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1. Introduction

The non-commutative generalization of the notion of theMV -algebra was investi-
gated by Georgescu and Iorgulescu [5], [6] under the name of the pseudoMV -algebra

and by Rach̊unek [12] under the name of the generalized MV -algebra.
For generalizedMV -algebras, several equivalent systems of axioms have been used

in literature. Below, we will systematically apply the relation between generalized
MV -algebras and lattice ordered groups having a strong unit. This relation can be

described as follows.
Let G be a lattice ordered group with a strong unit u; denote A = [0, u]. For

x, y ∈ A we put

x⊕ y = (x + y) ∧ u, ¬x = u− x, ∼ x = −x + u, 1 = u.

Then A = (A;⊕,¬,∼, 1) is a generalized MV -algebra. We denote A = Γ(G, u).
Dvurečenskij [4] proved that for each generalized MV -algebra A1 there exists a

lattice ordered group G1 with a strong unit u1 such that A1 = Γ(G1, u1).
If A is as above and if the operation ⊕ is commutative then A is an MV -algebra

(cf., e.g., the monograph Cignoli, D’Ottaviano and Mundici [2]).
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Let A be a generalized MV -algebra; under the above notation, let A = Γ(G, u).
For x, y ∈ A we put

%(x, y) = (x ∨ y)− (x ∧ y).

A bijection f : A → A is defined to be an isometry of A if for each x, y ∈ A the
following conditions are satisfied:

(i) %(x, y) = %(f(x), f(y));
(ii) f([x ∧ y, x ∨ y]) = [f(x) ∧ f(y), f(x) ∨ f(y)].

In this paper we prove that there is a monomorphism of the system of all isometries
of A into the system of all internal direct factors of A .

IfA is anMV -algebra, then (i)⇒(ii); hence in the particular case ofMV -algebras,

the present definition of isometry coincides with that given in [9].

Consider the following conditions for a bijection f : A → A, where A is the un-

derlying set of a generalized MV -algebra A :

(i1) f is an isometry of A ;
(ii1) there exist b, c ∈ A with b ∧ c = 0, b ∨ c = u such that for each t ∈ A,

f(t) = (−(t ∧ b) + b) ∨ (t ∧ c).

The results of [9] and [11] yield that in the case of MV -algebras, the implication

(1) (i1) ⇒ (ii1)

is satisfied.

We will prove that the implication (1) remains valid for generalizedMV -algebras.

Further, in view of [9] (Proposition 5.3), for MV -algebras we have also

(2) (ii1) ⇒ (i1).

For generalized MV -algebras, the relation (2) does not hold in general.

For related results concerning isometries of lattice ordered groups cf., e.g., Swamy
[13], Holland [7] and the author [8]; in [13] it was assumed that the lattice ordered

group under consideration is abelian.
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2. Preliminaries

For lattices and lattice ordered groups we apply the notation as in Birkhoff [1] and
Conrad [3].

LetA be a generalizedMV -algebra with A = Γ(G, u) (under the above notation).
Let 6 be the partial order on A induced from the partial order in G. We put
(A; 6) = `(A ).
For a ∈ A we denote by Aa the algebraic structure ([0, a],⊕a,∼a, a), where for

each x, y ∈ [0, a] we have

x⊕a y = (x + y) ∧ a, ¬ax = a− x, ∼a x = −x + a.

Then Aa is a generalized MV -algebra; we call it an interval subalgebra of A .

The direct product of generalized MV -algebras is defined in the usual way; we

apply the symbol
∏
i∈I

Ai or, if I = {1, 2, . . . , n}, also the symbol A1 × . . .×An. For

the notion of internal direct product decomposition of a generalized MV -algebra
cf. [10].

For our purposes, it suffices to consider here only two-factor internal direct de-

compositions of a generalized MV -algebra A . These can be defined as follows.

Let Aa and Ab be interval subalgebras of A . For each x ∈ A put ϕ(x) = (x ∧
a, x ∧ b). Assume that ϕ is an isomorphism of A onto the direct product Aa ×Ab.

Then we say that ϕ : A → Aa×Ab is an internal direct product decomposition of A
and that Aa, Ab are internal direct factors of A . The element x∧a is the component

of x in the internal direct factor Aa; we denote it also by x(Aa).
From each direct product decomposition of A we obtain by a simple construction

an internal direct product decomposition of A (cf. [10]).

3. Direct product decompositions corresponding to isometries

Below we suppose that A is a generalizedMV -algebra and that, under the above
notation, A = Γ(G, u).

Lemma 3.1 (Cf. [8], Lemma 1.1). Assume that G is abelian. Then for each

a, b, x ∈ G, the following conditions are equivalent:

(α) %(a, b) = %(a, x) + %(x, b);
(β) x ∈ [a ∧ b, a ∨ b].
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Proposition 3.2. Assume that A is an MV -algebra. Let f : A → A be a

bijection. Let the conditions (i) and (ii) be as in Section 1. Suppose that (i) is valid
for each x, y ∈ A. Then (ii) holds for each x, y ∈ A.

���������
. Since A is an MV -algebra, G is abelian. Let x, y, t ∈ A. There exists

v ∈ A with t = f(v). The relation

(1) t ∈ f([x ∧ y, x ∨ y])

is equivalent to

(2) v ∈ [x ∧ y, x ∨ y].

In view of 3.1, (2) holds iff

(3) %(x, y) = %(x, v) + %(v, y).

According to (i), (3) is equivalent to

(4) %(f(x), f(y)) = %(f(x), f(v)) + %(f(v), f(y)).

By applying 3.1 again we conclude that (4) is equivalent to

(5) f(v) ∈ [f(x) ∧ f(y), f(x) ∨ f(y)].

Hence the relations (1) and (5) are equivalent. Therefore (ii) is valid. �

From 3.2 it follows that in the case ofMV -algebras, the definition of isometry given

above coincides with the definition of isometry from [9] (where only the condition (i)
was imposed).

Lemma 3.3. Let a, b ∈ A, a ∧ b = 0, a ∨ b = u. Then A is an internal direct

product of generalized MV -algebras Aa and Ab.

���������
. For each x ∈ A we put ϕ(x) = (x ∧ a, x ∧ b). From the fact that the

lattice `(A ) is distributive we conclude that ϕ is an isomorphism of `(A ) onto the
direct product `(Aa)×`(Ab). From this and from the results of [10] we obtain that ϕ
is an internal direct product decomposition of A ; the corresponding internal direct
factors are Ab and Ab. �
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Lemma 3.4. Let f be an isometry of A . Put f(0) = a, f(u) = b. Then a∧b = 0
and a ∨ b = u.
���������

. Denote a ∧ b = p, a ∨ b = q. We have

0 6 p 6 q 6 u.

Further, %(0, u) = u and %(a, b) = q − p. Hence q − p = u. If 0 < p or q < u, then
q − p < u, which is a contradiction. Therefore p = 0 and q = u. �

Lemma 3.5. Let f, a and b be as in 3.4. Then A is an internal direct product

of Aa and Ab.
���������

. This is a consequence of 3.3 and 3.4. �

Let us apply the notation as above.

Lemma 3.6. f(a) = 0 and f(b) = u.
���������

. For x ∈ A we denote

a ∧ x = x1, b ∧ x = x2, a ∨ x = x3, b ∨ x = x4.

(Cf. Fig. 1.)

a

x1

0

x3

x

x2

u

x4

b

Fig. 1

a) Put f(a) = x. Since %(0, a) = a we get

a = %(f(0), f(a)) = %(a, x) = x3 − x1 = (x3 − a) + (a− x1).

From x3−a = x2 we obtain x2 6 a; but a∧x2 = 0, whence x2 = 0. Thus a = a−x1,
yielding x1 = 0. Obviously, x = x1 ∨ x2, therefore x = 0 and so f(a) = 0.
b) Now we put f(b) = x. From %(a, b) = u we obtain %(f(a), f(b)) = u, whence

%(0, x) = u. Clearly %(0, x) = x and therefore f(b) = u. �
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Lemma 3.7. Let x2 and x3 be as in Fig. 1. Then f(x2) = x3 and f(x3) = x2.
���������

. a) We have x2 ∈ [0, b], hence %(x2, b) = b− x2. Further,

f(x2) ∈ f([0 ∧ b, 0 ∨ b]) = [f(0) ∧ f(b), f(0) ∨ f(b)] = [a ∧ u, a ∨ u] = [a, u],

%(x2, b) = %(f(x2), f(b)) = %(f(x2), u) = u− f(x2).

Hence we obtain

b− x2 = u− f(x2),

f(x2) = x2 − b + u.

Since u = a ∨ b = a + b = b + a, we have f(x) = x2 + a. From x2 ∧ a = 0 we now
infer f(x) = x2 ∨ a = x3.

b) Since x3 ∈ [a, u] we get

f(x3) ∈ [f(a) ∧ f(u), f(a) ∨ f(u)] = [0, b].

Further, %(a, x3) = x3 − a and

%(a, x3) = %(f(a), f(x3)) = %(0, f(x3)) = f(x3),

x3 − a = f(x3).

But (cf. Fig. 1) x3 − a = x2, whence f(x3) = f(x2). �

Theorem 3.8. Let f be an isometry of a generalized MV -algebra A . Put

f(0) = a, f(u) = b. Then b is a complement of a in the lattice `(A ) and for each
x ∈ A the formula

f(x) = (−(x ∧ a) + a) ∨ (x ∧ b)

is valid.
���������

. In view of 3.4, b is a complement of a in `(A ). Let x ∈ A. We apply
the notation as in Fig. 1. We have x ∈ [x2, x3], hence

f(x) ∈ [f(x2) ∧ f(x3), f(x2) ∨ f(x3)].

Thus in view of 3.7, f(x) ∈ [x2, x3]. Further,

%(x, x2) = x− x2 = x1,

%(x, x2) = %(f(x), f(x2)) = %(f(x), x3) = x3 − f(x).
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Hence x1 = x3 − f(x) and so f(x) = −x1 + x3. We have (cf. Fig. 1)

x3 = x ∨ a = x2 ∨ a, x2 ∧ a = 0,

thus

x2 ∨ a = x2 + a = a + x2,

f(x) = −x1 + a + x2.

Also, (−x1 + a) ∧ x2 = 0, thus (−x1 + a) + x2 = (−x1 + a) ∨ x2. Therefore

f(x) = (−(x ∧ a) + a) ∨ (x ∧ b).

�

We denote by F (A ) the set of all isometries of A . Further, let D(A ) be the
system of all internal direct factors of A . For f ∈ F (A ) we put χ(f) = Aa, where

a is as in 3.8.

Proposition 3.9. The mapping χ is a monomorhpism of F (A ) into D(A ).

���������
. In view of 3.5, χ is a mapping of F (A ) into D(A ).

Let a, b and f be as in 3.8. Since the lattice `(A ) is distributive, each of its elements
has at most one complement. Thus b is uniquely determined by a. Therefore, in view

of 3.8, f is also uniquely determined by a. Therefore χ is a monomorphism. �

Lemma 3.10. Let A be an MV -algebra. Put f(x) = u − x for each x ∈ A.

Then f is an isometry of A .

���������
. This is a consequence of Proposition 5.3 in [9]. �

Lemma 3.11. Assume that a generalized MV -algebra A is an internal direct

product of generalized MV -algebras A1 and A2. For x ∈ A and i ∈ {1, 2} let xi be

the component of x in Ai; further, let fi be an isometry of Ai. We put f(x) = y so

that yi = fi(xi) (i = 1, 2). Then f is an isometry of A .

���������
. The assertion follows from the fact that all operations in A are per-

formed component-wise. �
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Proposition 3.12. Let A be a generalized MV -algebra. Assume that a, b ∈ A

and that b is a complement of a in the lattice `(A ). Suppose that the operation ⊕a

in Aa is commutative. For each x ∈ A put

(∗) f(x) = (−(x ∧ a) + a) ∨ (x ∧ b).

Then f is an isometry of A .
���������

. Denote A1 = Aa, A2 = Ab. Then A is an internal direct product of
A1 and A2 (cf. 3.5). For x ∈ A and i ∈ {1, 2} let xi be as in 3.11. Thus

x1 = x ∧ a, x2 = x ∧ b.

If x ∈ A1 (x ∈ A2), then x1 = x (x2 = x).
For x ∈ A1 we put f1(x) = a − x. According to 3.10 and in view of the fact

that A1 is an MV -algebra, f1 is an isometry of A1. Further, let f2 be the identical
mapping on A2; hence f2 is an isometry of A2.

For each x ∈ A let f(x) be as in (∗). Then we have

(f(x)1 = −(x ∧ a) + a = −x1 + a = f1(x1),

(f(x))2 = x ∧ b = x2 = f2(x2).

Thus in view of 3.11, f is an isometry of A . �

Corollary 3.13. Let A be a generalized MV -algebra. Let the mapping χ :
F (A ) → D(A ) be as above. Let a ∈ A be such that the operation ⊕a in [0, a] is
commutative and that a has a complement in the lattice `(A ). Then Aa ∈ χ(F (A )).

Consider the following condition for A :

(+) Whenever a1 and a2 are comparable elements of A, then a1 + a2 = a2 + a1.

Lemma 3.14. Assume that A satisfies the condition (+). Then the operation

⊕ in A is commutative.
���������

. Let x, y ∈ A. Denote x ∧ y = q, x1 = −q + x, y1 = −q + y. Then q, x1

and y1 belong to A and x1 ∧ y1 = 0; hence x1 + y1 = y1 +x1. In view of (+) we have

x + y = (q + x1) + (q + y1) = q + (q + x1) + y1 = q + (q + y1) + x1

= (q + y1) + q + x1 = y + x,

x⊕ y = (x + y) ∧ u = (y + x) ∧ u = y ⊕ x.

�

168



Corollary 3.15. Assume that A satisfies the condition (+). Then the lattice

ordered group G is abelian.

Now suppose that f is an isometry of A . Let a and b be as in 3.8. Consider the
generalized MV -algebra Aa.

Lemma 3.16. For each x ∈ Aa, −x + a = a− x.

���������
. Let x ∈ Aa. Then x ∧ b = 0 and x ∧ a = x, whence in view of 3.8,

f(x) = −x + a. We have (cf. 3.6)

%(x, a) = a− x, %(f(x), f(a)) = %(f(x), 0) = f(x) = −x + a.

Therefore a− x = −x + a. �

Lemma 3.17. Let x, y ∈ Aa. Then

(x ∨ y)− (x ∧ y) = −(x ∧ y) + (x ∨ y).

���������
. We have f(x) = −x + a, f(y) = −y + a. Further,

%(x, y) = (x ∨ y)− (x ∧ y),

%(f(x), f(y)) = ((−x + a) ∨ (−y + a))− ((−x + a) ∧ (−y + a)).

Since

(−x + a) ∨ (−y + a) = ((−x) ∨ (−y)) + a = −(x ∧ y) + a,

(−x + a) ∧ (−y + a) = −(x ∨ y) + a,

we get

%(f(x), f(y)) = (−(x ∧ y) + a) + (−a + (x ∨ y)) = −(x ∧ y) + (x ∨ y).

Therefore we have (x ∨ y)− (x ∧ y) = −(x ∧ y) + (x ∧ y). �

Corollary 3.18. Aa satisfies the condition (+).
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Proposition 3.19. Let A be a generalizedMV -algebra. Let f, a and b be as in

3.8. Then the operation ⊕a in Aa is commutative.

���������
. This is a consequence of 3.18 and 3.14. �

For a generalizedMV -algebraA we denote by Dc(A ) the set of all internal direct
factors X of A such that the operation ⊕ in X is commutative. Let χ : F (A ) →
D(A) be as above.
From 3.13 and 3.19 we obtain

Proposition 3.20. χ(F (A )) = Dc(A ).

Thus there exists a one-to-one correspondence between isometries of A and ele-

ments of Dc(A ).
In connection with 3.19 let us consider the following example. Let G1 be a lattice

ordered group which fails to be abelian. Let G = Z ◦ G1, where ◦ denotes the
operation of the lexicographic product. Put u = (1, 0), A = Γ(G, u), a = u and
b = 0. Then a is a complement of b in `(A ) and Aa = A . Hence the operation ⊕a

coincides with ⊕ and it is clear that this operation fails to be commutative. For each
x ∈ A let f(x) be as in 3.8. Then in view of 3.19, f fails to be an isometry on A .

Hence, by applying the notation from Section 2, we conclude that the implication
(ii1)⇒(i1) is not valid, in general, for generalized MV -algebras.

The following theorem generalizes the result of [11].

Theorem 3.21. Let f be an isometry of a generalized MV -algebra A . Then

f(f(x)) = x for each x ∈ A.

���������
. Let x ∈ A and let a, b be as in 3.8. Hence we have

f(x) = (−(x ∧ a) + a) ∨ (x ∧ b).

Put f(x) = y. Then

f(y) = (−(y ∧ a) + a) ∨ (y ∧ b).

Since −(x ∧ a) + a 6 a, we get

(−(x ∧ a) + a) ∧ b = 0

and thus

(1) y ∧ b = (x ∧ b) ∧ b = x ∧ b.
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Further, in view of (x ∧ b) ∧ a = 0 we obtain

y ∧ a = (−(x ∧ a) + a) ∧ a = −(x ∧ a) + a.

In view of 3.16,

−(x ∧ a) + a = a− (x ∧ a).

This yields

(−(y ∧ a) + a = −(a− (x ∧ a)) + a = x ∧ a.

We get

f(y) = (x ∧ a) ∨ (x ∧ b) = x ∧ (a ∨ b) = x ∧ u = x,

whence f(f(x)) = x. �
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