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ESTIMATES OF GLOBAL DIMENSION
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Abstract. In this note we show that for a ∗n-module, in particular, an almost n-tilting
module, P over a ring R with A = EndR P such that PA has finite flat dimension, the
upper bound of the global dimension of A can be estimated by the global dimension of R
and hence generalize the corresponding results in tilting theory and the ones in the theory
of ∗-modules. As an application, we show that for a finitely generated projective module
over a VN regular ring R, the global dimension of its endomorphism ring is not more than
the global dimension of R.
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Introduction

The theory of ∗-modules has been studied extensively (see for instance [8], [1], [5],
[10] etc.). A ∗-module is a left R-module P with A = EndR P such that there is an
equivalence

HomR(P,−) : C ⇀↽ D : PA ⊗−.

between full subcategories C ⊆ R-Mod and D ⊆ A-Mod with C closed under direct
sums and epimorphic images, D closed under submodules and A ∈ D. ∗-modules gen-
eralize both tilting modules of projective dimension 6 1 and quasi-progenerators [1],
[2]. In fact, Colpi [2] proved that tilting modules of projective dimension 6 1 coin-
cide with ∗-modules which generate all injectives, while quasi-progenerators are just
the ∗-modules which generate all of their submodules [1]. Trlifaj [11] showed that
∗-modules are finitely generated. Trlifaj [10] also showed that for a ∗-module RP the
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upper bound of the global dimension of A = EndR P can be estimated by the global

dimension of R. Fuller [5] studied ∗-modules over ring extensions.
Noting the fact that a tilting module of projective dimension 6 n (in the sense of

Miyashita [7], see Section 1 for details) is a ∗-module if and only if it is classical i.e. if
and only if n = 1, we introduced ∗n-modules as generalizations of both ∗-modules and
tilting modules of projective dimension 6 n [14]. A ∗n-module is a left R-module P

with A = EndR P such that the functor

HomR(P,−) : C ⇀↽ D : PA ⊗−.

define an equivalence between full subcategory C ⊆ R-Mod and D ⊆ A-Mod with C
consisting of modules n-presented by P (see Section 1 for the definition), and D
consisting of modules M such that TorA

i (P, M) = 0 for all i > 1. Note that
∗1-modules are just ∗-modules by [3]. It was also shown in [14] that tilting modules
of projective dimension 6 n are ∗n-modules n-presenting all injective modules ([14],

Theorem 3.8). Examples of ∗n-modules contain also all finitely generated projec-
tive R-modules P with A = EndR P such that PA has finite flat dimension [13].

Corresponding to the notion of quasi-progenerators, a special class of ∗n-modules,
i.e. 2-quasi-progenerators, was introduced in [13]. Examples of 2-quasi-progenerators
contain all finitely generated projective modules over VN regular rings.

In this note, we study the global dimension estimates for ∗n-modules following
ideas of Trlifaj [10]. We extend both results about global dimension estimates of

∗-modules and those of the tilting theory to ∗n-modules. So far, there are many
unsolved questions in the theory of ∗n-modules. For example, we even don’t know

whether or not ∗n-modules are finitely generated. We don’t know if the flat dimension
of PA is finite, where RP is a ∗n-module and A = EndR P . In contrast, we easily

check that PA has flat dimension 6 1 if RP is a ∗-module (see also [10]). We hope
that this short note would be helpful to the study of this theory. We now remark

that the above-mentioned two questions were answered in 2005, see [12]. However,
it rises another question: “are all ∗n-modules countably generated?”.

1. Preliminaries

Throughout this note, all rings have non zero identity and all modules are unitary.
For every ring R, R-Mod (Mod-R) denotes the category of all left (right) R-modules.

Modules will mean left modules without explicit reference. By a subcategory we
mean a full subcategory closed under isomorphisms.

Let R be a ring, P will always mean an R-module with the endomorphism ring
A = EndR P . Hence P is anR-A-bimodule. We say a left R-moduleM is n-presented
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by P if there exists an exact sequence P (Xn−1) → P (Xn−2) → . . . → P (X1) →
P (X0) → M → 0 with Xi, 0 6 i 6 n− 1, sets. Denote by Presn(P ) the category of
all modules n-presented by P . Note that there is a clear inclusion between categories:
Presn+1(P ) ⊆ Presn(P ). We denote Pres2(P ) by Pres(P ) and Pres1(P ) by Gen(P )
as usual.

An R-module P is said to be selfsmall if, for any set X , there is the canonical iso-

morphism HomR(P, P (X)) ' HomR(P, P )(X). Clearly, every finitely generated mod-
ule is selfsmall. But the converse is generally false, see [4]. An R-module P is said to

be (n, 1)-quasi-projective if for any exact sequence 0 → L → P (X) → N → 0 withX a
set and L ∈ Presn−1 P , the induced sequence 0 → HomR(P, L) → HomR(P, P (X) →
HomR(P, N) → 0 is also exact. An equivalent definition of ∗n-modules is the fol-
lowing. An R-module P is said to be a ∗n-module if P is selfsmall, (n + 1, 1)-
quasi-projective and Presn(P ) = Presn+1(P ) [14]. An R-module P is said to be a
2-quasi-progenerator if P is a ∗2-module and P is semi-Σ-quasi-projective (see [9] for
the definition) and Pres2(P ) = Pres3(P ).
Let P be a ∗n-module. Then the functor HomR(P,−) preserves all short exact

sequences in Presn(P ) [14].
Let R be a ring, P ∈ R-Mod and A = EndR P . We use the following notions.

KerT i>1
P =: {M : TorA

i (P, M) = 0 for all i > 1}.
KerEi>1

P =: {M : Exti
R(P, M) = 0 for all i > 1}.

Note that HP = HomR(P,−) and TP = P ⊗A −. It is well known that (TP , HP ) is
a pair of adjoint functors and there are the following canonical homomorphisms:

%M : TP HP M → M by f ⊗ p → f(p);

σN : N → HP TP N by n → [p → n⊗ p].

Following Miyashita [7], we say an R-module P is n-tilting provided

(i) there is an exact sequence 0 → Fn → . . . → F0 → P → 0 with Fi’s finitely

generated projective,

(ii) Exti
R(T, T ) = 0 for all i > 1, and

(iii) there is an exact sequence 0 → R → P0 → . . . → Pn → 0 with Pi’s direct

summands of finite direct sums of copies of P .

2. Estimates of global dimension

Denote by AddR T the full subcategory of direct summands of sums of copies of T .
Clearly AddR R is just the full subcategory of all projective R-modules.
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Lemma 2.1. Let P be a ∗n-module. Then everyM ∈ Presn(P ) has a resolution
. . . → P1 → P0 → M → 0, where Pi ∈ AddR P .

���������
. Since P is a ∗n-module, Presn(P ) = Presn+1(P ). Hence we have an

exact sequence 0 → M1 → P (X0) → M → 0 with M1 ∈ Presn(P ). Applying the
same arguments to M1 we obtain the conclusion. �

Let P be a ∗n-module. For any M ∈ Presn(P ), put P -res.dim(M) = m (called

P -resolution dimension of M) where m is the smallest integer such that there is an
exact sequence in R-Mod : 0 → Pm → . . . → P0 → M → 0 with Pi ∈ AddR P for

0 6 i 6 m. If there is no such integer m, put P - res.dim(M) = ∞. By Lemma 2.1,
the definition of P -resolution dimension is consistent.

For a ring R, we denote by pdR T the projective dimension of the R-module T

and by gdR the global dimension of R.

Lemma 2.2. Let P be a ∗n-module. Then P - res.dim(M) = pdA(HP M) for any
M ∈ Presn(P ).
���������

. Since P is selfsmall, we see that there is an equivalence

HP : AddR P ⇀↽ AddA A : TP .

Hence HP N ∈ AddA A for any N ∈ AddR P .

Let now M ∈ Presn(P ). Assume that P - res.dim(M) < ∞, then we have an exact
sequence

(1) 0 → Pm → . . . → P0 → M → 0

with Pi ∈ AddR P . Since M ∈ Presn(P ) and P is a ∗n-module, the sequence (1) is
exact under the functor HP . Hence we have the following exact sequence

(2) 0 → Am → . . . → A0 → HP M → 0

Ai ∈ AddA A. Therefore pdA(HP M) 6 m.

Conversely, consider an exact sequence of the form (2). Since P is a ∗n-module
and M ∈ Presn(P ), we have HP M ∈ KerT i>1

P . Hence by applying the functor TP

to the exact sequence (2) we have an exact sequence of the form (1). Thus m =
P - res.dim(M) 6 pdA(HP M). Combining the arguments above we conclude that
P - res.dim(M) = pdA(HP M) for any M ∈ Presn(P ). �
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Proposition 2.3. Assume P is a ∗n-module with A = EndR P such that PA has

flat dimension 6 t. Let d = pdR P , AP = {M ∈ Presn(P ) : M /∈AddR P and

pdR M 6 d} and D = max
{(

sup
M∈AP

P - res.dim(M) − d
)
, 0

}
. Then gd A 6 gdR +

D + t.

���������
. We may assume d < ∞ and D < ∞. For any 0 6= N ∈ A-mod, consider

the following exact sequence

(T) 0 → X → At−1 → At−2 → . . . → A0 → N →

with Ai ∈ AddA A for 0 6 i 6 t − 1. Since PA has flat dimension 6 t, we see that
X ∈ KerT i>1

P . Moreover, since RP is a ∗n-module we have X = HP M for some

M ∈ Presn(P ).
We claim that pdA X 6 D + max{d, pdR M}. We use the induction on pdR M

to prove the assertion. It’s easy to check that the assertion holds if M ∈ AddR P

(since in this case P - res.dim(M) = 0 and hence pdA X = 0 by Lemma 2.2). If
pdR M 6 d, we have pdA X = P - res.dim(M) 6 max

{
sup

M∈AP

P - res.dim(M), d
}

=

max
{

sup
M∈AP

P - res.dim(M)−d, 0
}

+d = D+max{d, pdR M}. Now consider the case
pdR M > d. Note that we have an exact sequence 0 → M1 → P1 → M → 0 with
M1 ∈ Presn(P ) and P1 ∈ AddR P . It follows that the sequence 0 → HP M1 → A′

1 →
X → 0 is exact where A′

1 = HP P1 ∈ AddA A. Note that pdR M = pdR M1 + 1 since
pdR P = d < pdR M , so the induction assumptions work and we have pdA X =
pdA(HP M1) + 1 6 D + max{d, pdR M1} + 1 = D + max{d, pdR M} (note that
pdR M1 > d).

From the above arguments we see that pdA X 6 gd R + D. Using the exact
sequence (T) we obtain that gdA 6 gd R + D + t. �

Definition 2.4. An R-module P is said to be almost n-tilting if P is a ∗n-module

such that Presn(P ) ⊆ KerEi>1
P .

When n = 1, the above notions coincide with the notion of almost-tilting module
defined in [10].

Obviously, every tilting module of projective dimension 6 n is almost n-tilting.

The converse doesn’t hold in general. We also note that, if P is a ∗n-module and P is
projective, then it’s almost n-tilting. Therefore, every selfsmall projective R-module

(hence always countably generated by the structure theorem for projective modules
due to Kaplansky [6] with A = EndR P such that PA has finite flat dimension is

almost n-tilting for some integer n by [13]. Note also that, for many rings, including
semiperfect or VN regular ones, selfsmall projective modules are finitely generated.
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It is still an open question whether almost n-tilting modules, or selfsmall projec-

tive modules whose flat dimension is finite over its endomorphism ring, are finitely
generated.

The following gives an example of almost n-tilting modules which are neither
projective nor tilting.

Example 2.5. Let R be the algebra defined by the quiver 1 → 2 → 3 → 4. Let
P = 3

2 ⊕ 4
3
2
. Then pdR P = 1 and P is (2,1)-quasi-projective. Gen(P ) =

{
4
3
2
, 4
3,

3
2, 3, 4

}

while Pres(P ) =
{

4
3
2
, 3
2, 4

}
= Pres3(P ) ⊆ KerEi>1

P . Thus, P is an almost 2-tilting
module. Since P is also semi-Σ-quasi-projective, P is a 2-quasi-progenerator which
is not projective.

For an almost n-tilting module, we have the following.

Theorem 2.6. Let P be an almost n-tilting R-module with A = EndR P such

that PA has flat dimension 6 t. Then gd A 6 gdR + t.

���������
. Clearly we may assume that d = pdR P < ∞. By Theorem 2.3 it’s

sufficient to show that D = max
{(

sup
M∈AP

P - res.dim(M) − d
)
, 0

}
= 0, where AP is

defined as in Theorem 2.3.

Take any M ∈ AP . By Lemma 2.1 we have an exact sequence

. . . →fd+1 Pd+1 →fd . . . →f1 P1 → M → 0

such that Mi = =fi ∈ Presn(P ) for 1 6 i 6 d + 1, where Pi ∈ AddR P . Since P is
almost n-tilting, we have Presn(P ) ⊆ KerEi>1

P by Definition 2.4. Hence, we obtain

that Ext1R(Md, Md+1) ∼= Extd+1
R (M, Md+1) = 0 by dimension shifting. Therefore, the

exact sequence 0 → Md+1 → Pd+1 → Md → 0 splits. It follows that Md ∈ AddR P .

By Lemma 2.2 we have P - res.dim(M) 6 d. ThusD = max
{(

sup
M∈AP

P - res.dim(M)−

d
)
, 0

}
= 0. �

Corollary 2.7 [10]. Let P be an almost tilting module. Then gdA 6 gd R + 1.
���������

. Since P is ∗-module, we know that PA is of flat dimension not more

than 1, by [10]. Now apply Theorem 2.5. �

As mentioned before, every finitely generated projective module whose flat dimen-

sion is finite over its endomorphism ring is almost n-tilting for some n, so we have
the following corollary.

778



Corollary 2.8. Assume P is selfsmall and projective with A = EndR P such

that PA has flat dimension 6 t, then gdA 6 gd R + t. In particular, if P is a

projective 2-quasi-progenerator, then gd A 6 gdR.

Since endomorphism rings of finitely generated projective modules over VN regular

rings are likewise VN regular, we have also the following corollary as a special case
of the above result.

Corollary 2.9. Let R be a VN regular ring and P be a finitely generated

projective R-module with A = EndR P . Then gd A 6 gdR.

The following is another corollary of 2.8.

Corollary 2.10. Let R be a commutative ring and P be a finitely generated

projective R-module with A = EndR P . Then gd A 6 gdR.

���������
. If R is commutative and P is finitely generated projective, then P is a

self-generator by [15, Theorem 3.1]. Thus P is a quasi-progenerator. Now the result

follows from Corollary 2.8 or [10]. �
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