
Czechoslovak Mathematical Journal

Axel Schulze-Halberg
A simple method for constructing non-liouvillian first integrals of autonomous
planar systems

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 3, 987–999

Persistent URL: http://dml.cz/dmlcz/128124

Terms of use:
© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128124
http://dml.cz


Czechoslovak Mathematical Journal, 56 (131) (2006), 987–999

A SIMPLE METHOD FOR CONSTRUCTING NON-LIOUVILLIAN

FIRST INTEGRALS OF AUTONOMOUS PLANAR SYSTEMS

Axel Schulze-Halberg, Zürich

(Received June 10, 2004)

Abstract. We show that a transformation method relating planar first-order differential
systems to second order equations is an effective tool for finding non-liouvillian first inte-
grals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth
and fifth order systems, and for generalized Liénard-type systems.
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1. Introduction

Planar autonomous systems

x′(t) = P (x(t), y(t)),(1)

y′(t) = Q(x(t), y(t)),

where P and Q are polynomials, are of considerable interest mainly for two reasons:

first, they occur in many areas of applied mathematics and physics; secondly, their
investigation is motivated by Hilbert’s 16th problem [[12], in which one seeks a con-

nection between the number of limit cycles and the polynomial degree of P and Q
and, furthermore, criteria for an isolated singularity of (1) to be a center. These

questions are closely related to the integrability of the system, because existence of a
first integral determines its phase portrait completely. Unfortunately, first integrals

are in general hard to find, and thus numerous methods have been developed in order
to track them down. These methods include the Darboux theory of integrability [5],

the use of Lie symmetries [3], the use of Lax pairs [13], the compatibility analy-
sis [18] and many more, see [9] for an overview. Especially the Darboux theory of
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integrability received recent attention in the context of results obtained by Prelle and

Singer: they showed that if (1) has an elementary first integral, then one can con-
struct it with the Darboux theory of integrability [16]. Furthermore, Singer proved
that if (1) has a liouvillian first integral, then its integrating factor must be given by

Darbouxian functions [17]. Using these results, in many cases one can compute an
integrating factor or first integral in a straightforward manner (see for example [14]

and references therein).

However, there is a restriction to all the methods mentioned above: they are not

applicable to non-liouvillian first integrals. In other words, if a first integral contains
special, non-liouvillian functions (e.g. the Bessel or the hypergeometric ones), it

cannot be found with the above methods. In the present note we want to do a step
towards finding non-liouvillian first integrals. We consider a transformation method

introduced very recently [6] that relates planar first-order differential systems to
second order equations. The latter equations are sometimes called “special function

equations” as they are very often solved by special (non-liouvillian) functions. Using
the transformation method we obtain interesting results on general Kukles systems,
including explicit first integrals for the following fourth and fifth order systems:

ẋ = −y,
ẏ = x+ b40x

4 + b22x
2y2 + b04y

4,

and

ẋ = −y,
ẏ = x+ b50x

5 + b32x
3y2 + b14xy

4,

which Giné [7] recently showed to be integrable, but without giving the correspond-
ing first integrals. Furthermore, we obtain results on generalized Liénard systems,

including an explicit first integral on a special case of a system recently studied by
Hayashi [11]:

ẋ = y,

ẏ = −x− gq(x) − fn(x)y4.

In Section 2 we summarize the transformation method and give some remarks. Sec-
tion 3 is devoted to the application on Kukles systems and in Section 4 we apply our

method to generalized Liénard systems.
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2. Statement of the method

The transformation method we shall apply is derived in [6]. For the sake of

completeness, we summarize it here and give some remarks.

Theorem 1. Consider the system of differential equations

x′(t) = P (x(t), y(t)),(2)

y′(t) = Q(x(t), y(t)).

If there are functions c, ϕ and V such that the ratio of Q and P satisfies

(3)
Q(x, y)
P (x, y)

= −c
′(x)

(
V (c(x)) + ϕ2(c(x), y) + ϕc(x)(c(x), y)

)

ϕy(c(x), y)
,

where the indices denote partial differentiation, then a first integral I of the sys-

tem (2) reads

(4) I(x, y) =
−ϕ(c(x), y)u2(c(x)) + u′2(c(x))c

′(x)
ϕ(c(x), y)u1(c(x))− u′1(c(x))c′(x)

,

where u1 and u2 are linearly independent solutions of the “special function equation”

(5) u′′(x) + V (x)u(x) = 0.

Let us add a few remarks.

Remark 1. The underlying idea of Theorem 1 is first to transform an equation
that is solved by special functions into a first order Riccati equation; next, a combined

transformation of the dependent and the independent variable takes the Ricatti
equation into a more general equation of the first order. The solution of the latter
equation then determines a first integral of an associated planar system of the first

order (2) and contains special functions, provided the original second order equation
has special function solutions.

Remark 2. The fact that there is no first derivative in u′′ + V u = 0 is not a
restriction: it is well known that if functions u1 and u2 are solutions of the more
general equation fu′′ + gu′ + hu = 0, then the transformation

û(x) = (C1u1(x) + C2u2(x)) exp
(∫

g(x)
f(x)

dx
)
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yields the equation û′′ + V û = 0 with

V (x) =
h(x)
f(x)

−
( g(x)

2f(x)

)2

−
( g(x)

2f(x)

)′
.

Remark 3. Given two functions P and Q, for which ϕ, V and c do they fulfill
relation (3)? To answer this question, one regards (3) as a partial differential equation
for ϕ and tries to solve it. Unfortunately, an explicit solution is in general not

available. In fact, if we try the method of characteristics, we see that it involves a
solution of y′ = Q/P , which is equivalent to the original underlying equation (2)

whose solution we seek. This fact, of course, restricts the practical applicability of
our method.

Remark 4. The search for exact, closed-form solutions of equation (5) is sup-
ported from two directions: First, there has been recent interest in solving equations

of the type (5) in terms of special functions [1], [4], [20]. Secondly, equation (5) ap-
pears in the context of nonrelativistic quantum mechanics as the famous Schrödinger

equation, whose exact solvability has been very well studied, especially for rational
functions V [19]. Newer results on solutions in terms of special functions can be

found, for example, in [10] and [15].

3. Application to Kukles systems

In this section we want to demonstrate how Theorem 1 can be practically applied
for solving a class of Kukles systems, including the important fourth and fifth-order
cases that were investigated recently [7]. The general strategy is to first try to match

the terms containing y, since the terms containing x can always be controlled by an
arbitrary function V . Obviously, systems of arbitrary order can be treated with our

method, but, in order to keep it simple here, we aim at the following Kukles system:

ẋ = −y,(6)

ẏ = x+ bk4x
ky4 + bm2x

my2 + F (x),

where k and m are integers and F is (for now) an arbitrary function. In a Kukles

system, we have P (x, y) = −y. Hence, in order to fulfil (3), the idea is to choose ϕ
such that the denominator of (3) equals y. This yields

(7) ϕy(c(x), y) = y ⇒ ϕ(c(x), y) =
y2

2
+R(c(x)).
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Inserting the latter into the right-hand side of (3), we get

(8)
Q(x, y)
P (x, y)

=
c′(x)

(
1
4y

4 + V (c(x)) +R(c(x))y2 +R2(c(x)) +R′(c(x))
)

−y .

Comparing with (6) we see that the coefficient of y4 must be bk4x
k, which deter-

mines c as follows:

(9)
c′(x)

4
= bk4x

k ⇒ c(x) =
4bk4

k + 1
xk+1.

By inserting the latter into (8), we obtain

(10)
Q(x, y)
P (x, y)

=
bk4x

ky4 + 4bk4x
k
(
R(c(x))y2 +R2(c(x)) +R′(c(x)) + V (c(x))

)

−y ,

where c is given by (9). Next we fix the coefficient of y2, which has to be bm2x
m.

We obtain

(11) 4bk4x
kR(c(x)) = bm2x

m ⇒ R(c(x)) =
bm2

4bk4
xm−k.

Substituting this into (10), we come to

Q(x, y)
P (x, y)

= −y−1
(
bk4x

ky4 + bm2x
my2(12)

+
bm2

4bk4
xm−k−1(−k +m+ bm2x

m+1) + 4bk4x
kV (c(x))

)
,

where c is again given by (9). In the final step we absorb all terms depending only

on x into V . We require

x+ F (x) =
bm2

4bk4
xm−k−1(−k +m+ bm2x

m+1) + 4bk4x
kV (c(x))(13)

⇒ V (c(x)) = x−2k−1(bm2(k −m)xm − b2m2x
2m+1 + 4bk4x

k+1(x+ F (x))).

We finally obtain

Q(x, y)
P (x, y)

=
x+ bk4x

ky4 + bm2x
my2 + F (x)

−y ,

corresponding to the form of our system (6). According to Theorem 1, we can give
a first integral of (16) provided we find a solution of (5). The latter reads in the

present case u′′(x) + V (x)u(x) = 0, where V (x) can easily be inferred from (13) as

V (x) =
1

16b2k4

{
(c−1(x))−2k−1

[
bm2(k −m)(c−1(x))m − b2m2(c

−1(x))2m+1(14)

+ 4bk4(c−1(x))k+1(c−1(x) + F (c−1(x)))
]}
,
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where

(15) c−1(x) = 4−1/(k+1)
((k + 1)x

bk4

)1/(k+1)

.

Hence, in all cases when equation (5) with V as given in (14) is solvable, we can

state an exact first integral of the Kukles system (6), which is given by (4). Let us
now have a look at two important special cases.

Example 1 (fifth order Kukles system). This fifth order Kukles system is ob-
tained from (6) by setting

k = 1,

m = 3,

F (x) = b50x
5,

yielding the system

ẋ = − y,
ẏ = x+ b50x

5 + b32x
3y2 + b14xy

4.(16)

Consequently, we find by evaluating (15) and (14) after some elementary manipula-
tions

c−1(x) =
√

x

2b14
,

V (x) =
2b14 − b32

8b214
+
−b232 + 4b14b50

64b414
x2.

In order to construct a first integral (4), we abbreviate

a =
2b14 − b32

8b214
,(17)

b =
−b232 + 4b14b50

64b414
.(18)

The general solution of u′′(x) + (a+ bx2)u(x) = 0 then reads

u(x) = C1u1(x) + C2u2(x),

where

u1(x) =

√
1
x
M−ia

4
√

b
, 1
4
(i
√
bx2),

u2(x) =

√
1
x
W−ia

4
√

b
, 1
4
(i
√
bx2).
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The symbols M and W denote Whittaker functions, defined by the relations

Mk,m(x) = exp
(
−x

2

)
xm+ 1

2 1F1

(1
2

+m− k, 1 + 2m,x
)
,

Wk,m(x) = exp
(
−x

2

)
xm+ 1

2U
(1

2
+m− k, 1 + 2m,x

)
,

where 1F1 and U are the well known linearly independent solutions of the confluent
hypergeometric equation. Now, by inserting the above u1 and u2 together with (7),

(9), (11), (17) and (18) into (4), we obtain that system (16) has the first integral I

I(x, y) =
I1(x, y)
I2(x, y)

,

where

I1(x, y) = −
(

y2

√
8b14x

+
b32x√
32b314

)
W−ia

4
√

b
, 1
4
(4i
√
bb214x

4)

+
d
dx

(
1√

2b14x
W−ia

4
√

b
, 1
4
(4i
√
bb214x

4)
)
,

I2(x, y) =
(

y2

√
8b14x

+
b32x√
32b314

)
M−ia

4
√

b
, 14

(4i
√
bb214x

4)

− d
dx

(
1√

2b14x
M−ia

4
√

b
, 1
4
(4i
√
bb214x

4)
)

and

a =
2b14 − b32

8b214
,

b =
−b232 + 4b14b50

64b414
.

Example 2 (fourth order Kukles system). We reduce (6) by choosing

k = 0,

m = 2,

F (x) = b40x
4,

yielding the system

ẋ = −y,(19)

ẏ = x+ b40x
4 + b22x

2y2 + b04y
4.

993



As before, we find by evaluating (15) and (14) that

c−1(x) =
x

4b04
,

V (x) =
2b04 − b22

32b304
x+

−b222 + 4b04b40
4096b604

x4.

Abbreviating

a =
2b04 − b22

32b304
,(20)

b =
−b222 + 4b04b40

4096b604
,(21)

we obtain the general solution of u′′(x) + (ax+ bx4)u(x) = 0, which reads

u(x) = C1u1(x) + C2u2(x),

where

u1(x) =
1
x
M−ia

6
√

b
, 16

(2i
√
b

3
x3

)
,(22)

u2(x) =
1
x
W−ia

6
√

b
, 16

(2i
√
b

3
x3

)
.(23)

Now, inserting the latter together with (7), (9), (11), (20) and (21) into (4), we
obtain that the system (19) has the first integral I

I(x, y) =
I1(x, y)
I2(x, y)

,

where

I1(x, y) = −
( y2

8b04x
+

b22x

16b204

)
W−ia

6
√

b
, 16

(128i
√
bb304

3
x3

)

+
d
dx

( 1
4b04x

W−ia
6
√

b
, 1
6

(128i
√
bb304

3
x3

))
,

I2(x, y) =
( y2

8b04x
+

b22x

16b204

)
M−ia

6
√

b
, 1
6

(128i
√
bb304

3
x3

)

− d
dx

( 1
4b04x

M−ia
6
√

b
, 1
6

(128i
√
bb304

3
x3

))

and

a =
2b04 − b22

32b304
,

b =
−b222 + 4b04b40

4096b604
.
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4. Application to generalized Liénard systems

The purpose of this section is to show how the transformation method can be
applied to different kinds of generalized Liénard systems. We construct first integrals
for classes of systems that have the form

ẋ = ψ(y),(24)

ẏ = − f(x)h(y) − g(x).

Such systems were treated for example in [2], [11] and [21]. In order to apply our

method, the relation (3) must be fulfilled. Clearly, we want the denominator of the
ratio in (3) to take the value ψ(y). Therefore, we have to set

ϕy(c(x), y) = ψ(y),(25)

ϕ(c(x), y) =
∫
ψ(y) dy +R(c(x)),

where R can be seen as a constant of integration. Using this setting, expression (3)

simplifies to

Q(x, y)
P (x, y)

= −ψ(y)−1

(
c′(x)

((∫
ψ(y) dy

)2

+ 2R
(
c(x)

) ∫
ψ(y) dy(26)

+R2
(
c(x)

)
+ V

(
c(x)

)
+R′(c(x)

)))
.

Next, the numerator in this ratio must take the form f(x)h(y) + g(x). After a little
reflection it becomes clear that this happens for

(27) R(c(x)) = R = constant.

In fact, (26) simplifies to

(28)
Q(x, y)
P (x, y)

= −c
′(x)

((∫
ψ(y) dy

)2 + 2R
(∫
ψ(y) dy

)
+R2 + V (c(x))

)

ψ(y)
.

Now this ratio fits to the form of the generalized Liénard system (24); by comparison

with the second equation in (24) we get the equalities

f(x) = c′(x),(29)

g(x) = c′(x)(R2 + V (c(x))),(30)

h(y) =
(∫

ψ(y) dy
)2

+ 2R
(∫

ψ(y) dy
)
.(31)

Summarizing, our transformation method is applicable to generalized Liénard sys-

tems (24) provided the functions f , g and h are given by (29), (30) and (31), respec-
tively, and provided V is chosen in such a way that equation (5) is solvable.
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Example 3 (Hayashi’s system). In his recent article [11] Hayashi studies local
integrability of the system

ẋ = y,(32)

ẏ = −x− gq(x)− fn(x)yp,

where n, p > 1, q > 2 and the functions fn and gq satisfy

fn(x) =
∑

k>n

fkx
k,(33)

gq(x) =
∑

k>q

gkx
k .(34)

Clearly, Hayashi’s system (32) is a special case of the generalized Liénard system (24),

where

ψ(y) = y,(35)

f(x) = fn(x),(36)

g(x) = x+ gq(x),(37)

h(y) = yp.(38)

We now want to apply our transformation method to a subclass of Hayashi’s system.

Employing (35) in (25), we obtain

ϕ(c(x), y) =
1
2
y2 +R(c(x)).

This changes (28) to

(39)
Q(x, y)
P (x, y)

= −c
′(x)

(
1
4y

4 +Ry2
)

+R2c′(x) + V (c(x))c′(x)
y

.

Since we need only a single power of y in the numerator of this ratio (see (32)), either

the second or the fourth power of y must be removed. We cannot remove the second
power as c′(x) = 0 is impossible, because c is a coordinate transformation. Hence,
we have to set

(40) R = 0,

simplifying (39) to

(41)
Q(x, y)
P (x, y)

= −
1
4c

′(x)y4 + V (c(x))c′(x)
y

.
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Now c and V can be used such that this expression fits to the system (32). A

straightforward computation yields

c(x) = 4
∫
fn(x) dx,(42)

V (c(x)) =
x+ gq(x)
fn(x)

.(43)

Employing the abover settings, (41) matches the form of Hayashi’s system (32) for
p = 4:

Q(x, y)
P (x, y)

= −x+ gq(x) + fn(x)y4

y
.

At this point we cannot continue deriving first integrals of (32), because we are
unable to specify V (c(x)) due to the lack of information on c−1. Clearly, c−1 is not

available in general, because equation (42) is not solvable for x. Thus, let us restrict
ourselves to a simple special case, namely to

fn(x) = f1x,(44)

gq(x) = g3x
3.(45)

These choices correspond to special cases of the general functions fn and gq, as given

in (33) and (34). Now we can compute c (42) and its inverse c−1:

c(x) = 2f1x2,(46)

c−1(x) =
√

x

2f1
,(47)

where we have taken the positive sign in the inverse. Next, we compute the function V

from (43). We find with (47):

V (c(x)) =
1

4f1
+

g2
4f1

x2 ⇒ V (x) =
1

4f1
+

g2
8f2

1

x.

Now we have to solve equation (5), which reads in the present case

u′′(x) +
( 1

4f1
+

g2
8f2

1

x
)
u(x) = 0.
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Its solution contains special functions, namely Airy functions Ai and Bi. We have

u(x) = C1u1(x) + C2u2(x),

where

u1(x) = Ai
( (−1)1/3(2f1 + g3x)

2(f1g3)2/3

)
,

u2(x) = Bi
((−1)1/3(2f1 + g3x)

2(f1g3)2/3

)
.

The definition and properties of Airy functions can be found in [8]. Now we are
in position to state a non-liouvillian first integral of the system (32) for p = 4 and
functions fn, gq as given in (44) and (45), respectively. We collect the results (25),
(40), (46) and the above two functions u1, u2 and insert them into (4). The first

integral reads

I(x, y) =
I1(x, y)
I2(x, y)

,

where

I1(x, y) = − 1
2
y2Bi

(
(−1)1/3(4f2

1 + g3x
2)

2(f1g3)2/3

)
+

d
dx

Bi
(

(−1)1/3(2f1 + g3x)
2(f1g3)2/3

)
,

I2(x, y) =
1
2
y2Ai

(
(−1)1/3(4f2

1 + g3x
2)

2(f1g3)2/3

)
− d

dx
Ai

(
(−1)1/3(2f1 + g3x)

2(f1g3)2/3

)
.

5. Concluding remarks

In this note we have presented applications for a simple method for finding planar
first order systems that admit a first integral in terms of special functions. Although

we know that the practical applicability of our method is in general limited, our
approach is noteworthy for three reasons: First, so far there is little literature on

non-liouvillian solutions of differential equations, and no literature referring directly
to non-liouvillian first integrals of planar systems. Secondly, using our transformation

method we could obtain first integrals of interesting, recently investigated systems
of Kukles type and of generalized Liénard type. Thirdly, this work could inspire

work on other types of transformations that lead to non-liouvillian first integrals,
namely Darboux- and fractional Darboux transformations, which we will report on

in a forthcoming paper.
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