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Abstract. In this paper we study some properties of a totally ∗-paranormal operator
(defined below) on Hilbert space. In particular, we characterize a totally ∗-paranormal
operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for
totally ∗-paranormal operators through the local spectral theory. Finally, we show that
every totally ∗-paranormal operator satisfies an analogue of the single valued extension
property for W 2(D, H) and some of totally ∗-paranormal operators have scalar extensions.
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1. Introduction and preliminaries

Let H and K be complex Hilbert spaces and L (H, K) denote the space of all
bounded linear operators from H to K. If H = K, we write L (H) instead of
L (H, K). Recall that an operator T ∈ L (H) is said to be hyponormal if TT ∗ 6
T ∗T , or equivalently, if ‖T ∗h‖ 6 ‖Th‖ for every h ∈ H . A larger class of operators
related to hyponormal operators is the following: T ∈ L (H) is called ∗-paranormal
if ‖T ∗h‖2 6 ‖T 2h‖‖h‖ for every h ∈ H . It is known [2] that T is ∗-paranormal if and
only if T ∗2T 2 − 2rTT ∗ + r2 > 0 for each positive number r. This class of operators

was introduced and studied by S.M.Patel. In this paper we want to focus on a class
of ∗-paranormal operators which has the translation invariance property. The notion
of such operators is obviously inspired by the class of totally paranormal operators
in [16].

Definition 1.1. An operator T ∈ L (H) is said to be totally ∗-paranormal if
‖(T − λ)∗h‖2 6 ‖(T − λ)2h‖‖h‖ for all h ∈ H and all λ ∈ �

.

The first author is supported by a grant (R14-2003-006-01000-0) from the Korea Research
Foundation.
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The class of totally ∗-paranormal operators forms a proper subclass of ∗-para-
normal operators (see Example 2.5). Since hyponormal operators are contained in
the class of totally ∗-paranormal operators (see Proposition 2.6) and the class of
hyponormal operators is now fairly well understood, we think that the study of the

class of totally ∗-paranormal operators has a bright future.
Recall that an operator T ∈ L (H) is semi-Fredholm if its range ranT is closed

and either its null space kerT or H/ ranT is finite dimensional. Also an operator

T ∈ L (H) is Fredholm if its range ranT is closed and both its null space kerT and
H/ ranT is finite dimensional. The index of a semi-Fredholm operator T is defined

as

index T = dim(kerT )− dim(H/ ranT ).

The semi-Fredholm spectrum σsF (T ) of T is the set {λ ∈ �
: (T − λ) is not semi-

Fredholm} and %sF (T ) =
� \ σsF (T ).

An operator T ∈ L (H, K) is called Weyl if T is a Fredholm operator of index 0.
The Weyl spectrum ω(T ) of T is defined by

ω(T ) = {λ ∈ C : T − λ is not Weyl}.

L.A.Coburn showed in [6] that Weyl’s theorem holds for hyponormal operators, i.e.,

that

σ(T )− ω(T ) = π00(T )

for each hyponormal operator T , where π00(T ) denotes the set of isolated points of
σ(T ) that are eigenvalues of finite multiplicity.
The paper is organized as follows. In section one, we give some preliminary facts.

In section two, we study some properties of a totally ∗-paranormal operator on
Hilbert space. In particular, we characterize a totally ∗-paranormal operator. Also
we show that Weyl’s theorem and the spectral mapping theorem hold for totally
∗-paranormal operators. Finally, we show that every totally ∗-paranormal operator
satisfies an analogue of the single valued extension property for W 2(D, H) and some
of totally ∗-paranormal operators have scalar extensions.

2. Totally ∗-paranormal operators

In this section, we study some properties of totally ∗-paranormal operators. We
start with the following lemma which summarizes the basic properties of such oper-
ators.
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Lemma 2.1. If T is totally ∗-paranormal, then kerT ⊂ kerT ∗, kerT = kerT 2,

r(T ) = ‖T‖, and T |M is a totally ∗-paranormal operator, where r(T ) denotes the
spectral radius of T and M is any invariant subspace for T .

The following theorem gives a characterization of a totally ∗-paranormal operator.

Theorem 2.2. If T is totally ∗-paranormal, then

(1) ‖T ∗h‖2 + |〈T 2h, h〉| 6 2‖Th‖2

for every h ∈ H .
���������

. Since T is totally ∗-paranormal, T −λ is ∗-paranormal for every λ ∈ � .
Therefore,

(T ∗ − λ̄)2(T − λ)2 − 2r(T − λ)(T ∗ − λ̄) + r2 > 0

for each positive number r.
Set λ = %eiθ for every 0 6 θ < 2π and % > 0. Then for each positive %

(T ∗ − %e−iθ)2(T − %eiθ)2 − 2%2(T − %eiθ)(T ∗ − %e−iθ) + %4 > 0.

Letting % →∞, we have

ei2θT ∗2 + e−i2θT 2 + 4T ∗T − 2TT ∗ > 0

for every 0 6 θ < 2π. If h ∈ H , then

4‖Th‖2 > 2‖T ∗h‖2 − 〈e−i2θT 2h, h〉 − 〈e−i2θT 2h, h〉 = 2‖T ∗h‖2 − 2Re 〈e−i2θT 2h, h〉.

Therefore, by the arbitrariness of θ,

2‖Th‖2 > ‖T ∗h‖2 + |〈T 2h, h〉|

for every h ∈ H . �

From Theorem 2.2 we can show that the class of totally ∗-paranormal operators
forms a proper subclass of the class of ∗-paranormal operators.

Corollary 2.3. Let T be a weighted shift with weights {αn}∞n=0. If 2|αk|2 <

|αk−1|2 for some positive integer k, then T is not totally ∗-paranormal.
���������

. Let {en}∞n=0 be an orthonormal basis of a Hilbert space H . Then
Ten = αnen+1 and T ∗en = αn−1en−1. Since 2|αk|2 < |αk−1|2 for some positive
integer k, we have

‖T ∗ek‖2 + |〈T 2ek, ek〉| > 2‖Tek‖2.

Therefore by Theorem 2.2 T is not totally ∗-paranormal. �
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Corollary 2.4. Let T be a weighted shift with weights {αn}∞n=0. If 2|αk|2 <

|αk−1|2 for some positive integer k and |αn−1|2 6 |αn||αn+1| for each positive integer
n, then T is not totally ∗-paranormal, but is ∗-paranormal.
���������

. Let {en}∞n=0 be an orthonormal basis of a Hilbert space H . Then Ten =
αnen+1 and T ∗en = αn−1en−1. By Corollary 2.3, T is not totally ∗-paranormal.
Therefore it suffices to prove that T is ∗-paranormal. Now

T is ∗ -paranormal⇔ T ∗2T 2 − 2rTT ∗ + r2 > 0

⇔ |αnαn+1|2 − 2r|αn−1|2 + r2 > 0

for each r > 0 and each positive integer n. Therefore, |αn−1|2 6 |αn||αn+1| for each
positive integer n. Thus T is ∗-paranormal. �

Next we give an example of Corollary 2.4.

Example 2.5. Let {en}∞n=0 be an orthonormal basis of a Hilbert space H , and
let T be a weighted shift defined as Te0 = 1

2e1, Te1 = 1
3e2, and Tei = ei+1 for

i > 2. Then α0 = 1
2 , α1 = 1

3 , and αi = 1 for i > 2. Therefore 2|α1|2 < |α0|2 and
|αn−1|2 6 |αn||αn+1| for each positive integer n. By Corollary 2.4, T is not totally

∗-paranormal, but is ∗-paranormal.

The following proposition shows that hyponormal operators are contained in the
class of totally ∗-paranormal operators.

Proposition 2.6. Every hyponormal operator is totally ∗-paranormal.
���������

. Let T ∈ L (H) be hyponormal. Since the class of hyponormal operators
has the translation invariance property, we have

‖(T − λ)∗h‖ 6 ‖(T − λ)h‖

for all h ∈ H and all λ ∈ �
. Therefore

‖(T − λ)∗h‖2 = 〈(T − λ)(T − λ)∗h, h〉
6 〈(T − λ)∗(T − λ)h, h〉
6 ‖(T − λ)∗(T − λ)h‖‖h‖
6 ‖(T − λ)2h‖‖h‖.

�

We remark here that there exists an M -hyponormal operator which is not totally
∗-paranormal.
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Example 2.7. Let {en}∞n=0 be an orthonormal basis of a Hilbert space H , and

let T be a weighted shift defined as Te0 = e1, Te1 = 2e2, and Tei = ei+1 for i > 2.
Then T is an M -hyponormal operator (see [22]). But since 2|α2|2 < |α1|2, T is not
totally ∗-paranormal from Corollary 2.3.

We say that an operator T has finite ascent if for every λ ∈ �
there is an n ∈ 	

such that ker(T − λ)n = ker(T − λ)n+1 for every λ ∈ �
. Recall that an operator

T ∈ L (H) is said to satisfy the single valued extension property if for any open
subset U in

�
, the function

T − λ : O(U, H) −→ O(U, H)

defined by the usual pointwise multiplication is one-to-one, where O(U, H) denotes
the Frechet space of H-valued analytic functions in U with respect to uniform topol-

ogy.

Proposition 2.8. Every totally ∗-paranormal operator has the single valued
extension property.
���������

. By Lemma 2.1, T − λ has finite ascent for each λ. Hence T has the

single valued extension property by [16]. �

Recall that an operatorX ∈ L (H, K) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S ∈ L (H) is said to be a quasiaffine transform of an
operator T ∈ L (K) if there is a quasiaffinity X ∈ L (H, K) such that XS = TX .

Corollary 2.9 ([16, Proposition 1.8]). Let T be any totally ∗-paranormal oper-
ator. If S is any quasiaffine transform of T , then S has the single valued extension

property.
���������

. Since ker(S − λ) ⊂ ker(S − λ)2, it suffices to show that ker(S − λ)2 ⊂
ker(S−λ). If x ∈ ker(S−λ)2, then (S−λ)2x = 0. Let X be a quasiaffinity such that
XS = TX . Then X(S−λ)2x = 0. Hence (T − λ)2Xx = 0. Thus Xx ∈ ker(T −λ)2.
Since ker(T − λ) = ker(T − λ)2 by the proof of Proposition 2.8, Xx ∈ ker(T − λ).
Therefore, X(S − λ)x = (T − λ)Xx = 0. Since X is one-to-one, (S − λ)x = 0. Thus
x ∈ ker(S − λ). �

Corollary 2.10. Let T be any totally ∗-paranormal operator. If f : G −→ �

is analytic function nonconstant on every component of G where G is open and

G ⊃ σ(T ), then f(T ) has the single valued extension property.
���������

. The proof follows from Proposition 2.8 and [7, Theorem 1.5]. �
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If T has the single valued extension property, then for any x ∈ H there exists a

unique maximal open set %T (x)(⊃ %(T )) and a unique H-valued analytic function f

defined in %T (x) such that (T − λ)f(λ) = x, λ ∈ %T (x). Moreover, if F is a closed
set in

�
and σT (x) =

� \ %T (x), then

HT (F ) = {x ∈ H : σT (x) ⊂ F}

is a linear subspace (not necessarily closed) of H (see [7]).

Corollary 2.11. If T is totally ∗-paranormal, then

HT ({λ}) = {x ∈ H : lim
n→∞

‖(T − λ)nx‖1/n = 0}.

���������
. Since T has the single valued extension property by Proposition 2.8,

the proof follows from [16]. �

Corollary 2.12. Let S and T be totally ∗-paranormal operators in L (H). If
AS = TA, then for any closed set F ⊂ �

,

AHS(F ) ⊂ HT (F ).

���������
. Since S and T have the single valued extension property by Proposi-

tion 2.8, if x ∈ HS(F ), then σS(x) ⊂ F . Hence F c ⊂ %S(x). So there exists an
analytic H-valued function f defined on F c such that

(S − λ)f(λ) ≡ x, λ ∈ F c.

Since AS = TA,

(T − λ)Af(λ) = A(S − λ)f(λ) ≡ Ax, λ ∈ F c.

Since Af : F c → H is analytic, F c ⊂ %T (Ax), i.e., σT (Ax) ⊂ F . Hence Ax ∈ HT (F ),
i.e., AHS(F ) ⊂ HT (F ). �

We consider Weyl’s theorem for totally ∗-paranormal operators through the local
spectral theory.
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Lemma 2.13. If T is totally ∗-paranormal, then it is isoloid (i.e., isoσ(T ) ⊂
σp(T )).
���������

. Since T has the translation invariance property, it suffices to show that

if 0 ∈ isoσ(T ) then 0 ∈ σp(T ). Choose % > 0 sufficiently small that 0 is the only
point of σ(T ) contained in or on the circle |λ| = %. Define

E =
∫

|λ|=%

(λI − T )−1 dλ

Then E is the Riesz idempotent corresponding to 0. SoM = EH is an invariant sub-

space for T , M 6= {0}, and σ(T |M ) = {0}. Since T |M is also totally ∗-paranormal,
T |M = 0. Therefore, T is not one-to-one. Thus 0 ∈ σp(T ). �

Theorem 2.14. Weyl’s theorem holds for any totally ∗-paranormal operator.
���������

. If T is totally ∗-paranormal, then it has the single valued extension
property from Proposition 2.8. By [9, Theorem 2], it suffices to show that HT ({λ})
is finite dimensional for λ ∈ π00(T ). If λ ∈ π00(T ), then λ ∈ iso σ(T ) and 0 <

dim ker(T − λ) < ∞. Since ker(T − λ) is a reducing subspace for T − λ, write

T −λ = 0⊕ (T1−λ), where 0 denotes the zero operator on ker(T − λ) and T1−λ =
(T − λ)|(ker(T−λ))⊥ is injective. Therefore,

σ(T − λ) = {0} ∪ σ(T1 − λ).

If T1 − λ is not invertible, 0 ∈ σ(T1 − λ). Since σ(T − λ) = {0} ∪ σ(T1 − λ),
σ(T − λ) = σ(T1 − λ). Since λ ∈ π00(T ), λ ∈ iso σ(T1). Since T is totally ∗-

paranormal, it is easy to show that T1 is totally ∗-paranormal. Since T1 is isoloid by
Lemma 2.13, λ ∈ σp(T1). Therefore, ker(T1 − λ) 6= {0}. So we have a contradiction.
Thus T1 − λ is invertible. Therefore, (T − λ)((ker(T − λ))⊥) = (ker(T − λ))⊥. Thus
(ker(T − λ))⊥ ⊂ ran(T − λ). Since ker(T − λ) ⊂ ker(T − λ)∗ = (ran(T − λ))⊥,

ran(T − λ) ⊂ (ker(T − λ))⊥ ⊂ ran(T − λ).

Therefore, ran(T −λ) = (ker(T −λ))⊥. Thus ran(T −λ) is closed. Since dim ker(T −
λ) < ∞, T − λ is semi-Fredholm. By [17, Lemma 1], HT ({λ}) is finite dimensional.

�

Next we show that the spectral mapping theorem holds for totally ∗-paranormal
operators. Furthermore, Weyl’s theorem holds for f(T ), where T is a totally ∗-
paranormal operator and f is analytic in a neighborhood of σ(T ).
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Theorem 2.15. If T is a totally ∗-paranormal operator and f is analytic on a

neighborhood of σ(T ), then

ω(f(T )) = f(ω(T )).

���������
. Suppose that p is any polynomial. Let p(λ)−µ = a(λ−λ1) . . . (λ−λn).

Then we have

p(T )− µI = a(T − λ1I) . . . (T − λnI).

Since T is totally ∗-paranormal, T − λiI are commuting totally ∗-paranormal oper-
ators for each i = 1, 2, . . . , n. It follows that

λ /∈ ω(p(T )) ⇔ p(T )− µI is Weyl

⇔ a(T − λ1I) . . . (T − λnI) is Weyl

⇔ T − λiI is Weyl for each i = 1, 2, . . . , n

⇔ λi /∈ ω(T ) for each i = 1, 2, . . . , n

⇔ µ /∈ p(ω(T )).

Thus

(2) ω(p(T )) = p(ω(T )).

Next suppose r is any rational function with poles off σ(T ). Write r = p
q , where

p and q are polynomials and q has no zeros in σ(T ). Then

r(T )− λI = (p− λq)(T )(q(T ))−1.

By the proof of (2),

(p− λq)(T ) is Weyl⇔ p− λq has no zeros in ω(T ).

Thus we have

λ /∈ ω(r(T )) ⇔ (p− λq)(T ) is Weyl

⇔ p− λq has no zeros in σ(T )

⇔ (p− λq)(x)q(x)−1 6= 0 for any x ∈ σ(T )

⇔ λ /∈ r(ω(T )),

i.e.ω(r(T )) = r(ω(T )) for any rational function r with poles off σ(T ). If f is analytic
on a neighborhood of σ(T ), then by Runge’s theorem, there is a sequence {rn} of
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rational functions with poles off σ(T ). Note that the mapping T → ω(T ) is upper
semi-continuous at T by [18, Theorem 1]. Since each rn(T ) commutes with f(T ), it
follows from [18] that

f(ω(T )) = lim
n→∞

rn(ω(T )) = lim
n→∞

ω(rn(T )) = ω(f(T )).

Thus f(ω(T )) = ω(f(T )). �

Corollary 2.16. If T is totally ∗-paranormal, then Weyl’s theorem holds for f(T )
where f is analytic on σ(T ).
���������

. Since T is totally ∗-paranormal, it is isoloid by Lemma 2.13. Also
Weyl’s theorem holds for T by Theorem 2.14. If f is analytic in a neighborhood of
σ(T ), it follows from [18] and [19], or [10] that

f(ω(T )) = f(σ(T )− π00(T )) = σ(f(T ))− π00(f(T )).

Since f(ω(T )) = ω(f(T )) by Theorem 2.15,

ω(f(T )) = σ(f(T ))− π00(f(T )).

Therefore, f(T ) satisfies Weyl’s theorem. �

C.Kitai showed (in [14]) that hyponormal operators are not hypercyclic. We

generalize Kitai’s theorem to the class of totally ∗-paranormal operators. Recall
that if T ∈ L (H) and x ∈ H , then {T nx}∞n=0 is called the orbit of x under T , and

is denoted by orb(T, x). If orb(T, x) is dense in H , then T is called a hypercyclic
operator. Recall that an operator T is said to be semi-Fredholm if ranT is closed and

either kerT or H/ ranT is finite dimensional. The semi-Fredholm spectrum σsF (T )
of T is the set {λ ∈ �

: T − λ is not semi-Fredholm}. At this point we cannot prove
that every totally ∗-paranormal operator is not hypercyclic.

Proposition 2.17. If T is a totally ∗-paranormal operator with σ(T ) 6= σsF (T ),
then it is not hypercyclic.
���������

. If T is hypercyclic, σp(T ∗) = ∅ by [14, Corollary 2.4]. By Lemma 2.1,
σp(T ) = ∅. So we have a contradiction. �

Corollary 2.18. If T is an invertible totally ∗-paranormal operator with σ(T ) 6=
σsF (T ), then T and T−1 have a common nontrivial invariant closed set.
���������

. Since T is not hypercyclic from Theorem 2.17, the proof follows from

[14, Theorem 2.15]. �
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Theorem 2.19. Let T be a totally ∗-paranormal operator in L (H). If T ∗ is

hypercyclic, then σ(T |M ) ∩ (
� \D) 6= ∅ for every hyperinvariant subspaceM 6= (0)

of T where D is the unit disk.
���������

. Suppose that T ∗ is hypercyclic. Let S = T |M for every hyperinvariant

subspaceM 6= (0) of T . If x is a hypercyclic vector for T ∗, then PM x is hypercyclic
for S∗ = PMT ∗|M . Since S is a totally ∗-paranormal operator, it is easy to show that
S is normaloid, i.e., r(S) = ‖S‖ = ‖S∗‖ where r(S) denotes the spectral radius of S.
Since S∗ is hypercyclic, ‖S∗‖ > 1. Hence r(S) > 1. Thus σ(T |M )∩ (

� \D) 6= ∅. �
Recall that the joint point spectrum of T is defined by σjp(T ) = {λ ∈ �

: there

exists a non-zero vector f such that Tf = λf and T ∗f = λ̄f }. Also the joint
approximate point spectrum of T is defined by σjap(T ) = {λ ∈ �

: there exists a

sequence {fn} of unit vectors such that lim
n→∞

‖(T −λ)fn‖ = lim
n→∞

‖(T −λ)∗fn‖ = 0}.

Lemma 2.20. If T is totally ∗-paranormal, then σjap(T ) = σap(T ). In particular,
σjp(T ) = σp(T ).
���������

. It is clear that σjap(T ) ⊂ σap(T ). Let λ ∈ σap(T ). Then there exists a
sequence {hn} of unit vectors such that

lim
n→∞

‖(T − λ)hn‖ = 0.

Since ‖(T − λ)∗hn‖2 6 ‖(T − λ)2hn‖, we get

lim
n→∞

‖(T − λ)∗hn‖ = 0.

Therefore, λ ∈ σjap(T ). �

Proposition 2.21. If T is totally ∗-paranormal, then

σ(T ) = σap(T ∗)∗.

���������
. It is known that for any T ∈ L (H)

σ(T ) = σap(T ) ∪ σ(T ∗)∗

by [12, Problem 73]. It follows from Lemma 2.20 that σap(T ) = σjap(T ). From the
definition of joint approximate point spectrum, it is clear that for any T ∈ L (H)

σjap(T ) = σjap(T ∗)∗ ⊂ σap(T ∗)∗.

Therefore,
σap(T ) = σjap(T ) ⊂ σap(T ∗)∗.

Since σ(T ) = σap(T )∪σ(T ∗)∗, σ(T ) ⊂ σap(T ). On the other hand, σ(T ) = σap(T )∪
σ(T ∗)∗ ⊃ σ(T ∗)∗. So we conclude that σ(T ) = σap(T ∗)∗. �
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Halmos showed in [12] that a partial isometry is subnormal if and only if it is the

direct sum of an isometry and zero. We generalize this theorem to the case of a
totally ∗-paranormal operator.

Proposition 2.22. A partial isometry T is quasinormal (i.e., (T ∗T )T = T (T ∗T ))
if and only if T is ∗-paranormal.
���������

. Assume T is a partial isometry and ∗-paranormal operator. Since kerT

is a reducing subspace for T , T = 0 ⊕ A where A = T |(kerT )⊥ is isometry. Hence
(T ∗T )T = T (T ∗T ).
The converse implication is trivial. �
The next result shows that every totally ∗-paranormal operator satisfies an ana-

logue of the single valued extension property for W 2(D, H). First of all, let us define
a special Sobolev type space. Let D be a bounded open subset of

�
. W 2(D, H) with

respect to ∂ will be the space of those functions f ∈ L2(D, H) whose derivatives ∂f ,

∂2f in the sense of distributions still belong to L2(D, H). Endowed with the norm

‖f‖2
W 2 =

2∑

i=0

‖∂if‖2
2,D,

W 2(D, H) becomes a Hilbert space contained continuously in L2(D, H).

Theorem 2.23. Let D be an arbitrary bounded disk in
�
. If T is totally ∗-

paranormal, then the operator

T − λ : W 2(D, H) −→ W 2(D, H)

is one-to-one.
���������

. Let f ∈ W 2(D, H) be such that (T − λ)f = 0, i.e., ‖(T − λ)f‖W 2 = 0.
Then for i = 1, 2, we have

‖(T − λ)∂if‖2,D = 0.

Hence for i = 1, 2, we get

‖(T − λ)2∂if‖2,D‖∂if‖2,D = 0.

Since T is totally ∗-paranormal, for i = 1, 2

‖(T − λ)∗∂if‖2
2,D = 0.

By [20, Proposition 2.1], we obtain ‖(I−P )f‖2,D = 0 where P denotes the orthogonal
projection of L2(D, H) onto the Bergman space A2(D, H). Hence (T − λ)Pf =
(T − λ)f = 0. Since T has the single valued extension property by Proposition 2.8,
f = Pf = 0. Hence T − λ is one-to-one. �
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Corollary 2.24. If an operator T is a nilpotent perturbation of a totally ∗-
paranormal operator S, i.e., T = S + N where S is totally ∗-paranormal, S and N

commute, and Nm = 0, then T − λ is one-to-one on W 2(D, H).
���������

. If f ∈ W 2(D, H) is such that (T − λ)f = 0, then

(3) (S − λ)f = −Nf.

Hence (S − λ)N j−1f = −N jf for j = 1, 2, . . . , m. We prove that N jf = 0 for
j = 0, 1, . . . , m− 1 by induction. Since Nm = 0,

(S − λ)Nm−1f = −Nmf = 0.

Since S − λ is one-to-one from Theorem 2.23, Nm−1f = 0. Assume it is true when
j = k, i.e., Nkf = 0. From (3), we get

(S − λ)Nk−1f = −Nkf = 0.

Since S − λ is one-to-one from Theorem 2.23, Nk−1f = 0. By induction, we have
f = 0. Hence T − λ is one-to-one. �

Corollary 2.25. Let T ∈ L (H) be any totally ∗-paranormal operator. If S =
V TV ∗ where V is an isometry, then S − λ : W 2(D, H) → W 2(D, H) is one-to-one.
���������

. If f ∈ W 2(D, H) is such that (S − λ)f = 0, then

(T − λ)V ∗∂if = 0

for i = 0, 1, 2. From Theorem 2.23, we get V ∗∂if = 0 for i = 0, 1, 2. Hence
V TV ∗∂if = S∂if = 0 for i = 0, 1, 2. Thus λ∂if = 0 for i = 0, 1, 2. By an ap-

plication of [20, Proposition 2.1] with T = (0), we have

‖(I − P )f‖2,D = 0,

where P denotes the orthogonal projection of L2(D, H) onto the Bergman space
A2(D, H). Hence λf = λPf = 0. From [8, Corollary 10.7], there exists a constant
c > 0 such that

c‖Pf‖2,D 6 ‖λPf‖2,D = 0.

So f = Pf = 0. Thus S − λ is one-to-one. �
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An operator S ∈ L (H) is called scalar of order m if there exists a continuous

unital homomorphism of Φ: Cm
0 (
�
) → L (H) such that Φ(z) = S, where as usual z

stands for the identity function on
�
and Cm

0 (
�
) is the space of compactly supported

functions on
�
, continuously differentiable of order m, with the topology of uniform

convergence on compact subsets. An operator is called subscalar if it is, up to
similarity, the restriction of a scalar operator to an invariant subspace.

Problem 2.26. Is every totally ∗-paranormal operator subscalar?

Next proposition shows that every quasinilpotent totally ∗-paranormal operator
is subscalar.

Theorem 2.27. Let p(T ) − λ be ∗-paranormal for all λ ∈ �
, where p is a

nonconstant polynomial. If σ(T ) = {0}, then T is subscalar.
���������

. Since p(T )− λ be ∗-paranormal for all λ ∈ �
, we may write

p(z) = czk(z − z1) . . . (z − zm)

where zi 6= 0 for i = 1, . . . , m, c ∈ �
, and k > 1. Since σ(T ) = {0}, by the spectral

mapping theorem σ(p(T )) = p(σ(T )) = {0}. Since p(T )− λ be ∗-paranormal for all
λ ∈ �

and σ(p(T )) = {0},

p(T ) = cT k(T − z1) . . . (T − zm) = 0.

Since T − zi are invertible for i = 1, . . . , m, T k = 0. By [15], T is subscalar. �

Theorem 2.28. Let T ∈ L (H) be any totally ∗-paranormal operator. If T has
the property that sup

n
‖fn‖2,D < ∞ whenever ‖(T − λ)fn‖2,D → 0 as n → ∞, then

T is subscalar of order 2.
���������

. Consider an arbitrary bounded open disk D in
�
which contains σ(T )

and the quotient space

H(D) = W 2(D, H)/(T − λ)W 2(D, H)

endowed with the Hilbert space norm. The class of a vector f or an operator A on
H(D) will be denoted by f̃ , respectively Ã. Let M be the operator of multiplica-

tion by z on W 2(D, H). Then M is a scalar operator of order 2 and has a spectral
distribution Φ. Let S = M̃ . Since (T − λ)W 2(D, H) is invariant under every oper-
ator Mf , f ∈ C2

0 (
�
), we infer that S is a scalar operator of order 2 with spectral

distribution Φ̃.
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Consider the natural map V : H → H(D) defined by V h =


1⊗ h, for h ∈ H ,

where 1⊗h denotes the constant function sending any z ∈ D to h. Then V T = SV .

In particular ranV is an invariant subspace for S. In order to complete the proof, it
suffices to show that V is one-to-one and has closed range.

Let hn ∈ H and fn ∈ W 2(D, H) be sequences such that

(4) lim
n→∞

‖(T − λ)fn + 1⊗ hn‖W 2 = 0.

It suffices to show that lim
n→∞

hn = 0. By the definition of the norm of Sobolev space

(4) implies

(5) lim
n→∞

‖(T − λ)∂ifn‖2,D = 0

for i = 1, 2. Since T has the property that sup
n
‖fn‖2,D < ∞ whenever ‖(T −

λ)fn‖2,D → 0 as n →∞,

(6) lim
n→∞

‖(T − λ)2∂ifn‖2,D‖∂ifn‖2,D = 0

for i = 1, 2. Since T is totally ∗-paranormal,

lim
n→∞

‖(T − λ)∗∂ifn‖2
2,D = 0

for i = 1, 2. By [20, Proposition 2.1],

(7) lim
n→∞

‖(I − P )fn‖2,D = 0

where P denotes the orthogonal projection of L2(D, H) onto the Bergman space
A2(D, H). Substituting (7) into (4), we obtain

lim
n→∞

‖(T − λ)Pfn + 1⊗ hn‖2,D = 0.

Let Γ be a curve in D surrounding σ(T ). Then for z ∈ Γ

lim
n→∞

‖Pfn(λ) + (T − λ)−1(1⊗ hn)‖ = 0

uniformly. Hence by Riesz-Dunford functional calculus,

lim
n→∞

∥∥∥∥
1

2πi

∫

Γ

Pfn(λ) dλ + hn

∥∥∥∥ = 0.

But since (2πi)−1
∫
Γ

Pfn(λ) dλ = 0 by Cauchy’s theorem, lim
n→∞

hn = 0. Thus V is

one-to-one and has closed range. �
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Recall that if U is a nonempty open set in
�
and if Ω ⊂ U has the property that

sup
λ∈Ω

|f(λ)| = sup
β∈U

|f(λ)|

for all f bounded and analytic on U , then Ω is said to be dominating for U . If we
apply Theorem 2.28 and [11], we obtain the following.

Corollary 2.29. Let T ∈ L (H) be any totally ∗-paranormal operator. If T has
the properties that sup

n
‖fn‖2,D < ∞ whenever ‖(T − λ)fn‖2,D → 0 as n → ∞ and

that σ(T ) ∩ U is dominating for some nonempty open set U ⊂ �
, then T has a

nontrivial invariant subspace.
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