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Abstract. We characterize the reflexivity of the completed projective tensor products
X⊗̃πY of Banach spaces in terms of certain approximative biorthogonal systems.
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Pták [10] proved among other results that a Banach space E is reflexive iff ev-
ery bounded biorthogonal system {(en, fn)}∞n=1 ⊂ E × E∗ has unbounded sequence

of partial sums bi =
i∑

n=1
en. Here a bounded biorthogonal system in (E, E∗) is

a sequence {(en, fn)}∞n=1 ⊂ E × E∗ such that 〈fj , ei〉 = δij and sup
n
‖en‖ < ∞,

sup
n
‖fn‖ < ∞. Other characterizations of reflexivity which stem from Pták’s re-

sults are for example the results of Singer [13], [14] and Pe lczyński [9]. This paper
complements the papers [10], [13], [14], [9], [6], in which reflexivity is characterized
by reflexivity of subspaces or quotients having Schauder basis or having complete
biorthogonal system [10].

Pták constructs in every nonreflexive Banach space a bounded biorthogonal system
{(en, fn)}∞n=1 ⊂ E × E∗ with bounded sequence of partial sums. Here we construct
similar systems in the nonreflexive tensor products X⊗̃πY . For later use we will
construct such systems in a special form. Namely we observe that the partial sums

bi =
i∑

n=1
en may be chosen in the form bi = xi ⊗ yi where the xi are elements of

the unit ball BX of X and similarly yi ∈ BY . However, we were able to make such
a special choice of bi’s only approximately in the sense that the resulting system is
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biorthogonal only up to arbitrary small perturbations. As in [10] the sequences {bi}
and {fj} are constructed first.

The definition below makes this precise and keeps the notation used in [10] except
that the yj ’s and y are called here fj and f .

Definition. Let E be a Banach space, let r ∈ E∗∗ and let σ = {σi} be a sequence
of positive numbers. We will say that the sequences {bi} ⊂ E and {fj} ⊂ E∗ form
a generalized Pták system relative to (σ, r) if there are numbers {σij} with the
properties

1◦ ‖bi‖ 6 1, ‖fj‖ 6 1 for all i, j

2◦ if we put βj = 〈r, fj〉 then the matrix 〈bi, fj〉 has the subdiagonal form

(1)

β1 + σ11 0 0 0 . . .

β1 + σ21 β2 + σ22 0 0 . . .

β1 + σ31 β2 + σ32 β3 + σ33 0 . . .

β1 + σ41 β2 + σ42 β3 + σ43 β4 + σ44 . . .

and all the subdiagonal elements are positive. Thus 〈bi, fj〉 = βj + σij > 0 for
j 6 i and 〈bi, fj〉 = 0 for j > i

3◦ inf βj > 0
4◦ |σij | 6 σi for all i > j.

A Pták system is a generalized Pták system for which σi = σij = 0 for all i > j.

Pták [10] shows the following facts:

1. If {(en, fn)}∞n=1 ⊂ E × E∗ is a bounded biorthogonal system with bounded

partial sums {bi} =
{ i∑

n=1
en

}
then {bi}, {fj} form a Pták system.

2. The Banach space E is not reflexive iff there is a Pták system {bi} ⊂ E,
{fj} ⊂ E∗.

3. If {bi} ⊂ E, {fj} ⊂ E∗ is a Pták system then {ei} = {bi − bi−1} and {f j} =
{β−1

j fj} is a bounded biorthogonal system with bounded partial sums {bi} =
{ i∑

n=1
en

}
.

Note that if {bi} ⊂ E and {fj} ⊂ E∗ form a generalized Pták system then r ∈
E∗∗ \E may be recovered from {bi}, {fj}. Indeed it suffices to put r = w∗ -lim bnα

for some subnet {bnα} of {bn}.

Proposition 1. Suppose that E is a non reflexive Banach space and let B ⊂ BE .
Let r ∈ E∗∗ \E be in the w∗ closure of B ⊂ E∗∗ in E∗∗. Then for every sequence of
positive numbers σ = {σi} there is a generalized Pták system {bi} ⊂ B, {fj} ⊂ E∗

relative to (σ, r) satisfying 1◦–4◦ from the Definition.
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���������
. We follow, with the necessary changes, the proof of the Theorem 1

in [10]. There is f1 ∈ E∗, ‖f1‖ 6 1 such that β1 = 〈r, f1〉 = 2−1‖r‖. Having in
mind that according to the assumptions 〈r, f1〉 is in the closure of {〈b, f1〉 ; b ∈ B}
we see that there exists a vector b1 ∈ B such that 〈b1, f1〉 = β1 + σ11 where |σ11| 6
min{σ1, 2−1β1}. Thus 〈b1, f1〉 > 0.

Suppose we have already defined vectors b1, . . . , bn ∈ B and functionals f1, . . . ,

fn ∈ E∗ with the following properties:

bi ∈ B, ‖fi‖ 6 1 for 1 6 i 6 n

|〈bi, fj〉 − βj | < min{σi, 2−1βj} for 1 6 j 6 i 6 n

〈bi, fj〉 = 0 for 1 6 i < j 6 n

βj = 〈r, fj〉 > 1
2
%j for 1 6 j 6 n

where

%j = sup{〈r, f〉 ; f ∈ E◦
j−1, ‖f‖ 6 1}

and Ep is the linear span of {b1, . . . , bp}, E0 = {0}. Note that %1 = ‖r‖.
We observe that the numbers %j , j = 1, 2, . . . are positive. Indeed, otherwise

f ∈ E◦
j−1 would imply 〈r, f〉 = 0 and thus r ∈ E◦◦

j−1 = Ej−1 ⊂ E which is a
contradiction. The polars are taken here in the duality 〈E∗∗, E∗〉 and we consider
Ej ⊂ E ⊂ E∗∗.

Since the number %n+1 = sup{〈r, f〉 ; f ∈ E◦
n, ‖f‖ 6 1} is positive, there exists

fn+1 ∈ E◦
n, ‖fn+1‖ 6 1 such that

βn+1 = 〈r, fn+1〉 > 1
2
%n+1 > 0.

Having in mind that r ∈ E∗∗ \ E is in the w∗ closure of the subset B we see that
a point bn+1 ∈ B may be found such that |〈bn+1, fj〉 − βj | < min{σn+1, 2−1βj} for
1 6 j 6 n + 1.

The induction is thus complete and we may put σi+1,j = 〈bn+1, fj〉 − βj for j 6
n + 1. Evidently |〈bn+1, fj〉 − βj | < 2−1βj and thus 〈bn+1, fj〉 > 0.

Clearly %1 > %2 > %3 > . . . > 0. To see 3◦ we shall show that inf %j > 0. Suppose
not. Then lim %j = 0. Again we partly follow [10]:

Let ε be an arbitrary positive number. Let n be a natural number such that
%n < ε/2. Let f ∈ BE∗ and let τ = max

16i6n
|〈bi, f〉|. Let

z =
n∑

j=1

1
βj
〈bj − bj−1, f〉fj

925



where b0 = 0. Having in mind that 0 < 1
2%j 6 βj 6 %j we have

(2) ‖z‖ 6 2
%n

· 2τ · n.

If i = 1, . . . , n then

〈bi, z〉 =
i∑

j=1

1
βj
〈bj − bj−1, f〉(βj + σij)

=
i∑

j=1

1
βj
〈bj − bj−1, f〉βj + si = 〈bi, f〉+ si(3)

where si =
i∑

j=1

β−1
j 〈bj − bj−1, f〉σij . Evidently

|si| 6
i∑

j=1

1
βj

2τ |σij | 6 2τσi

n∑

j=1

2
%j

= τhn

where hn depends on n, {σi} and on {%i} but not on f ∈ BE∗ .
Note that the special form of the matrix (1) implies that the vectors {bi} are

linearly independent. Since En and so (its dual) E∗
n are finite dimensional there is a

constant c = c(b1, . . . , bn) independent of f ∈ BE such that if g ∈ E∗
n then

‖g‖E∗
n

= sup{〈b, g〉 ; b ∈ En, ‖b‖ 6 1} 6 c max{|〈bi, g〉| ; i = 1, . . . , n}.

Now we define g ∈ E∗
n by 〈bi, g〉 = si for all i = 1, . . . , n. Then

‖g‖E∗
n

6 c max{|si| ; i = 1, . . . , n}.

Let us choose a Hahn-Banach extension of g to the whole space E and call it g again.
Then

(4) ‖g‖ 6 cτhn.

Using (3) we note that 〈bi, z − f − g〉 = 〈bi, f〉 + si − 〈bi, f〉 − si = 0 so that
z − f − g ∈ E◦

n. Thus by the definition of %n+1, (2), ‖f‖ 6 1 and by (4)

|〈r, z − f − g〉| 6 ‖z − f − g‖ · sup{〈r, y〉 ; y ∈ E◦
n, ‖y‖ 6 1}

= ‖z − f − g‖ · %n+1

6
( 4

%n
τn + 1 + cτhn

)
%n = 4nτ + %n + cτhn%n

6 4nτ +
1
2
ε + cτhn%n.
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Further note that 〈r, z〉 = 〈bn, f〉 and that we may have supposed that ‖r‖ = 1.
Then

〈r, f〉 = 〈r, z〉 − 〈r, z − f〉 = 〈bn, f〉 − 〈r, z − f − g〉+ 〈r, g〉

6 τ +
(
4nτ +

1
2
ε + cτhn%n

)
+ cτhn < ε

if τ = max
16i6n

|〈bi, f〉| is sufficiently small.

The set {y ∈ E∗ ; max
16i6n

|〈bi, y〉| < τ} being a w∗ neighbourhood of zero this

shows that r|BE∗ is w∗ continuous at zero on the dual unit ball BE∗ and thus it
is w∗ continuous. This shows that r is w∗ continuous on the dual unit ball BE∗

and thus it should be w∗ continuous. But this is a contradiction because r does not
belong to E. We have thus shown that inf βj > 0 and the proof of the Proposition
is complete. �

Proposition 1 together with the following observation generalizes the statement 2
before Proposition 1.

Proposition 2. Let E be a Banach space and let {σi} be any sequence of positive
numbers, lim σi = 0 and let r be any element of E∗∗. Suppose further that {bi} ⊂ BE

and {fj} ⊂ E∗ is a generalized Pták system in E relative to (σ, r) satisfying 1◦–4◦

from the Definition. Then E is not reflexive.
���������

. Let b ∈ span{bi}. Then lim〈fj , b〉 = 0. Indeed, given ε > 0 there

are numbers a1, . . . , aq such that
∥∥∥b −

q∑
1

aibi

∥∥∥ < ε. If j > q, we have |〈b, fj〉| =
∣∣∣〈b, fj〉 −

〈 q∑
1

aibi, fj

〉∣∣∣ 6
∣∣∣
〈
b−

q∑
1

aibi, fj

〉∣∣∣ 6 ε.

Suppose now that E is reflexive and let b be the weak accumulation point of the
sequence {bn}. Then b ∈ span{bi} and thus lim〈fj , b〉 = 0. On the other hand
〈bi, fj〉 = βi + σij for i > j. Having in mind that we suppose that |σij | 6 σi −→ 0
we get 〈b, fj〉 > inf βi > 0 for all j—a contradiction.

Proposition 1 will be applied to the nonreflexive π-tensor product E = X⊗̃πY .
We take benefit of the following observation namely that the elements bi may be
chosen of the form bi = xi ⊗ yi which means that we may choose bi in the ⊗ image
of the Cartesian product BX ×BY :

Proposition 3. Let X and Y be reflexive Banach spaces. Suppose that X⊗̃πY

is not reflexive. Then there are weakly null basic sequences {xn} ⊂ BX , {yn} ⊂ BY ,
{x∗n} ⊂ X∗, {y∗n} ⊂ Y ∗ such that
(a) {xn ⊗ yn} has no weak accumulation point in X⊗̃πY

(b) {(xn, x∗n)} is a bounded biorthogonal system
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(c) {(yn, y∗n)} is a bounded biorthogonal system
(d) there is f ∈ L(X, Y ∗) = (X⊗̃πY )∗ such that 〈f, xn ⊗ yn〉 > 1.
���������

. Suppose that any sequence {ai ⊗ bi} in B = {x⊗ y ; x ∈ BX , y ∈ BY }
has a subnet weakly convergent in X⊗̃πY . Then the weak convex closure convB of B

in X⊗̃πY is weakly compact in X⊗̃πY . By the definition of the π-tensor product
we know [2], [5], [8] that convB equals the closed unit ball of X⊗̃πY . We conclude
that X⊗̃πY is reflexive which contradicts our assumption. We have thus shown that
there is a sequence {ai ⊗ bi} ⊂ B with no weak accumulation points in X⊗̃πY .

Passing to a subsequence if necessary we may suppose that ai −→ a ∈ X weakly
and bi −→ a ∈ Y weakly. This follows by the weak sequential compactness of the
closed unit balls of X and Y . It is now a routine to check that neither {ai − a} nor
{bi − b} are norm null sequences. Indeed, suppose for example that ‖ai − a‖ → 0.
Then for any f ∈ (X⊗̃πY )∗ we have

|f(ai, bi)− f(a, b)| 6 |f(ai − a, bi)|+ |f(a, bi − b)| i−→ 0.

This would mean that a⊗ b is a weak accumulation point of {ai ⊗ bi} ⊂ B which is
a contradiction.

The Bessaga-Pe lczyński selection theorem yields a basic subsequence {2−1(ail
−

a)} = {a′l} ⊂ X which we call {a′l}. Evidently the sequence {a′l⊗ bil
}l = {a′l⊗ b′l}l =

{2−1ail
⊗ bil

− 2−1a ⊗ bil
}l still has no weak accumulation point in X⊗̃πY and

{a′l ⊗ b′l} ⊂ B = BX ×BY ⊂ X⊗̃πY .
Let {a′∗l } be the Hahn-Banach extensions to X of the biorthogonal functionals

to the basis {a′l} of L = span{a′l}. Passing to a subsequence if necessary we may
suppose that a′∗l −→ a∗ ∈ X∗ weakly. Again {a′∗l − a∗} is not a norm null sequence.
Indeed, otherwise the restrictions to L would satisfy lim

l
a′∗l |L = a∗|L in norm. But

this is not possible because a′∗l |L −→ 0 = a∗|L weakly in L∗ and the a′l
∗|L’s are norm

bounded from below because a′∗l (a′l) = 1.
Again the Bessaga-Pe lczyński selection theorem yields a subsequence {a′∗lj} such

that {a′∗lj − a∗} = {x′∗j } ⊂ X∗ is a weakly null basic sequence. Let us put x′j = a′lj
and y′j = b′lj . Then {x′j ⊗ y′j} ⊂ {a′l⊗ b′l} has no weak accumulation point in X⊗̃πY .

Since a∗(a′lj ) = 0 we conclude that {x′j} and {x′∗j } are bounded biorthogonal basic
sequences.

Proceeding now in a similar way with the b′j ’s we arrive at a subsequence {xn⊗yn}
of {a′i⊗ b′i} such that the sequences {xn} ⊂ BX , {yn} ⊂ BY , {x∗n} ⊂ X∗, {y∗n} ⊂ Y ∗

satisfy (a), (b) and (c).
Because {xn ⊗ yn} is not weakly convergent to 0 there is an f ∈ L(X, Y ∗) such

that 〈f, xn ⊗ yn〉 does not converge to 0. We complete the proof of the proposition
by passing again to suitable subsequences and a suitable multiple of f . �
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Proposition 4. Let X and Y be reflexive Banach spaces. Suppose that X⊗̃πY

is not reflexive and let σ = {σi} be a sequence of arbitrary positive numbers. Then
there are weakly null basic sequences {xi} ⊂ BX , {yi} ⊂ BY , an element r ∈
(X⊗̃πY )∗∗ \X⊗̃πY and a sequence of functionals {fj} ⊂ (X⊗̃πY )∗ = L(X, Y ∗) such
that {bi} = {xi ⊗ yi} and {fj} form the generalized Pták system relative to (σ, r).
���������

. Let {xn} ⊂ X and {yn} ⊂ Y be sequences satisfying (a), (b), (c)
of Proposition 3. Proposition 1 allows to extract from the sequence {xn ⊗ yn} a
subsequence {bi} = {xni ⊗ yni} and a sequence of elements of {fj} ⊂ (X⊗̃πY )∗ =
L(X, Y ∗) which form a generalized Pták system relative to (σ, r). The extracted
subsequences {xni}, {yni} are again basic sequences. �

Remark 1. Note that {bi} ⊂ X0 ⊗ Y0 ⊂ X⊗̃πY where the subspaces X0 ⊂ X

and Y0 ⊂ Y have the approximation property.

Definition. Let X0 ⊂ X and Y0 ⊂ Y be subspaces. Let us denote by X0⊗̄πY0

the closure of X0 ⊗ Y0 which we consider as a normed subspace of X⊗̃πY .

By L(X, Y ∗)X0 we will denote the space of all restrictions {f |X0 ; f ∈ L(X, Y ∗)}
equipped with the factor norm ‖·‖X0 of the space L(X, Y ∗) given by the quotient map
Re: L(X, Y ∗) −→ L(X, Y ∗)X0 . Here Re is the restriction map to the subspace X0.
Thus L(X, Y ∗)X0 is the factor space L(X, Y ∗)/ Re−1(0).

Lemma. a) Suppose that g ∈ L(X, Y ∗)X0 and that Re f = g, where f ∈
L(X, Y ∗). Then

‖g‖X0 = inf{‖f + h‖ ; Re h = 0, h ∈ L(X, Y ∗)}.

b) (X0⊗̄πY )∗ = L(X, Y ∗)X0 with the equality of norms.

���������
. Indeed, for example the dual of X0⊗̄πY is given by the restrictions

to X0⊗ Y of all the elements of the dual of X⊗̄πY , that is, by the bilinear forms on
X0 × Y which are the restrictions of the continuous bilinear forms on X × Y . These
are evidently exactly the linear operators f : X0 −→ Y ∗ which are continuously
extendable to all of X . �

Proposition 5. Let X , Y be Banach spaces. The following are equivalent:

(1) X⊗̃πY is reflexive

(2) the subspace X0⊗̄πY ⊂ X⊗̃πY is reflexive for every subspace X0 ⊂ X such
that X0 has a Schauder basis

(3) the quotient space L(X, Y ∗)X0 is reflexive for every subspace X0 ⊂ X such
that X0 has a Schauder basis
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(4) the subspace X0⊗̄πY0 ⊂ X⊗̃πY is reflexive for every subspace X0 ⊂ X such
that X0 has a Schauder basis and for every subspace Y0 ⊂ Y such that Y0 has
a Schauder basis

(5) the Banach spaces X and Y are reflexive and the following holds: Let {xi} ⊂
BX and {yi} ⊂ BY be basic sequences, r ∈ (X⊗̃πY )∗∗, {fj} ⊂ (X⊗̃πY )∗ =
L(X, Y ∗) a sequence of functionals and let {σi} be a null sequence of positive
numbers. Then {bi} = {xi⊗yi} and {fj} do not form a generalized Pták system
relative to (σ, r)

(6) the Banach spaces X and Y are reflexive and the following holds: Let {xi} ⊂
BX and {yi} ⊂ BY be basic sequences, r ∈ (X⊗̃πY )∗∗, {fj} ⊂ (X⊗̃πY )∗ =
L(X, Y ∗) a sequence of functionals. Then {bi} = {xi⊗yi} and {fj} do not form
a generalized Pták system relative to (σ, r) for some null sequence of positive
numbers σ = {σi}.

���������
. (1) ⇒ (2) ⇒ (4) because X0⊗̄πY is a closed subspace of the reflexive

space X⊗̃πY and X0⊗̄πY0 is a closed subspace of X0⊗̄πY .
(2) ⇔ (3) because by the Lemma (X0⊗̄πY )∗ = LX0(X, Y ∗).
(4) ⇒ (1): First we note that (4) implies that X and Y are reflexive. Indeed, let us

choose Y0 ⊂ Y to be any subspace of the dimension one. Then we get that X0 ⊂ X

which is supposed to have a Schauder basis is isomorphic to X0⊗̄πY0 ⊂ X⊗̃πY

and thus reflexive. Now X is reflexive by Pe lczyński’s characterization [9] of the
reflexivity of X by means of reflexivity of subspaces with a Schauder basis. Similarly
we conclude that under the assumption (4) the Banach space Y is reflexive.

Suppose now that (1) does not hold. Then the Proposition 3 yields basic sequences
{xn} ⊂ X , {yn} ⊂ Y such that {xn⊗yn} has no weak accumulation point in X⊗̃πY .
Then {xn ⊗ yn} has no weak accumulation point in the subspace X0⊗̄πY0 where
X0 = span{xn} ⊂ X and Y0 = span{yn} ⊂ Y . Thus X0⊗̄πY0 ⊂ X⊗̃πY is not
reflexive.

(1) ⇒ (5): The Banach spaces X and Y , being isomorphic to subspaces of X⊗̃πY ,
are reflexive. The rest follows by Proposition 2.

(5) ⇒ (6) is trivial and
(6) ⇒ (1) is consequence of Proposition 4.

Remark 2. In [6] we observed that the equivalent conditions in the above Propo-
sition hold if

X0⊗̃πY is reflexive for every subspace X0 ⊂ X such that(2′)

X0 has a Schauder basis.

In a subsequent paper we show that the condition (2′) is in fact equivalent to the
conditions expressed in Proposition 5.
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