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Abstract. Let A be a uniformly closed and locally m-convex Φ-algebra. We obtain
internal conditions on A stated in terms of its closed ideals for A to be isomorphic and
homeomorphic to Ck(X), the Φ-algebra of all the real continuous functions on a normal
topological space X endowed with the compact convergence topology.
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0. Introduction

ForX a Hausdorff completely regular space, C(X) denotes the set of all real-valued
continuous functions on X . We consider on C(X) the usual pointwise operations and
order. The problem of characterizing the space C(X) depends on which structures
of this space we are interested in. For instance, Gelfand [4] characterizes C(X) as a
Banach algebra for X a compact space; Henriksen-Johnson [8] as a Φ-algebra for X

a Lindelöf space (an improvement of this characterization was given by Plank [14]);
and Anderson [1] as an l-group and l-ring for the general case (see the comments

made by Hager [6] and Henriksen [7]).
In this paper we view C(X) as both a Φ-algebra (with the point-wise order re-

lationship) and a topological algebra (with the topology of compact convergence).
We posed ourselves the following problem: Given a topological Φ-algebra A, when is

A isomorphic and homeomorphic to C(X) for some topological space X? We have
already obtained some partial answers to this question. Namely, in [15] we solve it

for X a hemicompact k-space, and in [11] for X a realcompact kr-space. Apart from
these studies, the only other different algebraic-topological characterization of C(X)
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that we know of is that of Gelfand. One finds that the algebras that these studies

work with are complete and are endowed with the “order topology”. In this article,
we will characterize the topological Φ-algebras that are isomorphic and homeomor-
phic to some C(X) for X normal. It is clear that such an algebra might not be

complete (C(X) is complete if and only if X is a kr-space [20]), and that its topol-
ogy is not necessarily the order topology (the topology of C(X) coincides with its
order topology if and only if X is realcompact [3]).
The article is organized into four sections. The first sets out the terminology

and basic notions on topological algebras that we will need. In particular, given a
topological algebra A, here one defines its topological spectrum XA and considers

the spectral representation A → C(XA). Our aim is to find internal conditions on A

that allow us to identify A with C(XA), i.e., we look for conditions on A such that

the morphism A → C(XA) is injective, continuous, etc. These will be stated in
terms that involve the closed sets of XA. The less the explanation of a condition

on A refers to XA or to the morphism A → C(XA), the more internal it is. With this
in mind, in Section 2 we analyse the relationship between the closed sets of XA and

the closed ideals of A. Thus, we will be able to express properties of the topological
spectrum of A or of its spectral representation in terms of the closed ideals of A.

For instance, we express in this way the condition that A separates any two disjoint
closed subsets of XA, or the continuity of the morphism A → C(XA).
In the first two sections, we only consider the topological algebra structure, without

concerning ourselves about a possible order structure. Section 3 gives the definition

of a uniformly closed Φ-algebra and sets out its properties that will be used later.
In Section 4 we prove our main result (Theorem 4.3), which characterizes C(X), for
X a normal space, as a uniformly closed and locally m-convex Φ-algebra. All the
hypotheses of this theorem are expressed in terms of closed ideals, and an essential

part of its proof is that the spectral representation of a locally m-convex algebra is an
injective morphism of lattices when this algebra is also a uniformly closed Φ-algebra.

1. Locally m-convex algebras

1.1. We will take as known the basic notions of topological vector space theory:
convex, balanced, absolutely convex, absorbent, bounded, seminorm, weak topology,

and so forth (see [18] for example). We never require a locally convex space to be
Hausdorff, and will only consider vector spaces over the field

�
of the real numbers.

In the following, every ring will be assumed to be commutative and to possess an
identity, and every morphism of rings will carry the identity into the identity. We

shall denote by
�
-algebra (henceforth simply algebra) every ring A endowed with a

morphism of rings
� → A (the structural morphism of the algebra) which must be
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injective and allow
�
to be identified with a subring of A; in particular 1 will denote

indistinctly the identity of
�
and the identity of A. Given algebras A and B, a map

A → B is a morphism of algebras if it is a morphism of rings that leaves
�
invariant.

A topological algebra is an algebra A endowed with a (not necessarily Hausdorff)

topology for which A is a topological vector space, the product of A is continuous,
and the map a → a−1 (defined over the invertible elements) is continuous. An

important class of topological algebras are the locally m-convex algebras, i.e., those
in which there exists a basis of neighbourhoods of 0 formed by absolutely m-convex

sets (a subset U of an algebra is m-convex if it is convex and UU ⊆ U). Every locally
m-convex algebra is a locally convex space. If q is a seminorm on an algebra A and

U = {a ∈ A : q(a) 6 1} is its closed unit ball, it is easy to see that UU ⊆ U if and
only if q is an m-seminorm (q is an m-seminorm if q(ab) 6 q(a)q(b) for all a, b ∈ A);

thus a topological algebra is a locally m-convex algebra when its topology may be
defined by a family of m-seminorms.

1.2. Let A be a topological algebra. We shall call the set of morphisms of algebras
of A in

�
that are continuous the topological spectrum of A, and shall denote it by

Spect A. Each element a ∈ A defines on Spect A the function a : Spect A → �
,

x 7→ a(x) := x(a). The initial topology that these functions define on Spect A is
known as the Gelfand topology. Except when otherwise specified, we shall assume

that Spect A is endowed with this topology. Thus, it is clear that Spect A is a
completely regular Hausdorff topological space (it may be that Spect A = ∅).
Let us assume that Spect A 6= ∅ and let C(Spect A) be the algebra of all the real-

valued continuous functions on Spect A. There is a natural morphism of algebras
T : A → C(Spect A), known as the spectral representation of A. A is said to be

semisimple when its spectral representation is injective.

A maximal idealM of A is real if the residue class field A/M is
�
. If x : A → �

is

a morphism of algebras, then its kernel Kerx is a real maximal ideal of A, and x is
continuous if and only if Kerx is closed. Hence there is a one-to-one correspondence

between the points of Spect A and the set of all the closed real maximal ideals of A.
The radical of A, denoted by radA, is defined as the intersection of all its closed real

maximal ideals. Clearly the kernel of the spectral representation is radA, so that
A is semisimple if and only if radA = 0.

1.3. Let us now consider the topological algebra that interests us most. Let
X be a Hausdorff topological space. For each compact subset K of X , we have
the m-seminorm qK on C(X) defined by the equality qK(f) = max{|f(x)| : x ∈ K}
(f ∈ C(X)). The topology that the family {qK : K compact subset of X} defines
in C(X) is known as the topology of uniform convergence on compact sets (in brief,
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compact convergence topology). We shall denote this topology by τk, and the locally

m-convex algebra (C(X), τk) we shall denote by Ck(X).

1.4. An algebra A is said to be strictly real if 1 + a2 is invertible for all a ∈ A.
The usual algebras of functions (continuous, continuous and bounded, differentiable)
are strictly real. The following lemma is proved in [13] for complex algebras; a proof

of the real case may be found in [17, Chapter II, Example 1.6 and Theorem 3.10].

Lemma 1.5. Let A be a locally m-convex, Hausdorff and strictly real algebra.

Every non-dense ideal of A is contained in some closed real maximal ideal. Hence,

every closed maximal ideal of A is real.

2. Closed ideals in a topological algebra

Throughout this paper, X will be a completely regular and Hausdorff topological

space.

2.1. Let A be a topological algebra. For every subset S of A we have the closed
set (S)0 := {x ∈ Spect A : a(x) = 0 for every a ∈ S} of Spect A, and for every

subset Y of Spect A we have in A the closed ideal IY := {a ∈ A : a(Y ) = 0}. Writing
I = {closed ideals of A} and C = {closed sets of Spect A}, then, given I ∈ I

and F ∈ C , we shall say that (I)0 is the zero set of the ideal I and that IF is the
associated ideal corresponding to the closed set F . We have the maps

I
h−→ C , C

k−→ I ,

I 7−→ (I)0, F 7−→ IF ,

where (A)0 = ∅ and I∅ = A. It is easy to see that the following are satisfied:

(i) I ⊆ I(I)0 and F ⊆ (IF )0 for any I ∈ I and F ∈ C ;

(ii) if J1, J2 ∈ I such that J1 ⊆ J2, then (J2)0 ⊆ (J1)0; consequently, it follows
from (i) that IF = I(IF )0 for every closed set F of Spect A;

(iii) if F1, F2 ∈ C such that F1 ⊆ F2, then IF2 ⊆ IF1 ; consequently, it follows from (i)

that (J)0 = (I(J)0 )0 for every closed ideal J of A.

2.2. Let A be an algebra and Specm A = {maximal ideals of A} be the maximal
spectrum of A. If for every ideal I of A we write [I ]0 := {maximal ideals of A that
contain I}, then the sets of the family {[I ]0 : I ideal of A} are the closed sets of a
topology on Specm A, known as the Zariski topology. Under this topology Specm A
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is a compact topological space (not necessarily Hausdorff). One basis of closed sets

for this topology is the collection {[a]0 : a ∈ A}, where [a]0 := [(a)]0 and (a) is the
ideal of A generated by a.
If A is also a topological algebra, then on Spect A we can also consider the Zariski

topology (that induced by the topology of Specm A). It is clear that if I is an ideal
of A then (I)0 = [I ]0 ∩ Spect A; furthermore, if I is the closure of I in A, then I is

a closed ideal of A such that (I)0 = (I)0. In sum, the closed sets of Spect A for its
Zariski topology are the zero sets of the closed ideals of A, and a basis of closed sets

for the said topology is the collection {(a)0 : a ∈ A}.
Definition 2.3. We shall say that a topological algebra A is regular if its ele-

ments separate points and closed sets of Spect A in the following sense: if x ∈ Spect A

and F is a non-empty closed set of Spect A such that x /∈ F , then there exists a ∈ A

satisfying a(F ) = 0 and a(x) = 1.
It follows from the definition that A is regular if and only if {(a)0 : a ∈ A} is a

basis of closed sets in Spect A; i.e., A regular is equivalent to the coincidence of the

Gelfand and the Zariski topologies in Spect A.

Lemma 2.4. A topological algebra A is regular if and only if it satisfies one of

the following three equivalent statements:

(i) k is injective;

(ii) h is epijective;

(iii) hk is the identity map of C .
���������

. On the one hand, the condition (iii) means that A separates points

of closed sets of Spect A: given a closed set F of Spect A, as F ⊆ (IF )0 always
holds, one will have F = (IF )0 if and only if for each x ∈ Spect A, x /∈ F , there

exists a ∈ IF such that a(x) = 1. On the other, it is clear that condition (ii) means
that the Gelfand and the Zariski topologies coincide in Spect A. Therefore, (ii) and

(iii) are equivalent.
(i) ⇒ (iii) Given F ∈ C one has IF = I(IF )0 , so that if k is injective then it must

be that F = (IF )0. Therefore hk is the identity.
(iii) ⇒ (i) This is immediate. �

Definition 2.5. We shall say that a topological algebra A has the property I1
if every closed ideal of A is an intersection of closed real maximal ideals.

Note 2.6. Let A be a topological algebra. If A is semisimple (which implies, by
definition, that Spect A 6= ∅), then its topology is Hausdorff. If A is Hausdorff and
has the property I1, then the ideal 0 must be an intersection of closed real maximal

ideals. Therefore Spect A 6= ∅ and A is semisimple.
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Lemma 2.7. A topological algebra A has the property I1 if and only if it satisfies

one of the following three equivalent statements:

(i) k is epijective;

(ii) h is injective;

(iii) kh is the identity map of I .

���������
. Clearly (i) is just the definition that A should have the property I1.

(i) ⇒ (iii) Given J ∈ I , by hypothesis, there exists C ∈ C such that J = IC , so
that I(J)0 = I(IC )0 = IC = J . Therefore kh is the identity.

(iii) ⇒ (ii) Trivial.
(ii) ⇒ (i) Given J ∈ I , one has (J)0 = (I(J)0)0, so that if h is injective it must

be that J = I(J)0 , i.e., J is an intersection of closed real maximal ideals. �

Corollary 2.8. A topological algebra is regular and has the property I1, if and
only if the maps h and k establish a bijection between the set of closed ideals of A

and the set of closed subsets of Spect A.

Example 2.9. Each x ∈ X defines the continuous morphism of algebras δx :
Ck(X) → �

, δx(f) := f(x), and so we have the natural map i : X → Spect Ck(X),
i(x) := δx. On the one hand, i : X → i(X) is a homeomorphism because X is

completely regular. On the other, if for each closed set C in X we denote IC = {f ∈
C(X) : f(C) = 0}, then the closed ideals in Ck(X) are in one-to-one correspondence
(via C 7→ IC) with the closed subsets of X (see [12]), and consequently the closed

maximal ideals in Ck(X) are in one-to-one correspondence with the points of X .
Therefore, X = Spect Ck(X), the spectral representation of Ck(X) is an algebraic
isomorphism (in particular Ck(X) is semisimple), and Ck(X) is regular and has the
property I1.

We are interested in the characterization of Ck(X) with X normal, so that we
shall now show how one can express that X is normal in terms of the closed ideals

of Ck(X).

Definitions 2.10. We shall say that a topological algebra A has the property I3
if there do not exist two closed ideals in A whose sum is dense and proper. We shall
say that A is normal if its elements separate disjoint closed sets of Spect A in the

following sense: if F , G are disjoint non-empty closed sets of Spect A, then there
exists a ∈ A such that a(F ) = 0 and a(G) = 1.
Clearly, if A is normal then it is regular. According to Urysohn’s Lemma, X is

normal if and only if Ck(X) is normal.
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Lemma 2.11. Ck(X) is normal if and only if it has the property I3.
���������

. Assume that Ck(X) is normal. Let I , J be closed ideals of Ck(X) such
that I + J is dense. Let us show that then I + J = Ck(X). We have that I + J is
not contained in any closed real maximal ideal, i.e., (I)0 ∩ (J)0 = (I +J)0 = ∅. If F ,
G are closed sets of X such that I = IF and J = IG, then F ∩G = (I)0 ∩ (J)0 = ∅
and there therefore exists f ∈ C(X) such that f(F ) = 0 and f(G) = 1; if one defines
g = 1− f , then f ∈ I , g ∈ J and f + g = 1, so that I + J = Ck(X).
Let us now assume that Ck(X) has the property I3 and let F , G be disjoint closed

sets of X . One has (IF + IG)0 = (IF )0 ∩ (IG)0 = F ∩ G = ∅, i.e., IF + IG is not

contained in any closed real maximal ideal. Since Ck(X) has the property I1, every
non-dense ideal of Ck(X) is contained in some closed real maximal ideal, so that it
follows that IF + IG is dense; therefore IF + IG = Ck(X). If f ∈ IF , g ∈ IG such
that f + g = 1, then f(F ) = 0 and f(G) = 1. �

For a topological algebra A, the above equivalence is, in general, not true. The
reason for presenting the proof of the above lemma in detail is to give meaning to
the following definition, and to make the proof of the subsequent lemma immediate.

Definition 2.12. We shall say that a topological algebra A has the property I2
if each non-dense ideal is contained in some closed real maximal ideal.

It is obvious that if A has the property I1 then A has the property I2, and that

if A has the property I2 then every closed maximal ideal of A is real. According
to Lemma 1.5, every Hausdorff locally m-convex and strictly real algebra (and in

particular Ck(X)) has the property I2.

Lemma 2.13. Let A be a topological algebra.

(i) If A is normal and has the property I1, then A has the property I3.

(ii) If A is regular and has the properties I2 and I3, then A is normal.

Consequently, if A is regular and has the property I1, then A is normal if and only

if it has the property I3.

2.14. The question then arises as to how, given a topological algebra A, one can
express in terms of its ideals the following property (which, when A = Ck(X), is
well known): An element a 6= 0 of A is invertible if and only if a(x) 6= 0 for all
x ∈ Spect A. Since the statement “a(x) 6= 0 for all x ∈ Spect A” means “a belongs

to no closed real maximal ideal of A”, the proof of the following lemma is immediate
(cf. [13, Chapter I]):
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Lemma 2.15. If A is a topological algebra with the property I2, then the

following are equivalent:

(i) an element a 6= 0 of A is invertible if and only if a(x) 6= 0 for all x ∈ Spect A;

(ii) there exist no principal ideals in A that are proper and dense.

2.16. Let us now consider the spectral representation A → C(Spect A) of a
topological algebra A, and investigate when it is continuous by assuming that

C(Spect A) is endowed with the compact convergence topology. For each compact
subset K of Spect A consider the set SK = {a ∈ A : 0 /∈ a(K)}. It is easy to see
that the functions of C(Spect A) that do not vanish at any point of a given compact
set form an open set of Ck(Spect A); therefore, if the spectral representation of A is
continuous, then Sk is an open set of A for every compact subset K of Spect A. One
has that:

Proposition 2.17. For a topological algebra A whose topology is locally convex,

the following are equivalent:

(i) the spectral representation of A is continuous;
(ii) SK is open for every compact subset K of Spect A.
���������

. According to the argument of 2.16, one only has to prove that (ii) ⇒ (i).
Hence let us assume that (ii) is satisfied. Given a compact subset K of Spect A and

given ε > 0, we have to prove that U = {a ∈ A : |a(x)| < ε for all x ∈ K} is a
neighbourhood of 0. Since SK is an open neighbourhood of ε ∈ A, we have that

V = SK − ε is a neighbourhood of 0; then W = V ∩ (−V ) is another neighbourhood
of 0 such that ±ε /∈ a(K) for all a ∈ W . If W ′ is a convex neighbourhood of 0 such
that W ′ ⊆ W , then W ′ ⊆ U , since every x ∈ K is a continuous map of A in

�

that maps the connected set W ′ in an interval of
�
that contains 0 and does not

contain ±ε. �

As our intention is to state an analogous result to 2.17 without making any ref-
erence to the compact subsets of the topological spectrum, we need to characterize

the said compact subsets in some way.

2.18. We have to make some remarks with respect to the quotient of a topological
algebra by an ideal. If A is a topological algebra and I is an ideal of A, we shall endow
the quotient A/I with the finest topology for which A/I is a topological algebra and

the quotient morphism π : A → A/I is continuous. If A is a locally m-convex
algebra, this topology coincides with the quotient topology (see [17, I.2.5]). In that

case, from the known correspondence between the ideals of A that contain I and the
ideals of A/I , and from the properties of the quotient topology of A/I , it follows that
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there exists a bijection between the closed ideals of A that contain I and the closed

ideals of A/I . If A is not locally m-convex this bijection may not exist. Nonetheless,
it is easy to see that, in any case, there exists a bijection between the closed real
maximal ideals of A that contain I and the closed real maximal ideals of A/I .

The properties set out in the following lemma follow straightforwardly from the

definitions.

Lemma 2.19. Let I be an ideal of a topological algebra A.

(i) Spect(A/I) = (I)0 (topological equality).
(ii) If A is regular then A/I is regular. Consequently, if A is regular and F is

a closed set of Spect A, then Spect(A/IF ) = F and IF is the greatest of the

ideals I of A such that (I)0 = F , i.e., A/IF is semisimple.

In the following result one characterizes the compact subsets of X in terms of their

associated closed ideals of Ck(X).

Lemma 2.20. For each closed set F of X , the following are equivalent:

(i) F is compact;

(ii) every maximal ideal that contains IF is closed (and therefore real).

���������
. (i) ⇒ (ii) Let F be a compact subset in X . A known generalization of

Tietze’s Extension Theorem states that C(X)/IF = C(F ), the quotient morphism
C(X) → C(X)/IF being just the restriction morphism C(X) → C(F ). Moreover, it
is easy to see that the said equality is also topological, i.e., Ck(X)/IF = Ck(F ). The
implication then follows since in Ck(F ) every maximal ideal is closed (see [5, 40.4]).

(ii) ⇒ (i) Since Ck(X) is regular we have that Ck(X)/IF is regular and therefore

the topology of F = Spect(Ck(X)/IF ) coincides with the Zariski topology induced
by Specm(Ck(X)/IF ). Since in Ck(X) the concepts “closed maximal ideal” and
“closed real maximal ideal” are equivalent, one deduces from the hypothesis that
Spect(Ck(X)/IF ) = Specm(Ck(X)/IF ). Therefore F is compact (see 2.2). �

2.21. The question that now arises is whether the above equivalence is true for
arbitrary topological algebras, i.e., whether for a closed set F of the topological spec-

trum of a topological algebra A the conditions “F is compact“ and “every maximal
ideal of A that contains IF is real and closed” are equivalent. It is easy to see by

analysing the proof of the last lemma that if A is regular then (ii) ⇒ (i) is true.
Nevertheless, we will need to add some other hypothesis if we want (i) ⇒ (ii).

Definition 2.22. An algebra A is said to be a Gelfand algebra if every prime
ideal of A is contained in a unique maximal ideal.
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It is known that C(X) is a Gelfand algebra (see [5, Theorem 2.11]). It is also
immediate to check that every quotient of a Gelfand algebra is a Gelfand algebra,
and that if A is a Gelfand algebra then Specm A, endowed with its Zariski topology,
is Hausdorff. Furthermore, if A is a reduced algebra (i.e., if the intersection of all

maximal ideals of A is null), then A is a Gelfand algebra if and only if Specm A is
Hausdorff (see [2, § 6.1]). The intersection of all maximal ideals of an algebra A is

known as the Jacobson radical of A; we shall denote it by radJ A.

Theorem 2.23. Let A be a regular topological and Gelfand algebra. For each

closed set F of Spect A, the following are equivalent:

(i) F is compact;

(ii) every maximal ideal that contains IF is real and closed.
���������

. To prove this theorem, we shall use the following easily checked fact: if

B is an algebra and Z is a non-empty subset of Specm B, then Z is dense in Specm B

if and only if radJ B =
⋂

x∈Zx.

(i) ⇒ (ii) Let us first see that Spect(A/IF ) is a dense subset of Specm(A/IF ). By
the remark at the beginning of the proof, the above statement will be true if it is

proved that radJ (A/IF ) = rad(A/IF ). It is obvious that radJ (A/IF ) ⊆ rad(A/IF ),
and the equality is the case because A/IF is semisimple and therefore rad(A/IF ) = 0.
Now, on the one hand, Specm(A/IF ) is Hausdorff because A/IF is a Gelfand algebra,
and on the other, the topology of F = Spect(A/IF ) coincides with that induced by
Specm(A/IF ) because A/IF is regular. Hence it follows that if F is compact, then
Spect(A/IF ) = Specm(A/IF ).

(ii) ⇒ (i) As in Lemma 2.20. �

Definition 2.24. We shall say that an ideal I of a topological algebra A is a

C-ideal, if I is closed and every maximal ideal of A that contains I is real and closed.
Every closed real maximal ideal of A is trivially a C-ideal.

2.25. Let A be a regular topological and Gelfand algebra.
If every closed ideal of A is the intersection of closed real maximal ideals (prop-

erty I1), then there is a one-to-one correspondence between the closed ideals of A and
the closed sets of Spect A. As a consequence, Theorem 2.23 establishes a bijection

between the C-ideals of A and the compact subsets of Spect A.
In general, there will be more closed ideals than those of the form IF with F

a closed set of Spect A, and there may therefore exist C-ideals that are not in the
family {IF : F compact subset of Spect A}. Whatever the case, if I is a C-ideal and
F = (I)0, then one has the inclusion I ⊆ IF and hence IF is also a C-ideal. Hence,
if I is a C-ideal, then (I)0 is compact.

912



We are now ready to give a version of 2.17 in terms of closed ideals. For each

ideal I of A, πI : A → A/I will be the quotient morphism and (A/I)−1 will denote
the set of the invertible elements of A/I .

Theorem 2.26. Let A be a topological regular and Gelfand algebra, whose

topology is locally convex. The spectral representation of A is continuous if and only

if π−1
I ((A/I)−1) is an open set of A for every C-ideal I of A.
���������

. If I is a C-ideal of A and K = (I)0, then one has that π−1
I ((A/I)−1)

= {a ∈ A : 0 /∈ a(K)} = SK . Indeed, given a ∈ A, πI(a) is invertible in A/I if

and only if πI (a) is not in any maximal ideal of A/I , if and only if a is not in any
maximal ideal of A that contains I , if and only if a is not in any closed real maximal

ideal of A that contains I , if and only if a ∈ SK .

After what was seen in the previous paragraph, the theorem results by apply-

ing 2.17 with no more than taking into account that, if I is a C-ideal of A, then
(I)0 is compact (see 2.25), and that if F is a compact subset of Spect A then IF is a

C-ideal (see 2.23). �

Definition 2.27. A topological algebra A in which the set A−1 of its invertible

elements is open is called a Q-algebra.

Let A be a locally m-convex algebra and I an ideal of A. In this case the topology

of A/I is the quotient topology, and therefore πI((A/I)−1) is an open set of A if and
only if A/I is a Q-algebra. As a consequence we have the following particular case

of the above theorem:

Theorem 2.28. Let A be a locally m-convex, regular and Gelfand algebra. The

spectral representation of A is continuous if and only if A/I is a Q-algebra for every

C-ideal I of A.

3. Uniformly closed Φ-algebras

3.1. A vector lattice is a real vector space E endowed with an order relation-
ship “6” with which it is a lattice (every non-empty finite subset has a supremum
and an infimum) and is compatible with the vector structure (if a, b ∈ E such that
a 6 b, then a + c 6 b + c for every c ∈ E, and λa 6 λb for every λ ∈ �

, λ > 0).
For C(X) we shall always consider its usual order with which it is a vector lattice:
this is the point-wise defined natural order.

Let E be a vector lattice. The set E+ = {a ∈ E : a > 0} is called the positive
cone of E. As is usual, the supremum and infimum of a finite subset {a1, . . . , an}

913



of E will be denoted by a1∨ . . .∨an and a1∧ . . .∧an, respectively. Given an element

a ∈ E, its positive part, its negative part, and its absolute value are elements of E

which are denoted by a+, a− and |a|, respectively, and are defined by the equalities
a+ = a ∨ 0, a− = (−a) ∨ 0, |a| = a+ ∨ a−. A subset C of E is said to be solid if

a ∈ C implies {b ∈ E : |b| 6 |a|} ⊆ C. A map T : E → F , where E and F are vector
lattices, is a morphism of vector lattices if it is linear and is a morphism of lattices,

i.e., if it is a linear map such that T (a∨ b) = T (a)∨T (b) and T (a∧ b) = T (a)∧ T (b)
for all a, b ∈ E. If T : E → F is a linear map, then it is clear that T is a morphism

of vector lattices if and only if T (|a|) = |T (a)| for all a ∈ E.

3.2. An l-algebra is an algebra A endowed with an order relationship “6” with
which it is a lattice and is compatible with the algebraic structure (if a, b ∈ A such

that a 6 b, then a + c 6 b + c for all c ∈ A, λa 6 λb for all λ ∈ � , λ > 0, and ac 6 bc

for all c ∈ A+). If A is an l-algebra, in particular it is a vector lattice, so that the

notions given in 3.1 for vector lattices are valid in A. Let A and B be l-algebras.
A map A → B is said to be a morphism of l-algebras if it is a morphism of algebras

and a morphism of lattices. An ideal I of A is said to be an l-ideal if I is a solid set.
A maximal l-ideal is a proper l-ideal that is not contained strictly in another proper

l-ideal. With its usual order, C(X) is an l-algebra, and each closed ideal of Ck(X)
is an l-ideal, since for each closed set F of X the ideal IF is solid.

3.3. An l-algebra A is called Archimedean if, for a, b ∈ A, na 6 b for all n ∈ 	
implies a 6 0. An l-algebra A is called an f -algebra if, for a, b, c ∈ A, a ∧ b = 0 and
c > 0 imply ca ∧ b = 0. A Φ-algebra is an Archimedean f -algebra. It is clear that

C(X) is a Φ-algebra.

3.4. Let A be an f -algebra. It is known that, for any a ∈ A, one has a2 = |a|2 > 0;
in particular 1 > 0 (in A), and therefore the order that A induces in

�
is the usual

order of
�
. According to the above, given α, β ∈ � , one will have α 6 β in

�
if and

only if α 6 β in A, so that we will make no distinction. A sequence (an)n in A is
said to be Cauchy uniform if for every real ε > 0 there exists a positive integer ν

such that |an − am| 6 ε for n, m > ν. A sequence (an)n in A is said to be uniformly
convergent to a ∈ A if for each real ε > 0 there exists a positive integer ν such that

|an − a| 6 ε for n > ν. It is easy to see that if (an)n is uniformly convergent to
both a and b in A and A is Archimedean, then a = b. A subset S in A is said to be

uniformly closed if each Cauchy uniform sequence in S is uniformly convergent in S.
A subset S in A is said to be uniformly dense if for each element a ∈ A there is a

sequence in S that converges uniformly to a. It is easy to see that C(X) is uniformly
closed.
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We shall say that an element a ∈ A is bounded, if there exists a non-negative

integer n such that |a| < n. We shall denote the set of all the bounded elements of A
by A∗. It is clear that A∗, with the order induced by the order of A, is an f -algebra,
and that the inclusion A∗ → A is a morphism of l-algebras. Furthermore, it is easy

to check that if A is a uniformly closed Φ-algebra, then A∗ is also a uniformly closed
Φ-algebra. C(X)∗ are the functions of C(X) that are bounded in the usual sense.
The l-algebra C(X)∗ is denoted by C∗(X).

Lemma 3.5. Let A be a uniformly closed Φ-algebra.
(i) If a ∈ A, a > 1, then a is an invertible element. As a consequence, A is a strictly

real algebra.

(ii) A has square roots: given a ∈ A+ there exists a unique b ∈ A+ such that b2 = a.

(iii) Every maximal ideal of A is an l-ideal.

(iv) The Jacobson radical of A is null, radJ A = 0.
(v) A is a Gelfand algebra.
���������

. See [8] or [9] for (i) and (ii), and [14, Theorem 3.7] for (iii). According
to (iii) the maximal l-ideals of A are just the maximal ideals of A, and in [10,

Chapter II, Theorem 2.11] it is proved that the intersection of all maximal l-ideals
of A is zero, and hence (iv) holds. Again, from (iii) one derives that Specm A is

just the set of all the maximal l-ideals of A, and that it is a Hausdorff space (see [8,
p. 79]). It follows that A satisfies (v) because radJ A = 0 (see 2.22). �

Lemma 3.6. Let A and B be uniformly closed Φ-algebras. Every morphism of
algebras T : A → B is a morphism of l-algebras.
���������

. This follows from 3.5 (ii). Let a ∈ A. On the one hand, there exists

b ∈ A such that b2 = |a| and therefore T (|a|) = T (b2) = T (b)2 > 0; on the other
hand we have |T (a)|2 = T (a)2 = T (a2) = T (|a|2) = T (|a|)2. It then follows that
T (|a|) = |T (a)| and the proof is complete. �

Lemma 3.7. Let A be a topological algebra. If A is also a uniformly closed

Φ-algebra, then A is regular.
���������

. If for each a ∈ A we denote by coz(a) the complement of (a)0 in Spect A,

we have to prove that a basis of open sets in Spect A is the collection {coz(a) : a ∈ A}.
By definition of the Gelfand topology, a basis of open sets in Spect A is formed by
the finite intersections of sets of the form {x ∈ Spect A : a(x) ∈ (α, β)} with a ∈ A

and α, β ∈ �
. Given x ∈ Spect A we have

α < a(x) < β ⇐⇒ (a− α)(x) > 0 and (β − a)(x) > 0

⇐⇒ (a− α)+(x) 6= 0 and (β − a)+(x) 6= 0,
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where (a − α)+ and (β − a)+ are taken in C(Spect A). Since, according to 3.6, the
spectral representation A → C(Spect A) is a morphism of l-algebras, we obtain

{x ∈ Spect A : a(x) ∈ (α, β)} = coz((a− α)+) ∩ coz((β − a)+),

where now (a−α)+ and (β−a)+ are taken in A. To conclude the proof, it is enough
to take into account that, given a1, . . . , an ∈ A, one has coz(a1) ∩ . . . ∩ coz(an) =
coz(a1 · . . . · an). �

4. Main result

Our main result in the present work is a characterization of Ck(X) as a locally
m-convex Φ-algebra for X normal. We shall need the following two lemmas:

Lemma 4.1 (Tietze [19]). Let E be a vector subspace of C∗(X) that contains
the constant functions. If E S1-separates disjoint closed sets of X (i.e., for each

pair of non-empty disjoint closed sets F and G of X , there exists h ∈ E such that

0 6 h 6 1, h(F ) = 0 and h(G) = 1), then E is uniformly dense in C∗(X).

Lemma 4.2 (Requejo [16]). Let τ be a locally m-convex Hausdorff topology

on C(X). If X is normal and for each τ -closed ideal I of C(X) there exists a closed
subset F in X such that I = IF , then τ is less fine than the topology of Ck(X).

Theorem 4.3. Let A be a uniformly closed Φ-algebra endowed with a locally
m-convex Hausdorff topology. A is l-isomorphic (isomorphic as an l-algebra) and

homeomorphic with Ck(X) for some normal topological space X , if and only if:

(i) each closed ideal of A is an intersection of closed maximal ideals;

(ii) in A there exist no principal ideals that are proper and dense;

(iii) in A there exist no two closed ideals whose sum is proper and dense;

(iv) for each C-ideal I of A, A/I is a Q-algebra.
���������

. Throughout the article, it has been seen that, when X is normal,

Ck(X) is a uniformly closed Φ-algebra endowed with a locally m-convex Hausdorff
topology, and which satisfies the conditions (i), (ii), (iii) and (iv).

Conversely, let A be a uniformly closed Φ-algebra endowed with a locally m-convex
Hausdorff topology that satisfies the conditions (i), (ii), (iii) and (iv). Let us first
note that each closed maximal ideal of A is real because A is strictly real (see 3.5

and 1.5); therefore, condition (i) states precisely that A has the property I1, and
as a consequence we have that Spect A 6= ∅ and that A is semisimple (see 2.6).

916



Furthermore, as A is regular, condition (iii) implies that A is normal (see 3.7 and

2.13).

Since, according to 3.6, the spectral representation A → C(Spect A) is a morphism
of l-algebras, identifying A with its image we have that A is a uniformly closed l-

subalgebra of C(Spect A) that separates disjoint closed sets of Spect A. Then A∗

S1-separates them, since, if for a ∈ A one has a(F ) = 0 and a(G) = 1 (F and
G closed sets of Spect A), the same is the case for |a| ∧ 1 ∈ A∗. From 4.1 it follows
that A∗ is uniformly dense in C∗(Spect A), and as A∗ is uniformly closed (since A is)

we conclude that A∗ = C∗(Spect A). Now, if f ∈ C(Spect A) then f1 = 1/(f+ + 1)
and f2 = 1/(f− + 1) are functions of A∗ that do not vanish at any point of Spect A

and such that f = 1/f1−1/f2. But, by the hypothesis (ii), 1/f1, 1/f2 ∈ A (see 2.15),
so that f ∈ A and we conclude that A = C(Spect A), i.e., the spectral representation
of A is an isomorphism of l-algebras.

Finally, let us show that the spectral representation of A is a homeomorphism.

On the one hand, it is clear that Spect A is normal, so that from property (i) and 4.2
it follows that the topology of A is less fine than that of Ck(Spect A). On the other,
as A is a Gelfand algebra according to 3.5, from Theorem 2.28 it follows that the
property (iv) is equivalent to its spectral representation being continuous, i.e., the

topology of A is finer than that of Ck(Spect A). �
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