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Abstract. The max algebra consists of the nonnegative real numbers equipped with two
binary operations, maximization and multiplication. We characterize the invertible linear
operators that preserve the set of commuting pairs of matrices over a subalgebra of max
algebra.
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1. Introduction

Recently, there has been a great deal of interest in the algebraic system called

“max-algebra” (see [3] and [4]). This system allows one to express, in a linear fash-
ion, phenomena that are nonlinear in the conventional algebra. It has applications

in many diverse areas such as parallel computation, transportation networks and
scheduling.

The max algebra consists of the set
�

max , where
�

max is the set of nonnegative
real numbers equipped with two binary operations, denoted by ⊕ and ·, respectively.
The operations are defined as follows:

a⊕ b = max(a, b) and a · b = ab.

That is, their sum is the maximum of a and b and their product is the usual product.

Our interest will be in describing the invertible commutativity preserver of matri-
ces over this max algebra.
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For a set S we denote by Mn(S ) the set of n × n matrices over S . The set of

commuting pairs of matrices, C , is the set of (unordered) pairs of matrices (A, B)
such that AB = BA. A linear operator T onMn(S ) is said to preserve C (or simply
T preserves commutativity) whenever T (A)T (B) = T (B)T (A) if AB = BA.

Watkins [5] showed that if n > 4 and S is an algebraically closed field of charac-
teristic 0, and L is a nonsingular linear operator on Mn(S ) which preserves com-
mutativity, then there exist an invertible matrix U , a nonzero scalar α and a linear
functional f : Mn(S ) → S such that either

1. T (X) = αUXU−1 + f(X)In for all X ∈ Mn(S ), or

2. T (X) = αUXtU−1 + f(X)In for all X ∈ Mn(S ),

where Xt denotes the transpose of X . In [1] Beasley extended this result to n = 3.
In [2] Beasley and Pullman characterized the linear operators that preserve commu-
tativity over subsemirings of a fuzzy semiring.

In this article we investigate the set of invertible linear operators on Mn( � max)
which preserve commuting pairs of matrices, where � max is a subalgebra of the max

algebra
�

max .

2. Preliminaries

The max algebra
�

max is the set of nonnegative real numbers equipped with two
binary operations⊕ and ·. Throughout this paper, � max denotes a subalgebra of

�
max

such as
�

max , � max , � max, � [
√

2]max, etc., where � denotes the rational numbers,
� the integers and � [

√
2] the set of all values of the form x

√
2 + y with x, y ∈ � . In

the corresponding subalgebras � max, only the nonnegative values are considered.

For a nonzero element a ∈ � max, a is called a unit if there exists a nonzero element

b ∈ � max which is denoted b = a−1, such that ab = 1. Thus, all nonzero elements of�
max and � max are units, while � max has only the unit element 1. We remark that
there are various unit elements in � [

√
2]max, such as 1,

√
2+1,

√
2−1, 5

√
2+7, 5

√
2−7

and others, which follows from equalities like 1 =
(√

2 + 1
)(√

2 − 1
)
, 1 =

(
5
√

2 +
7
)(

5
√

2− 7
)
, 1 =

(
29
√

2 + 41
)(

29
√

2− 41
)
, 1 =

(
169

√
2 + 239

)(
169

√
2− 239

)
, . . ..

If A = [ai,j ] and B = [bi,j ] are matrices inMn( � max), then the sum of A and B is
denoted by A⊕B, which is the matrix with ai,j⊕bi,j as its (i, j)th entry. If c ∈ � max,

then cA is the matrix [c ai,j ]. The product of A and B is denoted by A⊗ B, which
is the matrix with max

r
{ai,rbr,j} as its (i, j)th entry. The identity matrix of order n

is denoted by In.

The following example shows that there is no relation between commuting pairs
over max algebra and those over nonnegative reals.
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Example 2.1. Let

(2.1) A =
[

1 2
0 0

]
and B =

[
2 2
0 1

]
.

Then we have AB = BA over
�

+ , but A⊗B 6= B ⊗A over
�

max .

Let

(2.2) C =
[

2 4
1 2

]
and D =

[
1 1
1
2 1

]
.

Then we have CD 6= DC over
�

+ , but C ⊗D = D ⊗ C over
�

max .

For a matrix A ∈ Mn( � max), A is called invertible if there exists a matrix B ∈
Mn( � max), denoted by B = A−1, such that A⊗ B = B ⊗ A = In. It is well known
[4] that a matrix A in Mn( � max) is invertible if and only if A = P ⊗D, where P is

a permutation matrix and D is a diagonal matrix, and all the diagonal entries of D
are units in � max.

Evidently, the following operations preserve the set of commuting pairs of matrices
over � max:

(a) transposition (X → X t);
(b) similarity (X → S ⊗X ⊗ S−1 for a fixed invertible matrix S).

In Theorem 3.2 we show that the semigroup of invertible linear operators preserv-
ing commuting pairs of matrices is generated by transpositions and similarities over

a subalgebra of max algebra.

3. Invertible commutativity preservers of matrices over � max

A mapping T : Mn( � max) → Mn( � max) is called a linear operator if T (αA⊕βB) =
αT (A) ⊕ βT (B) for all A, B ∈ Mn( � max) and for all α, β ∈ � max. An operator T

on Mn( � max) is called invertible if it is surjective and injective. It can be shown by
standard arguments that if T is linear, then the inverse operator T−1 is also linear.

In this section we characterize the invertible linear operators that preserve com-
muting pairs of matrices over � max.

Let ∆n = {(i, j) ; 1 6 i, j 6 n}. Then for any (i, j) ∈ ∆n, Ei,j denotes the n× n

matrix whose (i, j)th entry is 1 and all the other entries are 0. We call Ei,j a cell.

For A = [ai,j ] and B = [bi,j ] in Mn( � max), A dominates B, denoted by A w B or
B v A, if bi,j 6= 0 implies ai,j 6= 0. It follows that if A, B, C, D ∈ Mn( � max) with
A v B and C v D, then we have

(3.1) A⊕ C v B ⊕D and αC v βD

for all α, β ∈ � max with β 6= 0.
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Let T be a linear operator onMn( � max). Then for any A = [ai,j ] =
n⊕

i,j=1

ai,jEi,j ∈

Mn( � max) we have

T (A) = T

( n⊕

i,j=1

ai,jEi,j

)
=

n⊕

i,j=1

T (ai,jEi,j) =
n⊕

i,j=1

ai,jT (Ei,j)

by the linearity of T . If A = [ai,j ] and B = [bi,j ] are in Mn( � max) with A v B, then
we have T (A) v T (B) because

T (A) =
n⊕

i,j=1

ai,jT (Ei,j) v
n⊕

i,j=1

bi,jT (Ei,j) = T (B)

by (3.1) for any linear operator T on Mn( � max).

Lemma 3.1. For a linear operator T on Mn( � max), T is invertible if and only if
there exist a permutation θ on∆n and units bi,j ∈ � max such that T (Ei,j) = bi,jEθ(i,j)

for all (i, j) ∈ ∆n.
�����	��


. Suppose that T is invertible on Mn( � max). Let Er,s be an arbitrary

cell in Mn( � max). Since T is surjective, there exists a nonzero matrix X = [xi,j ] ∈
Mn( � max) such that T (X) = Er,s. Since T is linear, it follows that there exists

xi,j 6= 0 such that T (Ei,j) v Er,s. This shows that T (Ei,j) = bi,jEr,s for some
nonzero bi,j ∈ � max. Let

Cr,s = {Ei,j ; T (Ei,j) = bi,jEr,s for some nonzero bi,j ∈ � max}.

By the above, Cr,s 6= ∅ for all (r, s) ∈ ∆n. Suppose that T (Ek,l) = bk,lEr,s for a cell

Ek,l different from Ei,j and for some bk,l 6= 0. Then we have

T (bk,lEi,j) = bk,lT (Ei,j) = bk,lbi,jEr,s = bi,jT (Ek,l) = T (bi,jEk,l),

a contradiction to the fact that T is injective. Hence Cr,s is a singleton set for all

(r, s) ∈ ∆n. Therefore, there exists a permutation θ on ∆n such that T (Ei,j) =
bi,jEθ(i,j) for some nonzero bi,j ∈ � max. It remains to show that all bi,j are units.

Since T is surjective and T (Er,s) 6v Eθ(i,j) for (r, s) 6= (i, j), there exists a nonzero
c ∈ � max such that T (c Ei,j) = Eθ(i,j). By the linearity of T , we have

T (c Ei,j) = c T (Ei,j) = c bi,jEθ(i,j) = Eθ(i,j).

That is, c bi,j = 1 and hence bi,j is a unit.

The converse is immediate. �
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Lemma 3.2. Let A be a matrix in Mn( � max) such that A ⊗X = X ⊗ A for all

X ∈ Mn( � max). Then A = αIn for some scalar α ∈ � max.

�����	��

. Let A = [ai,j ]. Now, we will show that ai,j = 0 for all i, j = 1, . . . , n

with i 6= j. Consider a cell Ej,i with i 6= j. Then the (i, i)th entries of A⊗Ej,i and

Ej,i⊗A are ai,j and 0, respectively. It follows from A⊗Ej,i = Ej,i⊗A that ai,j = 0
for all i, j = 1, . . . , n with i 6= j. Let ai,i be any diagonal entry of A. Then the

(1, i)th entries of A⊗ (E1,i⊕Ei,1) and (E1,i⊕Ei,1)⊗A are a1,1 and ai,i, respectively,
and hence ai,i = a1,1 for all i = 1, . . . , n because A⊗ (E1,i⊕Ei,1) = (E1,i⊕Ei,1)⊗A.

Thus, we have A = αIn for α = a1,1. �

The Schur (or Hadamard) product, A◦B, of A = [ai,j ] and B = [bi,j ] inMn( � max)
is the matrix [ai,j bi,j ]. This notation will be used in the proof of the next theorem.

Theorem 3.3. Let T be a linear operator onMn( � max). Then T is an invertible

linear operator which preserves pairs of commuting matrices if and only if there exist

a unit α ∈ � max and an invertible matrix U ∈ Mn( � max) such that either
(1) T (X) = αU ⊗X ⊗ U−1 for all X ∈ Mn( � max), or
(2) T (X) = αU ⊗Xt ⊗ U−1 for all X ∈ Mn( � max).
�����	��


. Let T be an invertible linear operator which preserves pairs of com-
muting matrices over � max. Since In ⊗X = X ⊗ In for all X ∈ Mn( � max), we have
T (In) ⊗ T (X) = T (X)⊗ T (In) for all X ∈ Mn( � max) because T preserves pairs of
commuting matrices. Let Y be an arbitrary matrix in Mn( � max). Since T is surjec-

tive, Y = T (X) for some X ∈ Mn( � max). Thus, we have that T (In)⊗Y = Y ⊗T (In)
for all Y ∈ Mn( � max). By Lemma 3.2, T (In) = αIn for some α ∈ � max. Further-

more, there exists a matrix C in Mn( � max) such that T (C) = In (equivalently,
T (αC) = αIn). Since T is injective, αC = In. That is, α is a unit.

Since T is invertible, there exist a permutation θ on ∆n and units bi,j in � max such

that T (Ei,j) = bi,jEθ(i,j) for all (i, j) ∈ ∆n by Lemma 3.1. It follows from T (In) =
αIn that there is a permutation σ of {1, . . . , n} such that T (Ei,i) = αEσ(i),σ(i) for

each i = 1, . . . , n. Define L : Mn( � max) → Mn( � max) by L(X) = P ⊗ T (X) ⊗ P t,
where P is the permutation matrix corresponding to σ so that

(3.2) L(Ei,i) = αEi,i

for each i = 1, . . . , n. Then we can easily show that L is an invertible linear operator
on Mn( � max) which preserves pairs of commuting matrices. By Lemma 3.1, for any
(r, s) ∈ ∆n there exist (p, q) ∈ ∆n and a unit mr,s ∈ � max such that L(Er,s) =
mr,sEp,q .
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Suppose that r 6= s. Since L is injective, we have p 6= q because L(Ei,i) = αEi,i

for each i = 1, . . . , n. Assume that p 6= r and p 6= s. Then

Er,s ⊗ (Er,r ⊕Es,s ⊕Ep,p) = (Er,r ⊕Es,s ⊕Ep,p)⊗Er,s

so that

L(Er,s)⊗ L(Er,r ⊕Es,s ⊕Ep,p) = L(Er,r ⊕Es,s ⊕Ep,p)⊗ L(Er,s)

or

(mr,sEp,q)⊗ (αEr,r ⊕ αEs,s ⊕ αEp,p) = (αEr,r ⊕ αEs,s ⊕ αEp,p)⊗ (mr,sEp,q),

equivalently

Ep,q ⊗ (Er,r ⊕Es,s ⊕Ep,p) = (Er,r ⊕Es,s ⊕Ep,p)⊗Ep,q .

It follows that q = r or q = s. Since Er,s ⊗ (Er,r ⊕ Es,s) = (Er,r ⊕ Es,s)⊗ Er,s, we

have
L(Er,s)⊗ L(Er,r ⊕Es,s) = L(Er,r ⊕Es,s)⊗ L(Er,s),

equivalently

Ep,q ⊗ (Er,r ⊕Es,s) = (Er,r ⊕Es,s)⊗Ep,q .

Since q = r or q = s, we have Ep,q ⊗ (Er,r ⊕Es,s) = Ep,r or Ep,s, but (Er,r ⊕Es,s)⊗
Ep,q = 0, a contradiction. Hence we have p = r or p = s. Similarly we obtain q = r

or q = s. Therefore, for each (r, s) ∈ ∆n there exists a unit mr,s ∈ � max such that

(3.3) L(Er,s) = mr,sEr,s or L(Er,s) = mr,sEs,r.

Let L(Er,s) = mr,sEr,s for some fixed (r, s) ∈ ∆n with r 6= s. Suppose that
L(Er,t) = mr,tEt,r for some t 6= r, s. By (3.3), we have

L(Es,t ⊕Et,s) = µEs,t ⊕ ξEt,s

for some units µ and ξ, where {µ, ξ} = {ms,t, mt,s}. Let A = Er,r ⊕ Es,t ⊕ Et,s so

that L(A) = αEr,r ⊕ µEs,t ⊕ ξEt,s. Then (Er,s ⊕Er,t)⊗A = A⊗ (Er,s ⊕Er,t), and
hence

L(Er,s ⊕Er,t)⊗ L(A) = L(A)⊗ L(Er,s ⊕Er,t).

But
L(Er,s ⊕Er,t)⊗ L(A) = mr,sµEr,t ⊕mr,tαEt,r
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while

L(A)⊗ L(Er,s ⊕Er,t) = αmr,sEr,s ⊕ µmr,tEs,r.

Thus we have t = s, a contradiction. That is, T (Er,t) = mr,tEr,t for all t = 1, . . . , n.

Similarly, we obtain T (Et,s) = mt,sEt,s for all t = 1, . . . , n. Let Ei,j be an arbitrary
cell. Since T (Ei,s) = mi,sEi,s, by method similar to the above, we have T (Ei,j) =
mi,jEi,j . Therefore, we have established that if L(Er,s) = mr,sEr,s for some fixed
(r, s) ∈ ∆n with r 6= s, then

(3.4) L(Ei,j) = mi,jEi,j

for all (i, j) ∈ ∆n. The parallel argument shows that if L(Er,s) = mr,sEs,r for some

fixed (r, s) ∈ ∆n with r 6= s, then

(3.5) L(Ei,j) = mi,jEj,i

for all (i, j) ∈ ∆n.

Assume that (3.4) is satisfied. That is, L(Ei,j) = mi,jEi,j for all (i, j) ∈ ∆n and
all mi,j are units. Let M = [mi,j ]. By (3.2), we have mi,i = α for all i = 1, . . . , n.

Consider an arbitrary matrix X = [xi,j ] =
n⊕

i,j=1

xi,jEi,j in Mn( � max). Then by the

linearity of L we have

L(X) = L

( n⊕

i,j=1

xi,jEi,j

)
=

n⊕

i,j=1

xi,jL(Ei,j) =
n⊕

i,j=1

xi,jmi,jEi,j = X ◦M.

Let Pi,j denote the permutation matrix corresponding to the transposition (i, j) and
let J be the matrix whose all entries are 1. Then Pi,j ⊗ J = J ⊗ Pi,j so that
L(Pi,j) ⊗ L(J) = L(J) ⊗ L(Pi,j). Thus, for (i, j) ∈ ∆n with i 6= j and k 6= i, j, we
have

(3.6) mi,jmj,k = mi,kmk,k = mi,kα and mj,imi,k = mj,kmk,k = mj,kα

by considering the (i, k)th and (j, k)th entries of L(Pi,j)⊗L(J) and L(J)⊗L(Pi,j).
Thus, we have

(3.7) mi,jmj,kmj,imi,k = mi,kmj,kα, equivalently mi,jmj,i = α2.

Let D = [di,j ] be the diagonal matrix with di,i = α−1mi,2 for each i = 1, . . . , n.
Then D−1 = [ei,j ] is the diagonal matrix with ej,j = α−1m2,j for each j = 1, . . . , n

by (3.7). Now for any X = [xi,j ] ∈ Mn( � max), the (i, j)th entry of αD ⊗X ⊗E is

αdi,ixi,jej,j = αα−1mi,2xi,jα
−1m2,j = α−1mi,2m2,jxi,j = α−1mi,jαxi,j = mi,jxi,j
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by (3.6), which is the (i, j)th entry of X ◦ M . Thus, we have that L(X) = αD ⊗
X ⊗ D−1 for all X ∈ Mn( � max). Since L(X) = P−1 ⊗ T (X) ⊗ P , we have that
T (X) = P ⊗ L(X) ⊗ P−1 = α(P ⊗D) ⊗X ⊗ (P ⊗D)−1. If U = P ⊗D, then we
have T (X) = αU ⊗X ⊗ U−1 for all X ∈ Mn( � max).
Similarly, if (3.5) is satisfied, then we obtain that T (X) = αU ⊗X t ⊗U−1 for all

X ∈ Mn( � max).
The converse is immediate.
Thus we have characterized the linear operators that preserve commuting pairs of

matrices over a subalgebra of the max algebra.
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