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Abstract. In this paper we use cohomology of Lie algebras to study the variety of laws
associated with filiform Lie algebras of a given dimension. As the main result, we describe
a constructive way to find a small set of polynomials which define this variety. It allows
to improve previous results related with the cardinal of this set. We have also computed
explicitly these polynomials in the case of dimensions 11 and 12.
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Introduction

Filiform Lie algebras were introduced by M. Vergne in the late 60’s of the past

century [1]. However, before that, Blackburn studied the analogous class of finite
p-groups and used the term maximal class to call them, which is also now used for

Lie algebras [2]. In fact, both the terms filiform and maximal class are synony-
mous.

Vergne showed that, within the variety of nilpotent Lie multiplications on a fixed
vector space, non-filiforms can be relegated to small-dimensional components; thus,

from an intuitive point of view, it is possible to consider that quite a lot of nilpotent
Lie algebras are filiform, in spite of this last subset not being dense in the space

of nilpotent Lie algebras. Apart from that, complex filiform Lie algebras are the
most structured subset of nilpotent Lie algebras, with respect to an adapted basis.

In this sense, we can study and classify them easier than the set of nilpotent Lie
algebras.
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So, in earlier papers, some of us have deeply studied these algebras and obtained

quite a lot of results about them. Indeed, we already got the classification of those
having dimensions 10, 11 and 12 (see [3], for instance). Moreover, we think that this
study can be also considered a small step forward in the problem of the classification

of these algebras, although it is not the principal objective of this work.
It is already known that the usual cohomology space of degree 2 of the model

filiform Lie algebra with values in its adjoint module is closely related with the
study of filiform Lie algebras. For each dimension, it is possible to associate this

space with an affine algebraic variety. Polynomials defining this variety are preserved
when the dimension increases, although the number of them certainly increases. In

fact, all polynomials defining these varieties are homogeneous of degree two and
when increasing the degree by one, the only polynomials which are added are linear

in the new variables. This suggests that each component of the variety of filiform
Lie algebras of dimension n+ 1 may be a bundle over the corresponding component
of the variety of dimension n with affine fibres (see [4], [5]).
So, apart from describing the variety, another aim of this paper is to significantly

reduce the number of these polynomials, for each dimension. In the paper we also
describe an algorithm which allows to determine in a computational way the variety

of these algebras. It is suitable for being used in the case of bigger dimensions.
Indeed, this algorithm can be useful for studying the irreducible component of

filiform Lie algebras of dimension greater than or equal to 12, which is actually an
open problem. Moreover, some techniques related with Gröbner basis allow us to

conjecture that the number of polynomials given by the algorithm could be minimal.
The algorithm can be easily implemented in any symbolic computational package.

Concretely, we have used MAPLE in our study.

1. Cohomology of Lie algebras

Let G be a Lie algebra over an arbitrary field K and let V be a G-module. We
will denote the p-co-chain space of G having values in V by Cp(G, V ), with p > 0. It
is the space of p-linear alternating mappings of Gp into V for p > 1 and the space of
the constant functions from G into V for p = 0.
We now consider the coboundary operator d, defined as usual starting from the

representation of G associated with V according to

d : Cp(G, V ) −→ Cp+1(G, V )

as
dϕ(x) = xϕ for ϕ ∈ C0(G, V ), x ∈ G if p = 0
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and

dϕ(x1, . . . , xp+1) =
p+1∑

s=1

(−1)s+1(xsϕ)(x1, . . . , x̂s, . . . , xp+1)

+
∑

16s<t6p+1

(−1)s+tϕ([xs, xt], x1, . . . , x̂s, . . . , x̂t, . . . , xp+1)

if p > 1 for ϕ ∈ Cp(G, V ) and x1, . . . , xp+1 ∈ G where the symbol means that the
letter is omitted.

We will denote by Zp(G, V ) and Bp(G, V ) the p-cocycles and p-coboundaries of G,
respectively, with values in V .

Finally, Hp(G, V ) = Zp(G, V )/Bp(G, V ) will denote the cohomology space of G of
degree p with values in V .

If G is a filtered Lie algebra, G =
⋃
i∈ �

Si and V a filtered G-module, V =
⋃
i∈ �

Vi, we

can consider the filtration Cj(G, V ) =
⋃
k∈ �

FkC
j(G, V ) in the co-chains space where

FkC
j(G, V ) = {c ∈ Cj(G, V ) : c(xi1 , . . . , xij ) ∈ Vi1+...+ij+k, xl ∈ Sl}.

Then, as usual, we can provide the coboundary, cocycle and cohomology spaces,
respectively, by the corresponding filtrations

Zj(G, V ) =
⋃

k∈ �
FkZ

j(G, V ), Bj(G, V ) =
⋃

k∈ �
FkB

j(G, V ),

Hj(G, V ) =
⋃

k∈ �
FkH

j(G, V ), with FkH
j(G, V ) = FkZ

j/FkB
j .

By taking into consideration the gradation associated with any of these filtrations,
we have

Cj(G, V ) =
⊕

i∈ �
Cji (G, V ), Zj(G, V ) =

⊕

i∈ �
Zji (G, V ),

Bj(G, V ) =
⊕

i∈ �
Bji (G, V ), Hj(G, V ) =

⊕

i∈ �
Hj
i (G, V ).
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2. Cohomology of filiform Lie algebras

Let us recall that in a complex Lie algebra G, one can consider the lower central
series (G)1 = G, (G)2 = [G,G], . . . , (G)k = [(G)k−1,G], . . . It is said that G is filiform
if dim(G)k = n− k for k > 2, with n = dimG. Note that filiform Lie algebras are a
subset of nilpotent Lie algebras.

If we denote by Ln the model filiform Lie algebra of dimension n and basis
{e1, . . . , en}, then its bracket products are defined by [e1, ei] = ei+1 for 2 6 i 6 n−1.
For a general overview of this kind of algebras the reader can consult [1].

In this section we will describe cohomology spaces of the complex model Lie alge-
bra Ln having values in its adjoint module.

The algebra Ln is filtered by considering the lower central series Ln =
⋃
i>1

(Ln)i,

where (Ln)1 = Ln and for i > 2 we have (Ln)i = 〈ei+1, . . . , en〉. So, we

can consider the following descending filtration in the 2-cocycles space of Ln :
FkZ

2(Ln, Ln) = {ϕ ∈ Z2(Ln, Ln) : ϕ((Ln)i, (Ln)j) ⊆ (Ln)i+j+k}. We have

Z2(Ln, Ln) =
⋃

k>−1

FkZ
2(Ln, Ln).

It is proved in [6] that the cohomology class of 2-cocycles ψk,s for 2 6 k, 2k 6 s 6 n

defined by

ψk,s(ei, ei+1) =

{
es if i = k,

0 if i 6= k,
(2.1)

ψk,s(e1, ei) = 0 for 2 6 i 6 n

constitutes a basis of F0H
2(Ln, Ln). The definition of these cocycles will be written

out in Section 4 after equation (4.1) in this paper.

3. Integrability in the cohomology space of filiform Lie algebras

Let us denote by µ the law of a Lie algebra G. It is known that elements of Z2(G,G)
can be considered as infinitesimal deformations of µ. Then we will say that ψ ∈
Z2(G,G) is linearity prolongable or integrable if the law defined by [a, b]ψ = µ(a, b)+
ψ(a, b) for a, b ∈ G satisfies the Jacobi identity. The Lie algebra obtained starting
from this law will be denoted by Gψ.
It is immediate that ψ ∈ Z2(G,G) will be integrable if and only if

(ψ ◦ ψ)(a, b, c) = ψ(ψ(b, c), a) + ψ(ψ(c, a), b) + ψ(ψ(a, b), c) = 0

for all a, b, c ∈ G.
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The study of the cohomology space of the model filiform Lie algebra will supply us

a lot of information on filiform Lie algebras. According to Vergne (see [1]), every com-
plex filiform Lie algebra is isomorphic to a Lie algebra (Ln)ψ for ψ ∈ F0H

2(Ln, Ln).
By considering the previous notation, the following result is valid, as we can see

in [7].

Proposition 3.1. The cocycle ψ =
∑
ak,sψk,s ∈ F0H

2(Ln, Ln), where ak,s 6= 0
for a pair (k, s) such that s = 2k < n, is not integrable.

So, if ψ ∈ F0H
2(Ln, Ln) is integrable and defines a filiform Lie algebra, then either

ψ ∈ 〈ψm,n〉 + F1H
2(Ln, Ln) if n is even, for m = 1

2n, or ψ ∈ F1H
2(Ln, Ln) if n is

odd.

Proposition 3.2. The dimension of F1H
2(Ln, Ln) is 1

4 (n2 − 6n+ 9) if n is odd,
or 1

4 (n2 − 6n+ 8) if n is even.

���������
. We know a basis of the space F0H

2(Ln, Ln) constituted by the coho-
mology classes of ψk,s, see (2.1). As F1H

2(Ln, Ln) ⊂ F0H
2(Ln, Ln), it is sufficient to

check that F1H
2(Ln, Ln) is generated by the cohomology classes of ψk,s with 2 6 k,

2k+1 6 s 6 n, because the linear independence of them is immediate, starting from
the definition of ψk,s. �

From now on, we will denote by w the dimension of F1H
2(Ln, Ln). Let us con-

sider the associated gradation: F1H
2(Ln, Ln) =

⊕
i>1

H2
i (Ln, Ln). Then, if ψ ∈

F1H
2(Ln, Ln), we can denote ψ = ψr + ψr+1 + . . . + ψp, where ψi ∈ H2

i (Ln, Ln),
ψr 6= 0, r > 1.
The cocycle ψr will be named the sill cocycle. It is easy to prove

Theorem 3.3. If ψ is integrable, then its sill cocycle is also integrable.

The algebra (Ln)ψr is named the sill algebra of the Lie algebra (Ln)ψ.
So, a first step to determine if ψ ∈ F0H

2(Ln, Ln) is integrable will be to obtain
those ψi ∈ H2

i (Ln, Ln) for i > 1 which are integrable.
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4. Structure of filiform Lie algebras

In this section we will study the elements of H2
i (Ln, Ln) with i > 0, due to their

important role in the structure of filiform Lie algebras.

By considering the natural gradation defined on Ln, if ψi ∈ H2
i (Ln, Ln) with i > 0,

we can write

ψi =
∑

k>2

ak,sψk,s with s = 2k + i 6 n.

For every pair (k, s) with 2 6 k, 2k 6 s 6 n, since ψk,s ∈ Z2(Ln, Ln), when the
coboundary operator d is applied, we obtain

d ◦ ψk,s(e1, ei, ej) = 0,

that is

(4.1) ψk,s(ei, ej) = [e1, ψk,s(ei, ej−1)]− ψk,s(ei+1, ej−1)

for 2 6 i < j 6 n.

Starting from the definition of ψk,s (2.1) and using (4.1), we have

If k < i, then ψk,s(ei, ej) = 0, ∀ j > i.

If k = i, then ψk,s(ei, ej) = (ad e1)j−k−1(es), ∀ j > i.

If k > i, then ψk,s(ei, ej) = (−1)k−i
(
j − k − 1
k − i

)
(ad e1)i+j−2k−1es,

∀ j > i, i+ j − 2k − 1 > 0 and

ψk,s(ei, ej) = 0, ∀ j > i, i+ j − 2k − 1 < 0.

So, we conclude that

(4.2) ψk,s(ei, ej) = (−1)k−i
(
j − k − 1
k − i

)
(ad e1)i+j−2k−1es

for 2 6 i 6 k < j 6 n, k − i 6 j − k − 1, and ψk,s(ei, ej) = 0 otherwise, provided
that 2 6 i < j 6 n.
By virtue of Proposition 3.1, for n even and i = 0, we can assume ψ0 = a 1

2n,n
ψ 1

2n,n
,

because in the other case ψ0 would not be integrable and thus it would not be of
interest for our study. So,

{
ψ0(ei, ej) = a 1

2n,n
(−1)

1
2n−ien, j = n+ 1− i, 2 6 i 6 1

2n,

ψ0(ei, ej) = 0 otherwise.
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Fixing i > 1, ψi ∈ H2
i (Ln, Ln) for any 2 6 q 6

[
n−i
2

]
and denoting by tk the

coefficients ak,2k+i we have

ψi(eq , eq+1) =
∑

s=2k+i

tkψk,s(eq , eq+1) = tqψq,2q+i(eq , eq+1) = tqe2q+i.

According to (4.1), for 2 6 q 6
[
n−i
2

]
we also obtain

ψi(eq, eq+2) =
[ n−i

2 ]∑

l=q

tlψl,2l+i(eq , eq+2)

= tq[e1, ψq,2q+i(eq, eq+1)] = tqe2q+1+i.

Finally, by using (4.2) for 2 6 q 6
[
n−i
2

]
, q + 2 < p 6 n+ 1− q − i, we have

ψi(eq, ep) =
[ n−i

2 ]∑

l=q

tlψl,2l+i(eq, ep) =
[ p+q−1

2 ]∑

l=q

(−1)l−qtl

(
p− l − 1
l − q

)
ep+q+i−1.

Example 1. For n = 11 and i = 1, let us consider

ψ1 =
5∑

k=2

ak,2k+1ψk,2k+1 =
5∑

k=2

tkψk,2k+1.

Then G1
11(t2, t3, t4, t5) = (L11)ψ1 has the following structure:

[e1, ek] = ek+1 for 2 6 k 6 10, [e2, e9] = (t2 − 5t3 + 6t4 − t5)e11,

[e2, e8] = (t2 − 4t3 + 3t4)e10, [e2, e7] = (t2 − 3t3 + t4)e9,

[e2, e6] = (t2 − 2t3)e8, [e2, e5] = (t2 − t3)e7,

[e2, e4] = t2e6, [e2, e3] = t2e5,

[e3, e8] = (t3 − 3t4 + t5)e11, [e3, e7] = (t3 − 2t4)e10,

[e3, e6] = (t3 − t4)e9, [e3, e5] = t3e8,

[e3, e4] = t3e7, [e4, e7] = (t4 − t5)e11,

[e4, e6] = t4e10, [e4, e5] = t4e9,

[e5, e6] = t5e11.
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5. Variety of graded filiform Lie algebras

As the space F0H
2(Ln, Ln) is generated by the cohomology class of 2-cocycles ψk,s

for 2 6 k, 2k 6 s 6 n, the constants ak,s allow us to define an element ψ ∈
F0H

2(Ln, Ln) as follows:
ψ =

∑
ak,sψk,s.

Starting from Propositions 3.1 and 3.2 we can denote byMn the affine algebraic vari-
ety in the complex (w+1)-dimensional affine space 	 w+1 , defined by the polynomials

in 	 [ak,s ] obtained from considering ψ ◦ ψ(eq, ep, er) = 0 for all 2 6 q < p < r 6 n.
The decomposition F0H

2(Ln, Ln) =
⊕
i>0

H2
i (Ln, Ln) allows us to conclude that

⋃
i>0

Mn
i ⊆ Mn, where Mn

i is the affine algebraic variety defined by the polynomials

obtained by considering ψi ◦ ψi(eq, ep, er) = 0, for all 2 6 q < p < r 6 n when

ψi ∈ H2
i (Ln, Ln).

For i = 0, Proposition 3.1 involves Mn
0 = {(a 1

2n,n
, 0, . . . , 0)}. For i > 1, the space

H2
i (Ln, Ln) is generated by the cohomology classes of ψk,s with s = 2k + i, k > 2,

s 6 n. So, to obtain Mn
i it is sufficient to determine the constants ak,2k+i such that

ψi =
[ n−i

2 ]∑

k=2

ak,2k+iψk,2k+i =
[ n−i

2 ]∑

k=2

tkψk,2k+i

is integrable. That is, ψi ◦ ψi(eq, ep, er) = 0 for 2 6 p < q < r 6 n. But taking into
consideration the structure of ψi ∈ H2

i (Ln, Ln) considered in the previous section,
we have

ψi ◦ ψi(eq , ep, er) = P i,ip,q,rep+q+r+2i−2

where P i,iq,p,r is a homogeneous polynomial of degree 2 in 	 [t2 , . . . , t[ n−i
2 ]], provided

q + p+ r + 2i− 2 6 n, because it is identically zero in the other case.

So, the varietyMn
i is defined by {P i,iq,p,r = 0: q+ p+ r+ 2i− 2 6 n}. Considering

ak,s = 0 for s 6= 2k + i, we have Mn
i ⊂Mn.

Remark 1. If we denote by Qiq,p with i > 1 the coefficient of the field eq+p+i−1

in ψi(eq, ep), that is, if

ψi(eq, ep) =
[ p+q−1

2 ]∑

l=q

(−1)l−qtl

(
p− l− 1
l − q

)
ep+q+i−1 = Qiq,pep+q+i−1,

then we have

P i,iq,p,r = Qiq,pQ
i
p+q+i−1,r −Qiq,rQ

i
q+r+i−1,p +Qip,rQ

i
p+r+i−1,q.
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Example 2. By continuing with the notation from the previous example, the
polynomials defining the variety M 11

1 are

P 1,1
3,4,6 ≡ 0,

P 1,1
3,4,5 ≡ 0,

P 1,1
2,3,6 = −3t23 + 5t3t4 + t3t5 + 2t4t2 − 6t24 + t4t5 − 2t2t5,

P 1,1
2,4,5 = −4t3t4 + 6t24 − t4t5 + 2t2t5 − t3t5,

P 1,1
2,3,5 = t3t4 + 2t2t4 − 3t23,

P 1,1
2,3,4 = t3t4 + 2t2t4 − 3t23.

Proposition 5.1. Under the conditions i > 1, 2 6 q < p 6 n, p+q+i−1 6 n−1,
we have

Qiq,p = Qiq+1,p +Qiq,p+1.

���������
. It is immediate by using the basic properties of combinatorial numbers.

�

Proposition 5.2.

P i,iq,p,r = P i,iq,p,r−1 − P i,iq,p+1,r−1 − P i,iq+1,p,r−1

for i > 1, 2 6 q < p < r, p+ q + r + 2i− 2 6 n.
���������

. It follows from the last result and from Remark 1. Indeed, if we denote

P i,iq,p,r − P i,iq,p,r−1 + P i,iq,p+1,r−1 + P i,iq+1,p,r−1 = (a) + (b) + (c), where

(a) = Qiq,pQ
i
p+q−1+i,r −Qiq,pQ

i
p+q−1+i,r−1 +Qiq,p+1Q

i
p+q+i,r−1 +Qiq+1,pQ

i
p+q−i,r−1

= Qiq,p(Q
i
p+q−1+i,r −Qip+q−1+i,r−1) + (Qiq,p+1 +Qiq+1,p)Q

i
p+q+i,r−1

due to p+ q + i 6 n− r + 2− i 6 n− 1 and p+ q − 2 + 2i = n− r 6 n− 1, we can
use the previous proposition and thus we have

(a) = −Qiq,pQip+q+i,r−1 +Qiq,pQ
i
p+q+i,r−1 = 0.

In a similar way it is easy to obtain

(b) = −Qiq,rQiq+r+i−1,p +Qiq,r−1Q
i
q+r−2+i,p −Qiq,r−1Q

i
q+r−2+i,p+1

−Qiq+1,r−1Q
i
q+r+i−1,p

= Qiq,r−1(Q
n
q+r−2+i,p −Qiq+r−2+i,p+1) + (−Qiq,r −Qiq+1,r−1)Q

i
q+r+i−1,p

= (Qiq,r−1 −Qiq,r −Qiq+1,r−1)Q
i
q+r−1+i,p = 0
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and

(c) = Qip,rQ
i
p+r+i−1,q −Qip,r−1Q

i
p+r−2+i,q +Qip+1,r−1Q

i
p+r−1+i,q

+Qip,r−1Q
i
p+r−2+i,q+1

= (Qip,r +Qip+1,r−1 −Qip,r−1)Q
i
p+r−1+i,q = 0,

which completes the proof. �

Example 3. By continuing with Example 2, we have

P 1,1
3,4,6 = P 1,1

2,3,5 − P 1,1
2,4,5; P 1,1

3,4,5 = P 1,1
2,3,4.

Remark 2. By considering again the structure of cocycles in the spaces
H2
i (Ln, Ln) for i > 1, it is easy to check that if Q̄iq,p denotes the coefficient of

ep+q+i−1 in ψi(eq, ep) for ψi ∈ H2
i (Ln−1, Ln−1) we have Q̄iq,p = Qiq,p for all 2 6 q < p

with p + q + i − 1 6 n − 1, where Qiq,p represents the corresponding coefficient for
ψi ∈ H2

i (Ln, Ln) such that ψi
∣∣Ln−1 × Ln−1 = ψi.

So, by denoting by P i,iq,p,r the associated polynomial with ψi, we have verified that
P i,iq,p,r = P i,iq,p,r for 2 6 q < p < r 6 n, with p+ q + r + 2i− 2 6 n− 1.
As a consequence of this note, if we define M̂n−1

i = Mn−1
i when n− i is odd (that

is [n−i2 ] = [n−1−i
2 ]) and M̂n−1

i = Mn−1
i × 	 when n− i is even, we have

Mn
i ⊆ M̂n−1

i .

So, an inductive method on the dimension n can be used to obtain the varietyMn
i ,

once the variety Mn−1
i is known. In fact, we have

Proposition 5.3. Given a fixed i > 1, we haveMn
i = M̂n−1

i ∩Nn
i for all n ∈ 
 ,

where Nn
i is the algebraic variety defined by

{P i,iq,p,r : p+ q + r + 2i− 2 = n}.

Finally, we are going to see that the number of polynomials required to define Nn
i

can be notably reduced by using Proposition 5.2. As a consequence of it, any
polynomial P i,iq,p,r defining N

n
i is a linear combination of polynomials P

i,i
q,p,p+1 with

q + 2p+ 1 + 2i− 2 = n, and of polynomials of Mn−1
i . To see it, we prove
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Theorem 5.4. The subvariety Mn
i ⊆ M̂n−1

i is defined by

• P i,i
2+2k, n−2i−1

2 −k,n−2i+1
2 −k for 0 6 3k 6 n−2i−7

2 , if n is odd.

• P i,i
3+2k, n−2i−2

2 −k,n−2i
2 −k for 0 6 3k 6 n−2i−10

2 , if n is even.

���������
. From Proposition 5.2 we have

(5.1) P i,iq,p,r = −P i,iq,p+1,r−1 − P i,iq+1,p,r−1

for 2 6 q < p < r, p + q + r + 2i − 2 = n, since P i,iq,p,r−1

∣∣Mn−1
i ≡ 0. Now, by

recurrence on q, p, r in (5.1), we obtain that any Jacobi polynomial defining Nn
i in

M̂n−1
i is a linear combination of P i,iq,p,p+1 with q + 2p+ 1 + 2i− 2 = n. �

6. Variety of filiform Lie algebras

Let us consider ψ =
∑
ak,sψk,s = ψl + . . . + ψt ∈ F0H

2(Ln, Ln), where ψi =∑
k

ak,2k+iψk,2k+i. We will study in this section the variety Mn, with n arbitrary,

defined starting from

ψ ◦ ψ = ψl ◦ ψl +
∑

i+j=2l+1

ψi ◦ ψj +
∑

i+j=2l+2

ψi ◦ ψj + . . . ,

that is, (ψ ◦ ψ)(eq , ep, er) = 0 for 2 6 q < p < r 6 n.

If we denote by P i,jq,p,r the polynomial obtained from (ψi ◦ ψj)(eq , ep, er), we have

(ψ ◦ ψ)(eq , ep, er) = P l,lq,p,req+p+r+2l−2 +
∑

i+j=2l+1

P i,jq,p,req+p+r+2l+1−2(6.1)

+ . . .+
∑

i+j=n+2−p−q−r
P i,jq,p,ren

where P i,jq,p,r = Qjq,pQ
i
p+q+j−1,r −Qjq,rQ

i
r+q+j−1,p +Qjp,rQ

i
p+r+j−1,q for any i, j > 0.

In this expression, for i > 1, Qiq,p follows the habitual notation from Remark 1, while
for i = 0,

Q0
q,p =

{
(−1)

1
2n−q if p = n+ 1− q,

0 otherwise

following the structure of ψ0 from Section 4.
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Proposition 6.1. Qiq,p = Qiq+1,p +Qiq,p+1 for q + p+ i− 1 6 n− 1, i > 0.
���������

. For i 6 1, the result follows from Proposition 5.1. When i = 0,
if p + q < n, then Q0

q,p = Q0
q+1,p = Q0

q,p+1 = 0, whereas if q + p = n, then
Q0
q,p = 0 = (−1)

1
2n−q−1 + (−1)

1
2n−q = Q0

q+1,p +Q0
q,p+1. �

As a consequence, we have the following results. The proof of each of them is
similar to the one made in Proposition 5.2.

Proposition 6.2. Given i, j > 1, if q+p+ r+ i+ j−2 6 n with q < p < r, then

P i,jq,p,r = P i,jq,p,r−1 − P i,jq,p+1,r−1 − P i,jq+1,p,r−1.

Proposition 6.3. If q + p+ r + v − 2 = n with q < p < r, then

P 0,v
q,p,r = −P 0,v

q,p+1,r−1 − P 0,v
q+1,p,r−1.

Proposition 6.4. If n is even and a 1
2n,n

6= 0, then l = 0 with ψ0 = a 1
2n,n

ψ 1
2n,n

in expression (6.1). In this case, holds ψv ◦ψ0 ≡ 0 ∀ v > 0. Moreover, for q < p < r,

if r 6= n+ 2− q − p− v, then

ψ0 ◦ ψv(eq , ep, er) = 0.

���������
. Under the hypothesis, by taking into consideration the structure of ψ0,

we have, for any 2 6 q < p < r, that ψv ◦ ψ0(eq , ep, er) = λψv(ek, en) for a certain λ
which is a multiple of a 1

2n,n
and a certain k > 2. As v > 0, we have ψv(ek, en) = 0,

since k + n− 1 > n.

Moreover, if r 6= n+ 2− q − p− v, then

ψ0 ◦ ψv(eq , ep, er) = ψ0(ψv(eq , ep), er) + ψ0(ψv(er, eq), ep) + ψ0(ψv(ep, er), eq)

= Qvq,pψ0(eq+p+v−1, er) +Qvr,qψ0(er+q+v−1, ep)

+Qvp,rψ0(ep+r+v−1, eq)

= Qvq,p · 0 +Qvr,q · 0 +Qvp,r · 0 = 0.

Remark 3. Denoting Lvq,p,r =
∑

i+j=v

P i,jq,p,r for v > 2, q < p < r, we have the

following results:
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• Either for n odd or for n even with a 1
2n,n

= 0, we have l > 1 in (6.1) and thus
we can write

(ψ ◦ ψ)(eq , ep, er) =
n+2−q−p−r∑

v=2l

Lvq,p,rep+q+r−2+v .

• If n is even and a 1
2n,n

6= 0, then l = 0 in (6.1) and Proposition 6.4, for q < p < r,
implies

(ψ ◦ ψ)(eq , ep, er) =
n+2−q−p−r∑

v=2

Lvq,p,rep+q+r−2+v + P 0,n+2−q−p−r
q,p,r en.

So, under this notation, the following result follows as an immediate consequence

of Proposition 6.2.

Theorem 6.5. For 2 6 q < p < r 6 n, q + p+ r + v − 2 6 n, we have

Lvq,p,r = Lvq,p,r−1 − Lvq,p+1,r−1 − Lvq+1,p,r−1.

Example 4. Let us consider the algebra (L11)ψ, where

ψ = ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7

=
5∑

i=2

tiψi,2i+1 +
4∑

i=2

hiψi,2i+2 +
4∑

i=2

fiψi,2i+3 +
3∑

i=2

giψi,2i+4

+
3∑

i=2

kiψi,2i+5 + d2ψ2,10 + b2ψ2,11,

defined by

[e1, ei] = ei+1 for 2 6 i 6 10,

[e2, e9] = (t2 − 5t3 + 6t4 − t5)e11,

[e2, e8] = (t2 − 4t3 + 3t4)e10 + (h2 − 4h3 + 3h4)e11,

[e2, e7] = (t2 − 3t3 + t4)e9 + (h2 − 3h3 + h4)e10

+ (f2 − 3f3 + f4)e11,

[e2, e6] = (t2 − 2t3)e8 + (h2 − 2h3)e9 + (f2 − 2f3)e10

+ (g2 − 2g3)e11,

[e2, e5] = (t2 − t3)e7 + (h2 − h3)e8 + (f2 − f3)e9 + (g2 − g3)e10

+ (k2 − k3)e11,
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[e2, e4] = t2e6 + h2e7 + f2e8 + g2e9 + k2e10 + d2e11,

[e2, e3] = t2e5 + h2e6 + f2e7 + g2e8 + k2e9 + d2e10 + b2e11,

[e3, e8] = (t3 − 3t4 + t5)e11,

[e3, e7] = (t3 − 2t4)e10 + (h3 − 2h4)e11,

[e3, e6] = (t3 − t4)e9 + (h3 − h4)e10 + (f3 − f4)e11,

[e3, e5] = t3e8 + h3e9 + f3e10 + g3e11,

[e3, e4] = t3e7 + h3e8 + f3e9 + g3e10 + k3e11,

[e4, e7] = (t4 − t5)e11,

[e4, e6] = t4e10 + h4e11,

[e4, e5] = t4e9 + h4e10 + f4e11,

[e5, e6] = t5e11.

Computing (ψ ◦ ψ)(e2, e3, e4) = (ψ ◦ ψ)(e2, e3, e5) = (ψ ◦ ψ)(e2, e4, e5) = (ψ ◦
ψ)(e2, e3, e6) = 0, and continuing with the usual notation, we conclude that the
algebraic variety M11 ⊂ 	 16 is defined by the polynomials

L2
2,3,6 = −3t23 + 5t3t4 + t3t5 + 2t4t2 − 6t24 + t4t5 − 2t2t5,

L2
2,4,5 = −4t3t4 + 6t24 − t4t5 + 2t2t5 − t3t5,

L2
2,3,5 = t3t4 + 2t2t4 − 3t23,

L3
2,3,5 = 3h2t4 − 7t3h3 + t3h4 + 3h3t4 + 2t2h4,

L2
2,3,4 = t3t4 + 2t2t4 − 3t23,

L3
2,3,4 = 2t2h4 + 3h3t4 − 7t3h3 + t3h4 + 3h2t4,

L4
2,3,4 = 3h3h4 − 4h2

3 − 8t3f3 + t3f4 + 6f23t4 − f3t5 + 2t2f4,

+ 3h2h4 + 4f2t4 − 2f2t5.

We observe that L2
2,3,6 = L2

2,3,5 − L2
2,4,5, L

2
2,3,5 = L2

2,3,4, L
3
2,3,5 = L3

2,3,4. So, we
can say that M11 is also defined by L2

2,4,5, L
2
2,3,4, L

3
2,3,4 and L

4
2,3,4.

Example 5. Let us consider the algebra (L12)ψ, where

ψ = ψ0 + ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8

= zψ6,12 +
5∑

i=2

tiψi,2i+1 +
5∑

i=2

hiψi,2i+2 +
4∑

i=2

fiψi,2i+3 +
4∑

i=2

giψi,2i+4

+
3∑

i=2

kiψi,2i+5 +
3∑

i=2

diψi,2i+6 + b2ψ2,11 + l2ψ2,12,
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defined by

[e1, ei] = ei+1 for 2 6 i 6 11,

[e2, e11] = ze12,

[e2, e10] = (t2 − 6t3 + 10t4 − 4t5)e12,

[e2, e9] = (t2 − 5t3 + 6t4 − t5)e11 + (h2 − 5h3 + 6h4 − h5)e12,

[e2, e8] = (t2 − 4t3 + 3t4)e10 + (h2 − 4h3 + 3h4)e11

+ (f2 − 4f3 + 3f4)e12,

[e2, e7] = (t2 − 3t3 + t4)e9 + (h2 − 3h3 + h4)e10

+ (f2 − 3f3 + f4)e11 + (g2 − 3g3 + g4)e12,

[e2, e6] = (t2 − 2t3)e8 + (h2 − 2h3)e9 + (f2 − 2f3)e10

+ (g2 − 2g3)e11 + (k2 − 2k3)e12,

[e2, e5] = (t2 − t3)e7 + (h2 − h3)e8 + (f2 − f3)e9 + (g2 − g3)e10

+ (k2 − k3)e11 + (d2 − d3)e12,

[e2, e4] = t2e6 + h2e7 + f2e8 + g2e9 + k2e10 + d2e11 + b2e12,

[e2, e3] = t2e5 + h2e6 + f2e7 + g2e8 + k2e9 + d2e10 + b2e11 + l2e12,

[e3, e10] = −ze12,
[e3, e9] = (t3 − 4t4 + 3t5)e12,

[e3, e8] = (t3 − 3t4 + t5)e11 + (h3 − 3h4 + h5)e12,

[e3, e7] = (t3 − 2t4)e10 + (h3 − 2h4)e11 + (f3 − 2f4)e12,

[e3, e6] = (t3 − t4)e9 + (h3 − h4)e10 + (f3 − f4)e11 + (g3 − g4)e12,

[e3, e5] = t3e8 + h3e9 + f3e10 + g3e11 + k3e12,

[e3, e4] = t3e7 + h3e8 + f3e9 + g3e10 + k3e11 + d3e12,

[e4, e9] = ze12,

[e4, e8] = (t4 − 2t5)e12,

[e4, e7] = (t4 − t5)e11 + (h4 − t5)e12,

[e4, e6] = t4e10 + h4e11 + f4e12,

[e4, e7] = t4e9 + h4e10 + f4e11 + g4e12,

[e5, e8] = −ze12,
[e5, e7] = t5e12,

[e5, e6] = t5e11 + h5e12,

[e6, e7] = ze12.
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Computing now (ψ ◦ ψ)(e2, e3, e4) = (ψ ◦ ψ)(e2, e3, e5) = (ψ ◦ ψ)(e2, e4, e5) =
(ψ ◦ ψ)(e2, e3, e6) = (ψ ◦ ψ)(e3, e4, e5) = (ψ ◦ ψ)(e2, e4, e6) = (ψ ◦ ψ)(e2, e5, e6) =
(ψ ◦ ψ)(e2, e3, e7) = (ψ ◦ ψ)(e2, e4, e7) = (ψ ◦ ψ)(e2, e3, e8) = 0, we obtain

P 0,1
2,3,8 = −2t2z − t5z + 3t3z,

P 0,1
2,4,7 = 2t2z + t5z − 3t3z,

P 0,2
2,3,7 = h4z − 2h3z,

L2
2,3,7 = −4t2t5 + 9t3t4 + 5t3t5 + 2t4t2 + 5t4t5 − 3t23 − 16t24,

P 0,1
2,5,6 = −2t2z − t5z + 3t3z,

P 0,2
2,4,6 = −h4z − 2h3z,

L2
2,4,6 = −4t3t4 + 10t24 − 4t4t5 + 2t2t5 − 4t3t5,

P 0,3
2,3,6 = −2f2z + f4z + f3z,

L2
2,3,6 = −3t23 + 5t3t4 + t3t5 + 2t4t2 − 6t24 + t4t5 − 2t2t5,

L3
2,3,6 = −7t3h3 + 2t2h4 + 3t4h2 + 6t3h4 + t3h5 + 7t4h3 − 16t4h4

+ t4h5 + 2h3t5 + 4t5h4 − 2t2h5 − 3h2t5,

P 0,2
3,4,5 = h4z + 2h3z,

L2
3,4,5 = −4t24 + 3t4t5 + 3t2t5,

P 0,3
2,4,5 = 2f2z − f4z − f3z,

L2
2,4,5 = −4t3t4 + 6t24 − t4t5 + 2t2t5 − t3t5,

L3
2,4,5 = −5t3h4 − t3h5 − 4t3h4 + 16t4h4 − t4h5 − 2t5h3 − 4t5h4 + 2t2h5 + 3h2t5,

L2
2,3,5 = t3t4 + 2t2t4 − 3t23,

L3
2,3,5 = 3h2t4 − 7t3h3 + t3h4 + 3h3t4 + 2t2h4,

L4
2,3,5 = 3h3h4 − 4h2

3 − 8t3f3 + t3f4 + 6f3t4 − f3t5 + 2t2f4 + 3h2h4,

+ 4f2t4 − 2f2t5,

P 0,5
2,3,4 = −2k2z − k3z,

L2
2,3,4 = t3t4 + 2t2t4 − 3t23,

L3
2,3,4 = 2t2h4 + 3h3t4 − 7t3h3 + t3h4 + 3h2t4,

L4
2,3,4 = 3h3h4 − 4h2

3 − 8t3f3 + t3f4 + 6f3t4 − f3t5 + 2t2f4 + 3h2h4,

+ 4f2t4 − 2f2t5,

L5
2,3,4 = −9h3f3 + 3h3f4 − 9t3g3 + t3g4 + 6f3h4 − f3h5 + 10g3t4,

−4g3t5 + 2t2g4 + 3h2f4 + 4f2h4 − 2f2h5 + 5g2t4 − 5t5g2.

The algebraic variety M 12 ⊂ 	 21 is defined by the polynomials L5
2,3,4 + P 0,5

2,3,4,
L4

2,3,5, L
3
2,4,5+P

0,3
2,4,5, L

2
3,4,5+P 0,2

3,4,5, L
3
2,3,6+P 0,3

2,3,6, L
2
2,3,6, L

2
2,4,6+P 0,2

2,4,6, L
2
2,3,7+P 0,2

2,3,7,
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P 0,1
2,5,6, P

0,1
2,4,7, P

0,1
2,3,8, with polynomials defining M

11, that is L4
2,3,4, L

3
2,3,4, L

2
2,3,4 and

L2
2,4,5.
In this case we obtain the following relations among them: L4

2,3,5 = L4
2,3,4; P

0,1
2,4,7 =

−P 0,1
2,5,6; P

0,1
2,3,8 = −P 0,1

2,4,7; L
3
2,3,6 + P 0,3

2,3,6 = L3
2,3,5 − L3

2,4,5 − P 0,3
2,4,5; L

2
2,4,6 + P 0,2

2,4,6 =
L2

2,4,5 − L2
3,4,5 − P 0,2

3,4,5; L
2
2,3,7 + P 0,2

2,3,7 = L2
2,3,6 − L2

2,4,6 − P 0,2
2,4,6.

So, we have deduced the following result, whose proof is a consequence of Re-

mark 2.

Proposition 6.6. If q+ p+ r+ v− 2 6 n− 1, v > 2, then Lvq,p,r = L̄vq,p,r, where

L̄vq,p,r is the polynomial obtained by considering the cocycle ψ ∈ F0H
2(Ln−1, Ln−1)

with ψ
∣∣Ln−1 × Ln−1 = ψ.

Note that this proposition is easily checkable in the previous two examples.
It is easy to see that the following result follows from Proposition 3.2: dimF1H

2

(Ln, Ln)− dimF1H
2(Ln−1, Ln−1) is either 2n−8

4 , if n is even, or
2n−5

4 , if n is odd.
Let us now denote M̂n−1 = Mn−1× 	 2n−5

4 , if n is odd or M̂n−1 = Mn−1× 	 2n−8
4

if n is even. The following result is then valid, as a consequence of the previous
proposition.

Corollary 6.7. The following implications hold:
• If n is odd, then Mn ⊆ M̂n−1

∣∣an−1
2 ,n−1 = 0.

• If n is even, then Mn
∣∣a 1

2n,n
= 0 ⊆ M̂n−1.

If Nn denotes the algebraic affine variety in 	 w+1 defined, respectively, by polyno-
mials Lvq,p,r +P 0,v

q,p,r and P
0,1
l,m,t if n is even, or by L

v
q,p,r if n is odd, for 2 6 q < p < r,

q+ p+ r+ v− 2 = n, v > 2, 2 6 l < m < t 6 n, l+m+ t = n+1, then the following
theorem holds:

Theorem 6.8. Mn = M̂n−1 ∩Nn for all n ∈ 
 .
In the same way as we did in the previous section, the number of polynomials

required to define Nn can be also notably reduced. It can be made by using Theo-

rem 6.5 if n is odd, or the same theorem and Proposition 6.3 when n is even. So, we
have

Theorem 6.9. The subvariety Mn ⊆ M̂n−1 is defined in the following way:

• if n is odd, by polynomials Lvn+1−v−2p,p,p+1 for any 2 6 v 6 n − 7, n+1−v
3 <

p 6 n−1−v
2 ,

• if n is even, by polynomials Lvn+1−v−2p,p,p+1+P 0,v
n+1−v−2p,p,p+1 for 2 6 v 6 n−7,

n+1−v
3 < p 6 n−1−v

2 and P 0,1
n−2l,l,l+1 with

1
3n < l 6 n−2

2 .���������
. It is sufficient to use the recurrence method on q, p, r from Theorem 6.5

and Proposition 6.3. �
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Example 6. By applying this result to the previous examples, we can say that the
varietyM12 is given by the polynomials defining M̂11 (orM11), that is L4

2,3,4, L
3
2,3,4,

L2
2,3,4, L

2
2,4,5, and those defining N

12: L5
2,3,4 + P 0,5

2,3,4, L
3
2,4,5 + P 0,3

2,4,5, L
2
3,4,5 + P 0,2

3,4,5,
P 0,1

2,5,6.

To compute all the above polynomials defining the variety Mn, any symbolic
computation package can be used. Indeed, we have designed an algorithm which

allows to obtain them. We will consider n > 9 due to the fact that for less values,
no polynomial relation appears when describing the variety. A brief description of

the algorithm follows.

Algorithm.

Input: The integer n > 9.

Output: The variety Mn of laws of complex filiform Lie algebras of dimension n.

Method:

Step 1: Define polynomials Qiq,p, for i > 1, 2 6 q < p 6 n, 3 6 p + q + i− 1 6 n.

If n is even, also define Q0
q,p, for 2 6 q 6 n, p = n+ 1− q.

Step 2: For each m with 9 6 m 6 n, use previous step to compute P i,jq,p,p+1, where

i, j > 1, 2 6 i+j 6 m−7, m+1−i−j
3 < p 6 m−1−i−j

2 , q = m+1− i−j−2p.

Step 3: For each m with 9 6 m 6 n, compute Lvq,p,p+1 =
∑

i,j>1, i+j=v

P i,jq,p,p+1.

Step 4: If n is even, for n3 < l 6 n−2
2 compute P 0,1

n−2l,l,l+1 and for 2 6 v 6 n − 7,
n+1−v

3 < p 6 n−1−v
2 , q = n+1− v− 2p compute P 0,v

q,p,p+1. If n is odd, this

stage is not needed.

Step 5: If n is odd, the variety Mn is defined by polynomials Lvq,p,p+1. Other-

wise, by polynomials Lvn+1−v−2p,p,p+1 + P 0,v
n+1−v−2p,p,p+1, P

0,1
n−2l,l,l+1 and

Lvm+1−v−2p,p,p+1 where 9 6 m 6 n− 1.

To conclude the paper it is convenient to note that this reduction in the number of
polynomials has been explicitly checked by us in the following cases: in dimension 12

we reduce from 17 polynomials to 8; in dimension 13, from 25 to 11; in dimension 14,
from 48 to 18; in dimension 15, from 64 to 23; and so on, in dimension 18, from 203

to 55. This proves that the algorithm significantly reduces the number of polynomials
defining the variety.
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