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Abstract. Let H be an infinite-dimensional almost separable Hilbert space. We show
that every local automorphism of B(H), the algebra of all bounded linear operators on a
Hilbert space H, is an automorphism.
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1. Introduction and statement of the main result

A linear mapping ϕ of an algebraA into itself is called a local automorphism if for
every a ∈ A there exists an automorphism ϕa of A such that ϕ(a) = ϕa(a). This
notion was introduced by Larson and Sourour in [5]. They have proved that every
surjective local automorphism of B(X), the algebra of all bounded linear operators
on an infinite-dimensional Banach space X , is an automorphism [5, Theorem 2.1]
(for finite-dimensional spaces X , the result is somewhat different [5, Theorem 2.2].

In [1] Brešar and Šemrl improved this result in the case when X is a separable Hilbert
space. They proved that every local automorphism ϕ of B(H) (note that here we do
not assume surjectivity of ϕ), where H is an infinite-dimensional separable Hilbert
space, is an automorphism [1, Theorem 2]. The aim of this paper is to give a shorter

and simpler proof of this result and also to extend it to the most important class
of nonseparable Hilbert spaces. Recall that a Hilbert space is separable if it has a

countable orthonormal basis. We shall say that a Hilbert space is almost separable
if it has an orthonormal basis of the power less or equal to continuum.

Theorem 1.1. Let H be an infinite-dimensional almost separable Hilbert space.

Then every local automorphism of B(H) is an automorphism.
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2. Proof of the main result

Throughout, H will be a complex infinite-dimensional Hilbert space and B(H)
the algebra of all bounded linear operators on H . By F (H) we denote the ideal of
all operators in B(H) of finite rank. For every T ∈ B(H) we denote by Im T the
image of T and by KerT the kernel of T . Given nonzero x, y ∈ H , by x⊗y we denote

a rank one operator defined by (x⊗ y)z = 〈z, y〉x, z ∈ H . Note that the spectrum of
the operator x⊗ y is equal to the set {0, 〈x, y〉}. Operators T, S ∈ B(H) are said to
be similar if there exists an invertible operator A ∈ B(H) such that S = ATA−1.

Since every automorphism ofB(H) is inner [2], a local automorphism ϕ ofB(H) can
be equivalently defined as a linear mapping with the property that the operators T

and ϕ(T ) are similar for every T ∈ B(H). Note also that any local automorphism ϕ

of an algebra A preserves idempotents, that is, for any idempotent p ∈ A , ϕ(p) is
again an idempotent.

In order to prove Theorem 1.1, we establish three preliminary results. The first
lemma was already proved in [3, Lemma 3]. As its proof is rather short we have

included it for the sake of completeness. In the proof of the second lemma we shall
basically just follow the arguments from [1]. The core of the paper is the last lemma

which is new.

Lemma 2.1. If X and Y are complex normed linear spaces and A : X → Y

is a bijective linear operator such that A−1 carries closed hyperplanes to closed

hyperplanes, then A is bounded.
���������

. Let g be a nonzero bounded linear functional on Y . By hypothesis
A−1(Ker g) is a closed hyperplane, so we can choose a bounded linear functional f
on X and a vector u ∈ X such that

Ker f = A−1(Ker g) and f(u) = 1.

Then any x ∈ X can be written in the form

x = f(x)u + v

for some v ∈ Ker f . Hence

g(Ax) = g(A(f(x)u)) + g(Av) = f(x)g(Au).

It follows that g ◦A is bounded and thus A is bounded because g is arbitrary. �
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Lemma 2.2. Let H be an infinite-dimensional almost separable Hilbert space

and let ϕ be a local automorphism of B(H). Then the restriction of ϕ to F (H) is
either a homomorphism, or an antihomomorphism.

���������
. Let P, Q ∈ B(H) be orthogonal idempotents, that is, PQ = QP = 0.

Since P + Q is again an idempotent, it follows that ϕ(P + Q)2 = ϕ(P + Q). Hence
ϕ(P )ϕ(Q) + ϕ(Q)ϕ(P ) = 0, which (by a standard argument) gives ϕ(P )ϕ(Q) =
ϕ(Q)ϕ(P ) = 0. So, we have shown that ϕ maps any set of pairwise orthogonal

idempotents into a set of pairwise orthogonal idempotents.

Let S ∈ F (H) be a self-adjoint operator. Then S =
n∑

i=1

λiPi, where the Pi’s are

mutually orthogonal idempotents and the λi’s are real numbers. Hence ϕ(S2) =
ϕ(S)2 (ϕ maps orthogonal idempotents into orthogonal idempotents). Replacing
in this identity S by S + T , where S and T are both self-adjoint, we obtain that
ϕ(ST +TS) = ϕ(S)ϕ(T )+ϕ(T )ϕ(S). Since every operator F ∈ F (H) can be written
in the form F = S + iT with S, T ∈ F (H) self-adjoint, we get ϕ(F 2) = ϕ(F )2.
Thus the restriction of ϕ to F (H) is a Jordan homomorphism. Since F (H) is a
locally matrix algebra, a result of Jacobson and Rickart [4, Theorem 8] tells us that
ϕ|F (H) = ϕ + θ, where ϕ : F (H) → B(H) is a homomorphism and θ : F (H) →
B(H) is an antihomomorphism. Pick an idempotent P ∈ B(H) of rank one. Then
ϕ(P ) is the sum of idempotents ϕ(P ) and θ(P ). Therefore, as ϕ(P ) also has rank
one, it follows that either ϕ(P ) = 0 or θ(P ) = 0. Thus, at least one of ϕ and θ has

a nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms are
ideals, and since the only nonzero ideal of F (H) is F (H) itself, we have ϕ = 0
or θ = 0. Thus, the restriction of ϕ to F (H) is either a homomorphism or an
antihomomorphism. �

Lemma 2.3. Let H be an infinite-dimensional almost separable Hilbert space

and let ϕ be a local automorphism of B(H). If the restriction of ϕ to F (H) is a
homomorphism, then ϕ is an automorphism.

���������
. Fix u ∈ H such that ‖u‖ = 1. As ϕ(u ⊗ u) is an idempotent of rank

one, we have

ϕ(u⊗ u) = v ⊗ w,

where 〈v, w〉 = 1. Define A, B : H → H by

Ax = ϕ(x⊗ u)v, Bx = ϕ(u⊗ x)∗w.
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Clearly, A and B are linear operators. Since ϕ|F (H) is a homomorphism, for all
x, y ∈ H we have

ϕ(x ⊗ y) = ϕ((x ⊗ u)(u⊗ u)(u⊗ y))

= ϕ(x ⊗ u)(v ⊗ w)ϕ(u⊗ y)

= (ϕ(x ⊗ u)v)⊗ (ϕ(u⊗ y)∗w) = (Ax)⊗ (By).

Moreover,

〈x, y〉 = 〈Ax, By〉,

because the spectrum of the operator x⊗ y is equal to the spectrum of the operator

ϕ(x⊗ y) = (Ax) ⊗ (By). This implies that A and B are injective operators.

Let P ∈ B(H) be a nontrivial idempotent and x ∈ KerP . Pick an element y ∈ H

such that 〈x, y〉 = 1 and 〈Pz, y〉 = 0 for every z ∈ H . Since x⊗y and P are orthogonal

idempotents and since ϕ maps orthogonal idempotents into orthogonal idempotents
it follows that ϕ(P ) and (Ax) ⊗ (By) are orthogonal idempotents. In particular,
Ax ∈ Kerϕ(P ). Now, let x ∈ Im P . Then x ∈ Ker(I − P ), which yields (see above)
that Ax ∈ Kerϕ(I − P ) = Ker(I − ϕ(P )). We use Ker(I − ϕ(P )) = Im ϕ(P ) to
conclude that Ax ∈ Im ϕ(P ).
Let x ∈ H . Then x = y + z, where y ∈ KerP and z ∈ Im P . Thus ϕ(P )Ax =

ϕ(P )Ay + ϕ(P )Az = ϕ(P )Az = Az. Therefore, Im A is invariant under every
idempotent ϕ(P ), P ∈ B(H). Moreover, the restriction of ϕ(P ) to Im A considered

as a map from Im A into itself is equal to CPC−1 (here C denotes the bijection
C : H → Im A defined by Cx = Ax, x ∈ H). Using the result of Pearcy and

Topping [6] which states that every operator in B(H) is a sum of idempotents we
conclude that Im A is invariant under every ϕ(T ), T ∈ B(H), and

(1) ϕ(T )| ImA = CTC−1, T ∈ B(H).

We will prove that C and C−1 are bounded operators. Let K ⊆ H be a closed
hyperplane. Then K = KerP for some idempotent P ∈ B(H) and C(K) =
C(KerP ) = Ker(ϕ(P )| Im A) (see above). Thus C(K) is a closed hyperplane in Im A.
Applying Lemma 2.1 we then conclude that C−1 is bounded. Now, suppose that the

operator C is not bounded. Let {yn : n ∈ � } ⊆ H be a set of orthonormal vec-
tors. For every n ∈ � we can find xn ∈ Im A such that C−1xn = yn. Moreover,

we can find orthonormal vectors {zn : n ∈ � } such that ‖Czn‖ > n‖xn‖ for ev-
ery n ∈ � . Pick an operator T ∈ B(H) such that Tyn = zn, n ∈ � . Then
‖CTC−1xn‖ = ‖Czn‖ > n‖xn‖, a contradiction (CTC−1 is a bounded operator
on Im A). So we have proved that C is a bounded operator. Since this is also true
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for the operator C−1 it follows that Im A is isomorphic to H . In particular, Im A is

closed.
Suppose that H is an infinite-dimensional Hilbert space with an orthonormal basis

of the power of the continuum and let {eλ : λ ∈ [0, 1]} be an orthonormal basis in H .

Define a linear operator S : H → H by Seλ = λeλ, λ ∈ [0, 1]. Of course, S ∈ B(H).
Let K be the orthogonal complement of Im A, H = Im A ⊕ K. According to this

decomposition ϕ(S) has the following matrix representation (see (1))

(2) ϕ(S) =
[

CSC−1 S1

0 S2

]

for some operators S1 : K → Im A and S2 : K → K. Since H is equal to the closure

of the direct sum of one-dimensional subspaces ⊕λ∈[0,1] Ker(S − λI) and since S and
ϕ(S) are similar we have

(3) H = ⊕λ∈[0,1] Ker(ϕ(S)− λI),

where Ker(ϕ(S) − λI) are again one-dimensional subspaces. Applying (2) and (3)
we get

H = ⊕λ∈[0,1] span
{[

Ceλ

0

]}
,

where span
{[

Ceλ

0

]}
denotes the linear span of the vector

[
Ceλ

0

]
. Therefore H ⊆

Im A and consequently H = Im A. Thus, A : H → H is an invertible bounded

linear operator and ϕ(T ) = ATA−1 for every T ∈ B(H). The case when H is
an infinite-dimensional Hilbert space with a countable orthonormal basis can be

treated similarly, by considering a bounded linear operator S : H → H defined by
Sen = 1

nen, n ∈ � , where {en : n ∈ � } is an orthonormal basis in H . �
���������

of Theorem 1.1. By Lemma 2.2 the restriction of ϕ to F (H) is either
a homomorphism or an antihomomorphism. In view of Lemma 2.3 it suffices to
consider the situation when ϕ|F (H) = θ is an antihomomorphism. But then, as

ϕ maps F (H) into itself, ϕ2|F (H) = θ2 is a homomorphism. Observe that ϕ2 is
also a local automorphism. Applying Lemma 2.3 we then conclude that ϕ2 is an au-

tomorphism. In particular, ϕ2 is onto, which implies that so is ϕ. Thus, ϕ satisfies
the requirements of the result of Larson and Sourour [5]. Hence ϕ is an automor-

phism. �
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