) inf
x∈X

J(x) 6 inf
p∈Xd

JD(p).

3. Necessary conditions

Denote by ∂Jx(y) the subdifferential of Jx. In particular,

∂Jx(0) =
{

p′ ∈ L2 ([0, 1],
� n ) :

∫ 1

0

G∗(t, p′(t)) dt +
∫ 1

0

G̃(t, x(t)) dt(15)

=
∫ 1

0

〈p′(t), x(t)〉 dt

}
.

The next result formulates a variational principle for “min” arguments.

Theorem 3.1. Let x̄ ∈ X be such that J(x̄) = inf
x∈X

J(x). Then there exists

p̄ ∈ Xd with p̄(t) = p̄(1) −
∫ 1

t
p̄′(s) ds, where p̄(1) = x̄′(1) and −p̄′ ∈ ∂Jx̄(0), such

that p̄ satisfies
JD(p̄) = inf

p∈Xd
JD(p).

Furthermore,

Jx̄(0) + J#
x̄ (−p̄) = 0,(16)

JD(p̄)− J#
x̄ (−p̄) = 0.(17)

�������	�
. By Theorem 2.2, to prove the first assertion it suffices to show that

J(x̄) > JD(p̄). Using Remark 2.1 we can observe that for x̄ there exists p̄ ∈ Xd such
that p̄′(t) = −Gx(t, x̄(t)) a.e. on (0, 1), which implies

(18)
∫ 1

0

〈−p̄′(t), x̄(t)〉 dt−
∫ 1

0

G∗(t,−p̄′(t)) dt =
∫ 1

0

G̃(t, x̄(t)) dt.
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Combining (18) and (15) we get the inclusion −p̄′ ∈ ∂Jx̄(0). Thus J∗x̄(−p̄′) = J#
x̄ (−p̄)

(where J∗x̄(−p̄′) denotes the Fenchel transform of Jx̄ at −p̄′) gives (16). It follows
that

−J(x̄) = −J#
x̄ (−p̄) 6 sup

x∈X
(−J#

x (−p̄)) = −JD(p̄),

where the last equality is due to (12). Hence J(x̄) > JD(p̄) and so JD(p̄) = J(x̄) =
inf

x∈X
J(x) = inf

p∈Xd
JD(p). (17) is a simple consequence of (16) and the chain of equal-

ities Jx̄(0) = −J(x̄) = −JD(p̄). �

Corollary 3.2. Let x̄ ∈ X be a minimizer of J on X : J(x̄) = inf
x∈X

J(x). Then

there exists p̄ ∈ Xd such that the pair (x̄, p̄) satisfies the relations

−p̄′(t) = Gx(t, x̄(t)),(19)

p̄(t) = x̄′(t),(20)

JD(p̄) = inf
p∈Xd

JD(p) = inf
x∈X

J(x) = J(x̄).(21)

�������	�
. Equalities (16) and (17) imply

∫ 1

0

G(t, x̄(t)) dt +
∫ 1

0

G∗(t,−p̄′(t)) dt−
∫ 1

0

〈x̄(t),−p̄′(t)〉 dt = 0,

∫ 1

0

1
2
|p̄(t)|2 dt +

∫ 1

0

1
2
|x̄′(t)|2 dt−

∫ 1

0

〈x̄′(t), p̄(t)〉 dt = 0

and further (19) and (20). Relations (21) are a direct consequence of Theorem 3.1
and Theorem 2.2. �

4. Variational principle for minimizing sequences

In this section we show that a statement similar to Theorem 3.1 is true for mini-
mizing sequences of J and JD.

Theorem 4.1. Let {xm}m∈ 
 , xm ∈ X , m = 1, 2, . . ., be a minimizing sequence
of J and let

+∞ > inf
m∈ 
 J(xm) = a > −∞.

Then there exists {pm}m∈ 
 ⊂ Xd with pm(t) = pm(1)−
∫ 1

t p′m(s) ds, pm(1) = x′m(1)
and −p′m ∈ ∂Jxm(0) such that {pm}m∈ 
 is a minimizing sequence for JD , i.e.

(22) inf
x∈X

J(x) = inf
m∈ 
 J(xm) = inf

m∈ 
 JD(pm) = inf
p∈Xd

JD(p).
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Furthermore,

Jxm(0) + J#
xm

(−pm) = 0,

JD(pm)− J#
xm

(−pm) 6 ε,(23)

0 6 J(xm)− JD(pm) 6 ε(24)

for a given ε > 0 and sufficiently large m.
�������	�

. We have that ∞ > inf
m∈ 
 J(xm) = a > −∞, and therefore for a given

ε > 0 there exists m0 such that J(xm) − a < ε for all m > m0. Further the proof
is similar to that of Theorem 2.2, so we only sketch it. First we observe that there
exists pm ∈ Xd such that p′m(t) = −Gx(t, xm(t)) a.e. on (0, 1), which implies for all
m ∈ �

∫ 1

0

G̃(t, xm(t)) dt =
∫ 1

0

−G∗(t,−p′m(t)) dt−
∫ 1

0

< xm(t), p′m(t) > dt.

Hence, we get the inclusion −p′m ∈ ∂Jxm(0) and the inequality

−J(xm) 6 −JD(pm)

which together with Theorem 2.2 implies (22). Again by Theorem 2.2

JD(pm) + ε > J(xm) for m > m0,

so that (24) holds.
Since −p′m ∈ ∂Jxm(0) we infer Jxm(0)+J#

xm
(−pm) = 0 for all m ∈ � . (23) follows

from the following two facts: Jxm(0) = −J(xm) = −J#
xm

(−pm) and inf
x∈X

J(x) =

inf
m∈ 
 JD(pm) = a. �

A direct consequence of this theorem is the following corollary.

Corollary 4.2. Let {xm}m∈ 
 ⊂ X be a minimizing sequence for J and let

+∞ > inf
m∈ 
 J(xm) = a > −∞.

Then there exists a minimizing sequence {pm}m∈ 
 ⊂ Xd for JD such that

(25) −p′m(t) = Gx(t, xm(t))

and pm(t) = pm(1)−
∫ 1

t
p′m(s) ds, pm(1) = x′m(1) for all m ∈ � . Moreover,

(26) lim
m→∞

∫ 1

0

(1
2
|pm(t)|2 +

1
2
|x′m(t)|2 − 〈x′m(t), pm(t)〉

)
dt = 0.
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5. Existence of a solution for the non-local BVP

The last problem which we have to solve is to prove the existence of x̄ ∈ X

satisfying (1)–(2)–(3).

Theorem 5.1. Under hypotheses (G1)–(G3) and (MH1)–(MH2) there exists a
solution x̄ ∈ X of (1)–(2)–(3) such that

(27) inf
x∈X

J(x) > J(x̄).

�������	�
. We start with the observation that (G1), (G3) and (MH2) yield the

following estimate: for all x ∈ X we have

(28) J(x) > 1
2
‖x′‖2

L2([0,1], � n) dt−
∫ 1

0

G(t, w) dt− ‖w‖ � n ‖x′‖L2([0,1], � n) ,

which leads to the boundedness of J on X. Let us consider the sets Sz = {x ∈ X ,
J(x) 6 z} with z ∈ �

.It is clear that Sz is nonempty for sufficiently large z, so let us
choose a minimizing sequence {xm}m∈ 
 for J from Sz. Taking into account (28) we
obtain the boundedness of {xm}m∈ 
 with respect to the norm ‖x′‖L2([0,1], � n) and,
consequently, by the definition of ‖·‖A0

, in A0b. This implies that (going if necessary
to a subsequence) {xm}m∈ 
 converges weakly to a certain element x̄ ∈ A0b and
further, xm →

m→∞
x̄ (uniformly). Thus 0 6 x̄ on [0, 1]. Our task is now to show that

x̄′ ∈ A and x̄′′ 6 0 a.e. on (0, 1). By (28) we know that inf
x∈X

J(x) > ∞, so we can
apply Corollary 4.2 which gives the existence of {pm}m∈ 
 ⊂ Xd such that

(29) p′m(t) = −Gx(t, xm(t)), for a.e. t ∈ (0, 1)

and

(30) lim
m→∞

∫ 1

0

(1
2
|pm(t)|2 +

1
2
|x′m(t)|2 − 〈x′m(t), pm(t)〉

)
dt = 0.

The first assertion leads to the pointwise convergence of {p′m}m∈ 
 :

(31) lim
n→∞

p′m(t) = lim
n→∞

−Gx(t, xm(t)) = − lim
n→∞

Gx(t, x̄(t))

and the boundedness of {p′m}m∈ 
 in the L1 ([0, 1],
� n ) norm. Moreover, by (28) and

the fact that {xm}m∈ 
 ⊂ Sz we know that {x′m(1)}m∈ 
 is bounded and therefore
we may assume (up to a subsequence) that it is convergent. On account of the above
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reasoning the sequence {pm}m∈ 
 ⊂ A given by pm(t) = pm(1)−
∫ 1

t p′m(s) ds, where
pm(1) = x′m(1), tends uniformly to a certain p̄(t) = p̄(1)−

∫ 1

t p̄′(s) ds such that

p̄′(t) = −Gx(t, x̄(t)).

Due to (30) and the facts that pm →
m→∞

p̄ uniformly and x′m ⇁
m→∞

x̄′ in L2([0, 1],
� n )

we have

0 = lim
m→∞

[ ∫ 1

0

(1
2
|pm(t)|2 +

1
2
|x′m(t)|2

)
dt−

∫ 1

0

〈x′m(t), pm(t)〉 dt

]

=
∫ 1

0

1
2
|p̄(t)|2 + lim

m→∞

[∫ 1

0

1
2
|x′m(t)|2 dt

]
−

∫ 1

0

〈x̄′(t), p̄(t)〉 dt

>
∫ T

0

1
2
|p̄(t)|2 dt +

∫ T

0

1
2
|x̄′(t)|2 dt−

∫ T

0

〈x̄′(t), p̄(t)〉 dt.

In view of the property of the Fenchel inequality all inequalities above are equalities.
Finally, we infer

p̄(t) = x̄′(t).

Thus, x̄′ ∈ A and x̄′′ = p̄′ = −Gx(·, x̄(·)) 6 0 a.e. on (0, 1), which we have claimed.
The last assertion is a simple consequence of the fact that the functional J is

weakly lower semicontinuous in A0b and thus also in X. Therefore

inf
x∈X

J(x) = lim
m→∞

J(xm) = lim inf m →∞J(xm) > J(x̄).

�

6. Existence of a sequence of solutions

6.1. Existence of a solution in a bounded set. In this section we present the
existence result for P0,w, where w is a certain element of

� n such that w > 0, and
for G satisfying the system of conditions

(G1′)–(G3′): (G1–G3) are valid for P0,w;
(G4) there exist d, e ∈ � n such that d < w and eb < 2, (b was given in Section 1)

2 = (2, . . . , 2) ∈ � n and ∫ 1

0

Gx(s, d) ds 6 ed.

As a consequence of (G4) we infer
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Lemma 6.1. If x ∈ P0,w and x 6 d then Ax 6 d.

�������	�
. Taking into account the monotonicity of Gxi and condition (G4) we

have

(Ax(t)) 6 b

∫ 1

0

(1− s)Gx(s, x(s)) ds 6 b

∫ 1

0

(1− s)Gx(s, d) ds

6 bed

∫ 1

0

(1− s) ds 6 1
2
bed 6 d,

so that Ax(t) 6 d. �

We define X1 to be

X1 =
{
x ∈ X, x(t) 6 d for all t ∈ [0, 1]

}
.

Lemmas 1.4 and 6.1 lead to the following results

Lemma 6.2. For X1 given above (MH1) and (MH2) hold.

Theorem 6.3. Under assumptions (g), (G1′)–(G3′), (G4) there exists a solution
of our problem belonging to X1 and being a minimizer of J on X1.

�������	�
. Application of Theorem 4.1 to the set X1 yields the existence of x̄ ∈ X

satisfying (1)–(2)–(3) and the inequality

inf
x∈X1

J(x) > J(x̄).

So to prove our claim it suffices to show that x̄ ∈ X1. Taking into account the
definition of x̄ we have that xm →

m→∞
x̄ (uniformly), where {xm}m∈ 
 ⊂ X1 is described

in the proof of Theorem 5.1, so that x̄(t) 6 d for all t ∈ [0, 1] and, consequently,
x̄ ∈ X1. �

6.2. Existence of multiple solutions.
Our task is now to show the existence of other solutions of (1)–(2)–(3). Therefore

for each m ∈ K, whereK is a certain subset of � , we shall construct a set denoted by
Xm such that Xm ∩X l = ∅ for m 6= l, m, l ∈ K, including a solution to (1)–(2)–(3).
It is clear that we need some additional information concerning the properties of G
on a sequence of polyhedra

{
P 0,wm

}
m∈K

, so that we impose
(G1′′)–(G3′′): (G1)–(G3) are valid for P 0,wm for each m ∈ K;
(G5) there exist {λm}m∈K ⊂ �

+ , {em}m∈K , {dm}m∈K ,
{
d̄m

}
m∈K

⊂ � n such
that for each m ∈ K
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a:

0 6 dm < d̄m < dm+1 6 wm,

b:

bem 6 2,

c: ∫ 1

0

Gx(s, d̄m) ds 6 ed̄m,

d:
(1− β)2 α

2 (1− βgi(β))
λm

i > 1 for each i = 1, . . . , n,

e:

Gx(t, µdm) > λmdm for all t ∈ [α, 1].

Now we shall construct a sequence of disjoint sets Xm satisfying assumptions
(MH1) and (MH2). Let us put for all m ∈ K

Xm := {x ∈ X, there exists t0 ∈ (0, 1) such that dm 6 x(t0)

and x(t) 6 d̄m for all t ∈ [0, 1]}.

We will show that AXm ⊂ Xm.

Lemma 6.4. AXm ⊂ Xm for all m ∈ K.

�������	�
. For a given m ∈ K fix x ∈ Xm. By virtue of conditions (G5b–c), an

analysis similar to that in the proof of Lemma 6.1 leads to the conclusion that

Ax 6 d̄m on [0, 1].

In the proof of the lower estimate we will employ the scheme used by Karakostas
and Tsamatos in [17]. Put u(t) := Ax(t) for t ∈ [0, 1]. By the definition of A we
infer that u is a solution of the problem





u′′(t) + Gx(t, x(t)) = 0 a.e. in [0, 1],

u(0) = 0,

u(1) =
∫ β

α
u(s) dg(s).

Let us consider the compact set

E(u) :=
{

k ∈ [α, β], u(1) =
∫ β

α

u(s) dg(s) = u(k)
∫ β

α

dg(s) = u(k)g(β)
}

.
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From the above we conclude that u is a solution of the BVP of the form





y′′(t) + Gx(t, x(t)) = 0 a.e. on (0, 1),

y(0) = 0,

y(1) = y(ku)g(β),

where ku := min
u∈E

E(u). It is clear that u can be written as

u(t) = lut

∫ 1

0

(1− s)Gx(s, x(s)) ds− tlug(β)
∫ ku

0

(ku − s)Gx(s, x(s)) ds

−
∫ t

0

(t− s)Gx(s, x(s)) ds

in [0, 1], with lu := [(1 − kugi(β))−1]i=1,...,n > [(1 − βgi(β))−1]i=1,...,n > 0. The
following chain of equalities holds:

(Ax)(ku) = u(ku) = luku

∫ 1

0

(1− s)Gx(s, x(s)) ds(32)

− kulug(β)
∫ ku

0

(ku − s)Gx(s, x(s)) ds−
∫ ku

0

(ku − s)Gx(s, x(s)) ds

= luku

∫ 1

0

(1− s)Gx(s, x(s)) ds− lu

∫ ku

0

(ku − s)Gx(s, x(s)) ds

= luku

∫ 1

0

Gx(s, x(s)) ds− luku

∫ 1

0

sGx(s, x(s)) ds

− luku

∫ ku

0

Gx(s, x(s)) ds + lu

∫ ku

0

sGx(s, x(s)) ds

= luku

∫ ku

0

Gx(s, x(s)) ds + luku

∫ 1

ku

Gx(s, x(s)) ds

− luku

∫ ku

0

sGx(s, x(s)) ds− luku

∫ 1

ku

sGx(s, x(s)) ds

− luku

∫ ku

0

Gx(s, x(s)) ds + lu

∫ ku

0

sGx(s, x(s)) ds

luku

∫ 1

ku

(1− s)Gx(s, x(s)) ds + lu(1− ku)
∫ ku

0

sGx(s, x(s)) ds.

Application of Lemma 1.3 yields for all i = 1, . . . , n and t ∈ [α, 1]

xi(t) > µ‖xi‖C([0,1], � ) > µdm.

638



Combining the last inequality and assertion (32) we can derive

(Ax)(ku) > luku

∫ 1

ku

(1− s)Gx(s, x(s)) ds > luku

∫ 1

β

(1− s)Gx(s, µdm) ds

>
[ (1− β)2 α

2 (1− βgi(β))
λm

i

]
i=1,...,n

dm > dm,

as we have claimed. �

Now Theorem 5.1 and arguments similar to those in the proof of Theorem 6.3 give

Theorem 6.5. Under assumptions (g), (G1′′)–(G3′′) and (G5) there exists a
sequence {xm}m∈K of distinguished solutions of (1)–(2)–(3) such that xm belongs to
Xm, m ∈ K.

Acknowledgment. We are indebted to the referee whose comments led to an
improvement of the exposition of the paper.
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