Czechoslovak Mathematical Journal

Ján Jakubík

Isometries of generalized $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 1, 161-171

Persistent URL: http: //dml.cz/dmlcz/128163

Terms of use:

(C) Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

ISOMETRIES OF GENERALIZED $M V$-ALGEBRAS

Ján Jakubík, Košice

(Received November 25, 2004)

Abstract. In this paper we investigate the relations between isometries and direct product decompositions of generalized $M V$-algebras.

Keywords: generalized $M V$-algebra, isometry, direct product decomposition
MSC 2000: 06D35

1. Introduction

The non-commutative generalization of the notion of the $M V$-algebra was investigated by Georgescu and Iorgulescu [5], [6] under the name of the pseudo $M V$-algebra and by Rachůnek [12] under the name of the generalized $M V$-algebra.

For generalized $M V$-algebras, several equivalent systems of axioms have been used in literature. Below, we will systematically apply the relation between generalized $M V$-algebras and lattice ordered groups having a strong unit. This relation can be described as follows.

Let G be a lattice ordered group with a strong unit u; denote $A=[0, u]$. For $x, y \in A$ we put

$$
x \oplus y=(x+y) \wedge u, \quad \neg x=u-x, \quad \sim x=-x+u, \quad 1=u .
$$

Then $\mathscr{A}=(A ; \oplus, \neg, \sim, 1)$ is a generalized $M V$-algebra. We denote $\mathscr{A}=\Gamma(G, u)$. Dvurečenskij [4] proved that for each generalized $M V$-algebra \mathscr{A}_{1} there exists a lattice ordered group G_{1} with a strong unit u_{1} such that $\mathscr{A}_{1}=\Gamma\left(G_{1}, u_{1}\right)$.

If \mathscr{A} is as above and if the operation \oplus is commutative then \mathscr{A} is an $M V$-algebra (cf., e.g., the monograph Cignoli, D'Ottaviano and Mundici [2]).

Let \mathscr{A} be a generalized $M V$-algebra; under the above notation, let $\mathscr{A}=\Gamma(G, u)$.
For $x, y \in A$ we put

$$
\varrho(x, y)=(x \vee y)-(x \wedge y) .
$$

A bijection $f: A \rightarrow A$ is defined to be an isometry of \mathscr{A} if for each $x, y \in A$ the following conditions are satisfied:
(i) $\varrho(x, y)=\varrho(f(x), f(y))$;
(ii) $f([x \wedge y, x \vee y])=[f(x) \wedge f(y), f(x) \vee f(y)]$.

In this paper we prove that there is a monomorphism of the system of all isometries of \mathscr{A} into the system of all internal direct factors of \mathscr{A}.

If \mathscr{A} is an $M V$-algebra, then (i) \Rightarrow (ii); hence in the particular case of $M V$-algebras, the present definition of isometry coincides with that given in [9].

Consider the following conditions for a bijection $f: A \rightarrow A$, where A is the underlying set of a generalized $M V$-algebra \mathscr{A} :
(i_{1}) f is an isometry of \mathscr{A};
(ii 1_{1}) there exist $b, c \in A$ with $b \wedge c=0, b \vee c=u$ such that for each $t \in A$,

$$
f(t)=(-(t \wedge b)+b) \vee(t \wedge c)
$$

The results of [9] and [11] yield that in the case of $M V$-algebras, the implication

$$
\begin{equation*}
\left(\mathrm{i}_{1}\right) \Rightarrow\left(\mathrm{ii}_{1}\right) \tag{1}
\end{equation*}
$$

is satisfied.
We will prove that the implication (1) remains valid for generalized $M V$-algebras. Further, in view of [9] (Proposition 5.3), for $M V$-algebras we have also

$$
\begin{equation*}
\left(\mathrm{ii}_{1}\right) \Rightarrow\left(\mathrm{i}_{1}\right) . \tag{2}
\end{equation*}
$$

For generalized $M V$-algebras, the relation (2) does not hold in general.
For related results concerning isometries of lattice ordered groups cf., e.g., Swamy [13], Holland [7] and the author [8]; in [13] it was assumed that the lattice ordered group under consideration is abelian.

2. Preliminaries

For lattices and lattice ordered groups we apply the notation as in Birkhoff [1] and Conrad [3].

Let \mathscr{A} be a generalized $M V$-algebra with $\mathscr{A}=\Gamma(G, u)$ (under the above notation). Let \leqslant be the partial order on A induced from the partial order in G. We put $(A ; \leqslant)=\ell(\mathscr{A})$.

For $a \in A$ we denote by \mathscr{A}_{a} the algebraic structure $\left([0, a], \oplus_{a}, \sim_{a}, a\right)$, where for each $x, y \in[0, a]$ we have

$$
x \oplus_{a} y=(x+y) \wedge a, \quad \neg_{a} x=a-x, \quad \sim_{a} x=-x+a .
$$

Then \mathscr{A}_{a} is a generalized $M V$-algebra; we call it an interval subalgebra of \mathscr{A}.
The direct product of generalized $M V$-algebras is defined in the usual way; we apply the symbol $\prod_{i \in I} \mathscr{A}_{i}$ or, if $I=\{1,2, \ldots, n\}$, also the symbol $\mathscr{A}_{1} \times \ldots \times \mathscr{A}_{n}$. For the notion of internal direct product decomposition of a generalized $M V$-algebra cf. [10].

For our purposes, it suffices to consider here only two-factor internal direct decompositions of a generalized $M V$-algebra \mathscr{A}. These can be defined as follows.

Let \mathscr{A}_{a} and \mathscr{A}_{b} be interval subalgebras of \mathscr{A}. For each $x \in A$ put $\varphi(x)=(x \wedge$ $a, x \wedge b)$. Assume that φ is an isomorphism of \mathscr{A} onto the direct product $\mathscr{A}_{a} \times \mathscr{A}_{b}$. Then we say that $\varphi: \mathscr{A} \rightarrow \mathscr{A}_{a} \times \mathscr{A}_{b}$ is an internal direct product decomposition of \mathscr{A} and that $\mathscr{A}_{a}, \mathscr{A}_{b}$ are internal direct factors of \mathscr{A}. The element $x \wedge a$ is the component of x in the internal direct factor \mathscr{A}_{a}; we denote it also by $x\left(\mathscr{A}_{a}\right)$.

From each direct product decomposition of \mathscr{A} we obtain by a simple construction an internal direct product decomposition of \mathscr{A} (cf. [10]).

3. Direct product decompositions corresponding to isometries

Below we suppose that \mathscr{A} is a generalized $M V$-algebra and that, under the above notation, $\mathscr{A}=\Gamma(G, u)$.

Lemma 3.1 (Cf. [8], Lemma 1.1). Assume that G is abelian. Then for each $a, b, x \in G$, the following conditions are equivalent:
$(\alpha) \varrho(a, b)=\varrho(a, x)+\varrho(x, b) ;$
$(\beta) x \in[a \wedge b, a \vee b]$.

Proposition 3.2. Assume that \mathscr{A} is an $M V$-algebra. Let $f: A \rightarrow A$ be a bijection. Let the conditions (i) and (ii) be as in Section 1. Suppose that (i) is valid for each $x, y \in A$. Then (ii) holds for each $x, y \in A$.

Proof. Since \mathscr{A} is an $M V$-algebra, G is abelian. Let $x, y, t \in A$. There exists $v \in A$ with $t=f(v)$. The relation

$$
\begin{equation*}
t \in f([x \wedge y, x \vee y]) \tag{1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
v \in[x \wedge y, x \vee y] \tag{2}
\end{equation*}
$$

In view of 3.1, (2) holds iff

$$
\begin{equation*}
\varrho(x, y)=\varrho(x, v)+\varrho(v, y) . \tag{3}
\end{equation*}
$$

According to (i), (3) is equivalent to

$$
\begin{equation*}
\varrho(f(x), f(y))=\varrho(f(x), f(v))+\varrho(f(v), f(y)) \tag{4}
\end{equation*}
$$

By applying 3.1 again we conclude that (4) is equivalent to

$$
\begin{equation*}
f(v) \in[f(x) \wedge f(y), f(x) \vee f(y)] \tag{5}
\end{equation*}
$$

Hence the relations (1) and (5) are equivalent. Therefore (ii) is valid.
From 3.2 it follows that in the case of $M V$-algebras, the definition of isometry given above coincides with the definition of isometry from [9] (where only the condition (i) was imposed).

Lemma 3.3. Let $a, b \in A, a \wedge b=0, a \vee b=u$. Then \mathscr{A} is an internal direct product of generalized $M V$-algebras \mathscr{A}_{a} and \mathscr{A}_{b}.

Proof. For each $x \in A$ we put $\varphi(x)=(x \wedge a, x \wedge b)$. From the fact that the lattice $\ell(\mathscr{A})$ is distributive we conclude that φ is an isomorphism of $\ell(\mathscr{A})$ onto the direct product $\ell\left(\mathscr{A}_{a}\right) \times \ell\left(\mathscr{A}_{b}\right)$. From this and from the results of [10] we obtain that φ is an internal direct product decomposition of \mathscr{A}; the corresponding internal direct factors are \mathscr{A}_{b} and \mathscr{A}_{b}.

Lemma 3.4. Let f be an isometry of \mathscr{A}. Put $f(0)=a, f(u)=b$. Then $a \wedge b=0$ and $a \vee b=u$.

Proof. Denote $a \wedge b=p, a \vee b=q$. We have

$$
0 \leqslant p \leqslant q \leqslant u
$$

Further, $\varrho(0, u)=u$ and $\varrho(a, b)=q-p$. Hence $q-p=u$. If $0<p$ or $q<u$, then $q-p<u$, which is a contradiction. Therefore $p=0$ and $q=u$.

Lemma 3.5. Let f, a and b be as in 3.4. Then \mathscr{A} is an internal direct product of \mathscr{A}_{a} and \mathscr{A}_{b}.

Proof. This is a consequence of 3.3 and 3.4.
Let us apply the notation as above.

Lemma 3.6. $f(a)=0$ and $f(b)=u$.
Proof. For $x \in A$ we denote

$$
a \wedge x=x_{1}, \quad b \wedge x=x_{2}, \quad a \vee x=x_{3}, \quad b \vee x=x_{4} .
$$

(Cf. Fig. 1.)

Fig. 1
a) Put $f(a)=x$. Since $\varrho(0, a)=a$ we get

$$
a=\varrho(f(0), f(a))=\varrho(a, x)=x_{3}-x_{1}=\left(x_{3}-a\right)+\left(a-x_{1}\right) .
$$

From $x_{3}-a=x_{2}$ we obtain $x_{2} \leqslant a$; but $a \wedge x_{2}=0$, whence $x_{2}=0$. Thus $a=a-x_{1}$, yielding $x_{1}=0$. Obviously, $x=x_{1} \vee x_{2}$, therefore $x=0$ and so $f(a)=0$.
b) Now we put $f(b)=x$. From $\varrho(a, b)=u$ we obtain $\varrho(f(a), f(b))=u$, whence $\varrho(0, x)=u$. Clearly $\varrho(0, x)=x$ and therefore $f(b)=u$.

Lemma 3.7. Let x_{2} and x_{3} be as in Fig. 1. Then $f\left(x_{2}\right)=x_{3}$ and $f\left(x_{3}\right)=x_{2}$.
Proof. a) We have $x_{2} \in[0, b]$, hence $\varrho\left(x_{2}, b\right)=b-x_{2}$. Further,

$$
\begin{aligned}
f\left(x_{2}\right) \in f([0 \wedge b, 0 \vee b]) & =[f(0) \wedge f(b), f(0) \vee f(b)]=[a \wedge u, a \vee u]=[a, u], \\
\varrho\left(x_{2}, b\right) & =\varrho\left(f\left(x_{2}\right), f(b)\right)=\varrho\left(f\left(x_{2}\right), u\right)=u-f\left(x_{2}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
b-x_{2} & =u-f\left(x_{2}\right), \\
f\left(x_{2}\right) & =x_{2}-b+u .
\end{aligned}
$$

Since $u=a \vee b=a+b=b+a$, we have $f(x)=x_{2}+a$. From $x_{2} \wedge a=0$ we now infer $f(x)=x_{2} \vee a=x_{3}$.
b) Since $x_{3} \in[a, u]$ we get

$$
f\left(x_{3}\right) \in[f(a) \wedge f(u), f(a) \vee f(u)]=[0, b] .
$$

Further, $\varrho\left(a, x_{3}\right)=x_{3}-a$ and

$$
\begin{aligned}
\varrho\left(a, x_{3}\right) & =\varrho\left(f(a), f\left(x_{3}\right)\right)=\varrho\left(0, f\left(x_{3}\right)\right)=f\left(x_{3}\right), \\
x_{3}-a & =f\left(x_{3}\right) .
\end{aligned}
$$

But (cf. Fig. 1) $x_{3}-a=x_{2}$, whence $f\left(x_{3}\right)=f\left(x_{2}\right)$.

Theorem 3.8. Let f be an isometry of a generalized $M V$-algebra \mathscr{A}. Put $f(0)=a, f(u)=b$. Then b is a complement of a in the lattice $\ell(\mathscr{A})$ and for each $x \in A$ the formula

$$
f(x)=(-(x \wedge a)+a) \vee(x \wedge b)
$$

is valid.
Proof. In view of $3.4, b$ is a complement of a in $\ell(\mathscr{A})$. Let $x \in A$. We apply the notation as in Fig. 1. We have $x \in\left[x_{2}, x_{3}\right]$, hence

$$
f(x) \in\left[f\left(x_{2}\right) \wedge f\left(x_{3}\right), f\left(x_{2}\right) \vee f\left(x_{3}\right)\right] .
$$

Thus in view of 3.7, $f(x) \in\left[x_{2}, x_{3}\right]$. Further,

$$
\begin{aligned}
& \varrho\left(x, x_{2}\right)=x-x_{2}=x_{1}, \\
& \varrho\left(x, x_{2}\right)=\varrho\left(f(x), f\left(x_{2}\right)\right)=\varrho\left(f(x), x_{3}\right)=x_{3}-f(x) .
\end{aligned}
$$

Hence $x_{1}=x_{3}-f(x)$ and so $f(x)=-x_{1}+x_{3}$. We have (cf. Fig. 1)

$$
x_{3}=x \vee a=x_{2} \vee a, \quad x_{2} \wedge a=0,
$$

thus

$$
\begin{aligned}
x_{2} \vee a & =x_{2}+a=a+x_{2}, \\
f(x) & =-x_{1}+a+x_{2} .
\end{aligned}
$$

Also, $\left(-x_{1}+a\right) \wedge x_{2}=0$, thus $\left(-x_{1}+a\right)+x_{2}=\left(-x_{1}+a\right) \vee x_{2}$. Therefore

$$
f(x)=(-(x \wedge a)+a) \vee(x \wedge b)
$$

We denote by $F(\mathscr{A})$ the set of all isometries of \mathscr{A}. Further, let $D(\mathscr{A})$ be the system of all internal direct factors of \mathscr{A}. For $f \in F(\mathscr{A})$ we put $\chi(f)=\mathscr{A}_{a}$, where a is as in 3.8.

Proposition 3.9. The mapping χ is a monomorhpism of $F(\mathscr{A})$ into $D(\mathscr{A})$.
Proof. In view of $3.5, \chi$ is a mapping of $F(\mathscr{A})$ into $D(\mathscr{A})$.
Let a, b and f be as in 3.8. Since the lattice $\ell(\mathscr{A})$ is distributive, each of its elements has at most one complement. Thus b is uniquely determined by a. Therefore, in view of $3.8, f$ is also uniquely determined by a. Therefore χ is a monomorphism.

Lemma 3.10. Let \mathscr{A} be an $M V$-algebra. Put $f(x)=u-x$ for each $x \in A$. Then f is an isometry of \mathscr{A}.

Proof. This is a consequence of Proposition 5.3 in [9].

Lemma 3.11. Assume that a generalized $M V$-algebra \mathscr{A} is an internal direct product of generalized $M V$-algebras \mathscr{A}_{1} and \mathscr{A}_{2}. For $x \in A$ and $i \in\{1,2\}$ let x_{i} be the component of x in \mathscr{A}_{i}; further, let f_{i} be an isometry of \mathscr{A}_{i}. We put $f(x)=y$ so that $y_{i}=f_{i}\left(x_{i}\right)(i=1,2)$. Then f is an isometry of \mathscr{A}.

Proof. The assertion follows from the fact that all operations in \mathscr{A} are performed component-wise.

Proposition 3.12. Let \mathscr{A} be a generalized $M V$-algebra. Assume that $a, b \in A$ and that b is a complement of a in the lattice $\ell(\mathscr{A})$. Suppose that the operation \oplus_{a} in \mathscr{A}_{a} is commutative. For each $x \in A$ put

$$
\begin{equation*}
f(x)=(-(x \wedge a)+a) \vee(x \wedge b) \tag{*}
\end{equation*}
$$

Then f is an isometry of \mathscr{A}.
Proof. Denote $\mathscr{A}_{1}=\mathscr{A}_{a}, \mathscr{A}_{2}=\mathscr{A}_{b}$. Then \mathscr{A} is an internal direct product of \mathscr{A}_{1} and \mathscr{A}_{2} (cf. 3.5). For $x \in A$ and $i \in\{1,2\}$ let x_{i} be as in 3.11. Thus

$$
x_{1}=x \wedge a, \quad x_{2}=x \wedge b
$$

If $x \in A_{1}\left(x \in A_{2}\right)$, then $x_{1}=x\left(x_{2}=x\right)$.
For $x \in A_{1}$ we put $f_{1}(x)=a-x$. According to 3.10 and in view of the fact that \mathscr{A}_{1} is an $M V$-algebra, f_{1} is an isometry of \mathscr{A}_{1}. Further, let f_{2} be the identical mapping on A_{2}; hence f_{2} is an isometry of \mathscr{A}_{2}.

For each $x \in A$ let $f(x)$ be as in $(*)$. Then we have

$$
\begin{aligned}
\left(f(x)_{1}\right. & =-(x \wedge a)+a=-x_{1}+a=f_{1}\left(x_{1}\right), \\
(f(x))_{2} & =x \wedge b=x_{2}=f_{2}\left(x_{2}\right) .
\end{aligned}
$$

Thus in view of $3.11, f$ is an isometry of \mathscr{A}.
Corollary 3.13. Let \mathscr{A} be a generalized $M V$-algebra. Let the mapping χ : $F(\mathscr{A}) \rightarrow D(\mathscr{A})$ be as above. Let $a \in A$ be such that the operation \oplus_{a} in $[0, a]$ is commutative and that a has a complement in the lattice $\ell(\mathscr{A})$. Then $\mathscr{A}_{a} \in \chi(F(\mathscr{A}))$.

Consider the following condition for \mathscr{A} :
$(+)$ Whenever a_{1} and a_{2} are comparable elements of A, then $a_{1}+a_{2}=a_{2}+a_{1}$.
Lemma 3.14. Assume that \mathscr{A} satisfies the condition (+). Then the operation \oplus in \mathscr{A} is commutative.

Proof. Let $x, y \in A$. Denote $x \wedge y=q, x_{1}=-q+x, y_{1}=-q+y$. Then q, x_{1} and y_{1} belong to A and $x_{1} \wedge y_{1}=0$; hence $x_{1}+y_{1}=y_{1}+x_{1}$. In view of $(+)$ we have

$$
\begin{aligned}
x+y & =\left(q+x_{1}\right)+\left(q+y_{1}\right)=q+\left(q+x_{1}\right)+y_{1}=q+\left(q+y_{1}\right)+x_{1} \\
& =\left(q+y_{1}\right)+q+x_{1}=y+x \\
x \oplus y & =(x+y) \wedge u=(y+x) \wedge u=y \oplus x .
\end{aligned}
$$

Corollary 3.15. Assume that \mathscr{A} satisfies the condition (+). Then the lattice ordered group G is abelian.

Now suppose that f is an isometry of \mathscr{A}. Let a and b be as in 3.8. Consider the generalized $M V$-algebra \mathscr{A}_{a}.

Lemma 3.16. For each $x \in \mathscr{A}_{a},-x+a=a-x$.
Proof. Let $x \in \mathscr{A}_{a}$. Then $x \wedge b=0$ and $x \wedge a=x$, whence in view of 3.8, $f(x)=-x+a$. We have (cf. 3.6)

$$
\varrho(x, a)=a-x, \quad \varrho(f(x), f(a))=\varrho(f(x), 0)=f(x)=-x+a .
$$

Therefore $a-x=-x+a$.

Lemma 3.17. Let $x, y \in \mathscr{A}_{a}$. Then

$$
(x \vee y)-(x \wedge y)=-(x \wedge y)+(x \vee y)
$$

Proof. We have $f(x)=-x+a, f(y)=-y+a$. Further,

$$
\begin{aligned}
\varrho(x, y) & =(x \vee y)-(x \wedge y), \\
\varrho(f(x), f(y)) & =((-x+a) \vee(-y+a))-((-x+a) \wedge(-y+a)) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& (-x+a) \vee(-y+a)=((-x) \vee(-y))+a=-(x \wedge y)+a, \\
& (-x+a) \wedge(-y+a)=-(x \vee y)+a,
\end{aligned}
$$

we get

$$
\varrho(f(x), f(y))=(-(x \wedge y)+a)+(-a+(x \vee y))=-(x \wedge y)+(x \vee y)
$$

Therefore we have $(x \vee y)-(x \wedge y)=-(x \wedge y)+(x \wedge y)$.

Corollary 3.18. \mathscr{A}_{a} satisfies the condition (+).

Proposition 3.19. Let \mathscr{A} be a generalized $M V$-algebra. Let f, a and b be as in 3.8. Then the operation \oplus_{a} in \mathscr{A}_{a} is commutative.

Proof. This is a consequence of 3.18 and 3.14 .
For a generalized $M V$-algebra \mathscr{A} we denote by $D_{c}(\mathscr{A})$ the set of all internal direct factors X of \mathscr{A} such that the operation \oplus in X is commutative. Let $\chi: F(\mathscr{A}) \rightarrow$ $D(A)$ be as above.

From 3.13 and 3.19 we obtain

Proposition 3.20. $\chi(F(\mathscr{A}))=D_{c}(\mathscr{A})$.
Thus there exists a one-to-one correspondence between isometries of \mathscr{A} and elements of $D_{c}(\mathscr{A})$.

In connection with 3.19 let us consider the following example. Let G_{1} be a lattice ordered group which fails to be abelian. Let $G=Z \circ G_{1}$, where \circ denotes the operation of the lexicographic product. Put $u=(1,0), \mathscr{A}=\Gamma(G, u), a=u$ and $b=0$. Then a is a complement of b in $\ell(\mathscr{A})$ and $\mathscr{A}_{a}=\mathscr{A}$. Hence the operation \oplus_{a} coincides with \oplus and it is clear that this operation fails to be commutative. For each $x \in A$ let $f(x)$ be as in 3.8. Then in view of $3.19, f$ fails to be an isometry on \mathscr{A}. Hence, by applying the notation from Section 2, we conclude that the implication $\left(\mathrm{ii}_{1}\right) \Rightarrow\left(\mathrm{i}_{1}\right)$ is not valid, in general, for generalized $M V$-algebras.

The following theorem generalizes the result of [11].

Theorem 3.21. Let f be an isometry of a generalized $M V$-algebra \mathscr{A}. Then $f(f(x))=x$ for each $x \in A$.

Proof. Let $x \in A$ and let a, b be as in 3.8. Hence we have

$$
f(x)=(-(x \wedge a)+a) \vee(x \wedge b)
$$

Put $f(x)=y$. Then

$$
f(y)=(-(y \wedge a)+a) \vee(y \wedge b)
$$

Since $-(x \wedge a)+a \leqslant a$, we get

$$
(-(x \wedge a)+a) \wedge b=0
$$

and thus

$$
\begin{equation*}
y \wedge b=(x \wedge b) \wedge b=x \wedge b \tag{1}
\end{equation*}
$$

Further, in view of $(x \wedge b) \wedge a=0$ we obtain

$$
y \wedge a=(-(x \wedge a)+a) \wedge a=-(x \wedge a)+a
$$

In view of 3.16,

$$
-(x \wedge a)+a=a-(x \wedge a) .
$$

This yields

$$
(-(y \wedge a)+a=-(a-(x \wedge a))+a=x \wedge a .
$$

We get

$$
f(y)=(x \wedge a) \vee(x \wedge b)=x \wedge(a \vee b)=x \wedge u=x
$$

whence $f(f(x))=x$.

References

[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1967.
Zbl 0505.06001
[2] R. Cignoli, I. M. I. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.

Zbl 0937.06009
[3] P. Conrad: Lattice Ordered Groups. Tulane University, $1970 . \quad$ Zbl 0258.06011
[4] A. Dvurečenskij: Pseudo $M V$-algebras are intervals of ℓ-groups. J. Austral. Math. Soc. 72 (2002), 427-445.

Zbl 1027.06014
[5] G. Georgescu and A. Iorgulescu: Pseudo $M V$-algebras: a non-commutative extension of $M V$-algebras. Proc. Fourth. Internal Symp. Econ. Inf., INFOREC, Bucharest. 1999, pp. 961-968.

Zbl 0985.06007
[6] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras. Multiple-Valued Logic 6 (2001), 95-135.

Zbl 1014.06008
[7] Ch. Holland: Intrinsic metrics for lattice ordered groups. Alg. Universalis 19 (1984), 142-150.

Zbl 0557.06011
[8] J. Jakubik: Isometries of lattice ordered groups. Czechoslovak Math. J. 30 (1980), 142-152. Zbl 0436.06013
[9] J. Jakubik: On intervals and isometries of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 651-663.

Zbl 1012.06013
[10] J. Jakubik: Direct product decompositions of pseudo $M V$-algebras. Archivum math. 37 (2001), 131-142.

Zbl 0218.5316
[11] J. Jakubik: Isometries of $M V$-algebras. Math. Slovaca 54 (2004), 43-48.
[12] J. Rachůnek: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.

Zbl 1012.06012
[13] K. L. Swamy: Izometries in autometrized lattice ordered groups. Algebra Univ. 8 (1977), 58-64.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: kstefan@saske.sk.

