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VERTICES CONTAINED IN ALL MINIMUM

PAIRED-DOMINATING SETS OF A TREE

Xue-gang Chen, Beijing
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Abstract. A set S of vertices in a graph G is called a paired-dominating set if it dominates
V and 〈S〉 contains at least one perfect matching. We characterize the set of vertices of a
tree that are contained in all minimum paired-dominating sets of the tree.
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1. Introduction

Graph theory terminology not presented here can be found in [1]. Let G = (V,E)
be a graph with |V | = n. The neighborhood and closed neighborhood of a vertex v
in the graph G are denoted by N(v) and N [v] = N(v) ∪ {v} respectively. For a set
X ⊆ V (G), let N(X) =

⋃
x∈X

N(x). The minimum degree and maximum degree of the

graph G are denoted by δ(G) and ∆(G) respectively. The graph induced by S ⊆ V

is denoted by 〈S〉. We denote the distance between two vertices u and v by d(u, v).
The degree of a vertex v of a graph G is denoted by dG(v), or simply by d(v). A
path on n vertices is denoted by Pn.

A set S ⊆ V is a dominating set of G if every vertex u ∈ V − S is adjacent to
a vertex of S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A minimum dominating set of a graph G is
called a γ(G)-set, or simply a γ-set, if the graph G is clear from the context. We use
similar notation for other domination parameters.

Supported by National Natural Sciences Foundation of China (19871036).
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A set S ⊆ V is a total dominating set if every vertex u ∈ V is adjacent to a

vertex of S. The total domination number of G, denoted by γt(G), is the minimum
cardinality of a total dominating set of G.

A paired-dominating set S with matching M is a dominating set S = {v1, v2, . . . ,

v2t−1, v2t} with independent edge set M = {e1, e2, . . . , et}, where each edge ei joins
two elements of S, that is, M is a perfect matching of 〈S〉. If vjvk = ei ∈M we say
that vj and vk are paired in S. Let Sp = {{vj , vk} : vj and vk are paired in S}. The
paired-domination number γp(G) is the minimum cardinality of a paired-dominating
set S in G.

We define the set ψ(G) of a graph G by ψ(G) = {v ∈ V (G) : v is in every γp-set

of G}. For ease of presentation, we mostly consider rooted trees. For a vertex v
in a (rooted) tree T , let C(v) and F (v) denote the set of children and descendants,
respectively, of v. The maximal subtree at v is the subtree of T induced by F (v)∪{v},
and is denoted by Tv. A leaf of T is a vertex of degree 1, while a support vertex of
T is a vertex that is adjacent to a leaf. The set of leaves in T is denoted by L(T ) and
the set of support vertices by S(T ). Let L(v) denote the set of leaves in Tv distinct

from v, i.e., L(v) = F (v) ∩ L(T ). We define a branch vertex as a vertex of degree
at least 3. The set of branch vertices of T is denoted by B(T ). For j = 0, 1, 2, 3,
we define Lj(v) = {u ∈ L(v) : d(u, v) ≡ j(mod 4)}. We sometimes write Lj

T (v) to
emphasize the tree (or subtree) concerned.

Paired-domination was introduced by Haynes and Slater[4] and is studied, for

example, in [5]. For a survey of domination and variations, see the books by Haynes
et al. [6], [7].

Hammer et al. [1] investigated vertices belonging to all or to no maximum stable
sets of a graph. Mynhardt [2] characterized the set of vertices that are contained in

all or in no minimum dominating sets of a tree. Cockayne et al. [3] characterized
the set of vertices that are contained in all or in no minimum total dominating sets

of a tree. In this paper, we characterize the set of vertices that are contained in all
minimum paired-dominating sets of a tree.

2. Tree pruning

The technique of tree pruning was introduced by Cockayne et al. [3]. Let T denote
an arbitrary tree. Given a vertex u of T , we say we attach a path of length q to u if

we join u to a leaf of the path Pq .

Let v be a vertex of T that is not a support vertex. The pruning of T is performed

with respect to the root. Hence, suppose T is rooted at v, i.e., T = Tv. If d(u) 6 2
for each u ∈ V (Tv) − {v}, then let T v = T . Otherwise, let u be a branch vertex at
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maximum distance from v; note that |C(u)| > 2 and d(x) 6 2 for each x ∈ F (u).
We now apply the following pruning process:
• If |L2(u)| > 1, then delete F (u) and attach a path of length 2 to u.
• If |L1(u)| > 1, |L2(u)| = 0 and u ∈ S(T ), then delete F (u) and attach a path
of length 1 to u.

• If |L1(u)| > 1, |L2(u)| = 0 and u /∈ S(T ), then delete F (u) and attach a path
of length 5 to u.

• If L1(u) = L2(u) = ∅ and |L3(u)| > 1, then delete F (u) and attach a path of
length 3 to u.

• If L1(u) = L2(u) = L3(u) = ∅, then delete F (u) and attach a path of length 4
to u.

This step of the pruning process, where all the descendants of u are deleted and a
path of length 1, 2, 3, 4, or 5 is attached to u to give a tree in which u has degree 2,
is called a pruning of Tv at u. Repeat the above process until a tree T v is obtained
with d(u) 6 2 for each u ∈ V (T v) − {v}. The tree T v is unique and is called the

pruning of Tv. To simplify notation, we write L̄j(v) instead of Lj

Tv
(v).

We shall prove the following two theorems:

Theorem 1. Let T be a tree rooted at a vertex v such that d(u) 6 2 for each
u ∈ V (T ) − {v}. Then v ∈ ψ(T ) if and only if v is a support vertex or |L1(v)| > 1
and |L1(v) ∪ L2(v)| > 2.

Theorem 2. Let v be a vertex of a tree T . Then v ∈ ψ(T ) if and only if v is a
support vertex or |L̄1(v)| > 1 and |L̄1(v) ∪ L̄2(v)| > 2.

3. Preliminary results

It is obvious that the following lemma holds.

Lemma 1. Let T be a tree with order n > 3. Then every vertex of S(T ) is in
every minimum paired-dominating set.

Lemma 2. Let T be a tree with order n > 3 and v ∈ L(T ). Then there exists a
γp-set S of T such that v /∈ S.
���������

. Suppose that v is in every γp-set of T . Let S be a γp-set of T .
Then v ∈ S. Let u be the support vertex that is adjacent to v. Then {v, u} ∈
Sp. Since n > 3, we have d(u) > 2. If there exists a vertex w ∈ N(u) \ {v}
such that w /∈ S, then (Sp − {{v, u}}) ∪ {{u,w}} is a γp-set of T that does not
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contain v, which is a contradiction. Hence, w ∈ S for every vertex w ∈ N(u) \ {v}.
Without loss of generality, say t ∈ N(w) \ {u} and {w, t} ∈ Sp. If t ∈ L(T ),
then (Sp − {{v, u}, {w, t}}) ∪ {{u,w}} would be a paired-dominating set of T with
cardinality less than γp(T ) , which is a contradiction. So, d(t) > 2. If there exists a
vertex z ∈ N(t)\{w} such that z /∈ S, then (Sp−{{v, u}, {w, t}})∪{{u,w}, {t, z}} is
a γp-set of T that does not contain v, which is a contradiction. Hence, z ∈ S for every
vertex z ∈ N(t)\{w}. Then (Sp−{{v, u}, {w, t}})∪{{u,w}} is a paired-dominating
set of T with cardinality less than γp(T ), which is a contradiction. �

Lemma 3. Let T ′ be a tree with v, u′ ∈ V (T ′) and d(v, u′) > 2. Let T be the
tree obtained from T ′ by attaching a path of length 4 to u′. Then
(a) γp(T ) = γp(T ′) + 2;
(b) v ∈ ψ(T ′) if and only if v ∈ ψ(T ).
���������

. Suppose T is obtained from T ′ by adding the path u, x, y, z and the

edge uu′.

(a) Let S be a γp-set of T ′. Then Sp ∪ {{x, y}} is a paired-dominating set of T .
So, γp(T ) 6 γp(T ′) + 2.
By Lemma 2, letD be a γp-set of T that does not contain z. LetDp = {{vj , vk} : vj

and vk are paired in S, vi, vj ∈ D }. Then {x, y} ∈ Dp. If u /∈ D, then Dp −{{x, y}}
is a paired-dominating set of T ′. Hence, γp(T ′) 6 γp(T ) − 2. If u ∈ D, then
{u, u′} ∈ Dp. Furthermore, there exists a vertex t ∈ N(u′) \ {u} such that t /∈
D. Otherwise, Dp − {{u, u′}} would be a paired-dominating set of T , which is a
contradiction. Hence, (Dp − {{x, y}, {u, u′}}) ∪ {{u′, t}} is a paired-dominating set
of T ′. So, γp(T ′) 6 γp(T )− 2. Hence, γp(T ) = γp(T ′) + 2.
(b) Suppose that v /∈ ψ(T ′). Let S′ be a γp-set of T ′ that does not contain v.

Then S
′
p ∪ {{x, y}} is a γp-set of T that does not contain v. Hence, v /∈ ψ(T ).

Conversely, suppose that v ∈ ψ(T ′). Let D be an arbitrary γp-set of T .

If z /∈ D, then {x, y} ∈ Dp. In a similar way as above, if u /∈ D, then Dp−{{x, y}}
is a γp-set of T ′; if u ∈ D, then (Dp − {{x, y}, {u, u′}}) ∪ {{u′, t}} is a γp-set of T ′,

where t ∈ N(u′) \ {u}. Since v ∈ ψ(T ′) and v 6= t, it follows that v ∈ D.
If z ∈ D, then {y, z} ∈ Dp. If x /∈ D, then (Dp − {{y, z}}) ∪ {{x, y}} is a γp-

set of T . In a similar way as above, we can prove that v ∈ D. If x ∈ D, then
{x, u} ∈ Dp. Furthermore, t /∈ D for arbitrary vertex t ∈ N [u′] \ {u}. Otherwise,
(Dp − {{y, z}, {x, u}}) ∪ {{x, y}} would be a γp-set of T , which is a contradiction.
Hence, (Dp − {{y, z}, {x, u}}) ∪ {{u′, t}} is a γp-set of T ′, where t ∈ N(u′) \ {u}.
Since v ∈ ψ(T ′) and v 6= t, it follows that v ∈ D. Hence, v ∈ ψ(T ).
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4. Proof of Theorem 1

If v is a support vertex, then Theorem 1 holds by Lemma 1. Hence we may assume
that v is not a support vertex of T . If v is a leaf, then v /∈ ψ(T ) by Lemma 2. For each
w ∈ L(v), if d(v, w) > 5, then let T ∗ be the tree obtained from T by replacing the
v − w path in T by a v − w path of length j, j = 4, 5, 2, 3 if w ∈ Li(v), i = 0, 1, 2, 3.
By repeated application of Lemma 3 it now follows that v ∈ ψ(T ) if and only if
v ∈ ψ(T ∗).

To prove Theorem 1 we may therefore assume without loss of generality that
v /∈ S(T ), d(v) > 2 and every leaf of T is at distance 2, 3, 4 or 5 from v. We consider

the following cases.

Case 1: |L1(v)| > 2.
Let u5 and w5 be two leaves at distance 5 from v in T with Pu : v, u1, . . . , u5

and Pw : v, w1, . . . , w5 the v − u5 and v − w5 paths, respectively. If there exists
a γp-set S of T such that v /∈ S, then |S ∩ V (Pu)| = 4 and |S ∩ V (Pw)| = 4.
Without loss of generality, say {u1, u2}, {u3, u4} ∈ Sp and {w1, w2}, {w3, w4} ∈ Sp.
Then (Sp − {{u1, u2}, {w1, w2}}) ∪ {{v, u1}} is a paired-dominating set of T with
cardinality less than γp(T ), which is a contradiction. Hence, v ∈ ψ(T ).
Case 2: |L1(v)| = 1 and |L2(v)| > 1.
In a similar way as Case 1, it is easy to prove that v ∈ ψ(T ).

Case 3: |L1(v)| = 1 and |L2(v)| = 0.
Let u5 be the leaf at distance 5 from v in T with Pu : v, u1, . . . , u5 the v−u5 path.

Then every leaf distinct from u5 is at distance 3 or 4 from v. For any γp-set S of T , S
contains every support vertex and at least one neighbor of every support vertex. In

order to dominate u1, two vertices are necessary. It follows that γp(T ) > 2|L(v)|+2.
On the other hand, D∗ = S(T )∪ (N(S(T )) \L(T ))∪{u1, u2} is a paired-dominating
set of T with cardinality 2|L(v)| + 2, and so γp(T ) = 2|L(v)| + 2. Since v /∈ D∗, it
follows that v /∈ ψ(T ).
Case 4: |L1(v)| = 0 and |L2(v) ∪ L3(v)| > 1.

Then every leaf is at distance 2, 3 or 4 from v. Let A = N(L2(v)), B = N(L3(v)∪
L0(v)) and C = N(B) \ (L3(v) ∪ L0(v)). Let S be an arbitrary γp-set of T . If there

exists a vertex u ∈ A such that u and v are paired, then w must be paired with its
leaf for arbitrary vertex w ∈ A \ {u}. Since S contains every support vertex and at
least one neighbor of every support vertex, it follows that γp(T ) > 2|L(v)|. On the
other hand, D∗ = L2(v)∪A∪B ∪C is a paired-dominating set of T with cardinality
2|L(v)|, and so γp(T ) = 2|L(v)|. Since v /∈ D∗, it follows that v /∈ ψ(T ).
Case 5: L1(v) = L2(v) = L2(v) = ∅.
In a similar way as Case 4, we can prove that v /∈ ψ(T ).
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5. Proof of theorem 2

For 1 6 i 6 j 6 5, let P : ui, ui−1, . . . , u1, w, z1, z2, . . . , zj be a path in a tree

T1 with L(P ) ⊆ L(T1), w ∈ V (P ) ∩ B(T1) and d(t) = 2 for arbitrary vertex t ∈
V (P ) − (L(P ) ∪ {w}). Assume Pu : u1, u2, . . . , ui and Pz : z1, z2, . . . , zj . Let v ∈
V (T1) − V (P ). For a set (to be defined) X ⊂ V (P )− {w}, let T2 = T1 −X .

Lemma 4. If j = 4 and X = V (Pz), then v ∈ ψ(T2) if and only if v ∈ ψ(T1).
���������

. In a way similar to Lemma 3, we can prove that γp(T1) = γp(T2) + 2.
Suppose that v /∈ ψ(T2). Let S be a γp-set of T2 that does not contain v. Then

Sp ∪ {{z2, z3}} is a γp-set of T1 that does not contain v. Hence, v /∈ ψ(T1).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1.

If z4 /∈ D, then {z2, z3} ∈ Dp. If z1 /∈ D, then Dp − {{z2, z3}} is a γp-set of T2.
Since v ∈ ψ(T2), it follows that v ∈ D. If z1 ∈ D, then {w, z1} ∈ Dp. Furthermore,

i 6= 2. Otherwise, {u1, u2} ∈ Dp and (Dp−{{u1, u2}, {w, z1}})∪{{w, u1}} is a paired-
dominating set of T1 with cardinality less than γp(T1), which is a contradiction. We
consider the following cases.
Case 1: i = 1. Then (Dp −{{z2, z3}, {w, z1}})∪ {{w, u1}} is a γp-set of T2. Since

v ∈ ψ(T2), it follows that v ∈ D.
Case 2: i = 3. Then |D∩V (Pu)| = 2. If u1 /∈ D, then (Dp −{{z2, z3}, {w, z1}})∪

{{w, u1}} is a γp-set of T2. If u1 ∈ D, then {u1, u2} ∈ Dp, and (Dp − {{z2, z3}, {w,
z1}, {u1, u2}})∪{{w, u1}, {u2, u3}} is a γp-set of T2. Since v ∈ ψ(T2), it follows that
v ∈ D.
Case 3: i = 4. Then u1 /∈ D. Otherwise, if u1 ∈ D, then {u1, u2} ∈ Dp and

{u3, u4} ∈ Dp. So, (Dp − {{u1, u2}, {u3, u4}}) ∪ {{u2, u3}} is a paired-dominating
set of T1 with cardinality less than γp(T1), which is a contradiction. Hence, (Dp −
{{z2, z3}, {w, z1}}) ∪ {{w, u1}} is a γp-set of T2. Since v ∈ ψ(T2), it follows that
v ∈ D.
Case 4: i = 5. Then u1 /∈ D. Otherwise, if u1 ∈ D, then |D∩V (Pu)| = 4. Without

loss of generality, say {u1, u2}, {u3, u4} ∈ Dp. So, Dp − {{u1, u2}} is a paired-
dominating set of T1 with cardinality less than γp(T1), which is a contradiction.
Hence, (Dp − {{z2, z3}, {w, z1}}) ∪ {{w, u1}} is a γp-set of T2. Since v ∈ ψ(T2), it
follows that v ∈ D.
If z4 ∈ D, then {z3, z4} ∈ Dp. If z2 /∈ D, then (Dp − {{z3, z4}}) ∪ {{z2, z3}} is

a γp-set of T1. In a way similar to the above, we can prove that v ∈ D. If z2 ∈ D,

then {z1, z2} ∈ Dp. Furthermore, t /∈ D for arbitrary vertex t ∈ N [w] \ {z1}. Other-
wise, (Dp − {{z1, z2}, {z3, z4}}) ∪ {{z2, z3}} is a paired-dominating set of T1 with

cardinality less than γp(T1), which is a contradiction. Hence, i 6= 1, 2. If i = 3,
then {u2, u3} ∈ Dp. So, (Dp − {{z1, z2}, {z3, z4}, {u2, u3}}) ∪ {{z2, z3}, {u1, u2}}
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is a paired-dominating set of T1 with cardinality less than γp(T1), which is a con-
tradiction. If i = 4, then (Dp − {{z1, z2}, {z3, z4}}) ∪ {{w, u1}} is a γp-set of T2.
Since v ∈ ψ(T2), it follows that v ∈ D. If i = 5, then {u2, u3}, {u4, u5} ∈ Dp. So,
(Dp−{{z1, z2}, {z3, z4}, {u2, u3}, {u4, u5}})∪{{z2, z3}, {w, u1}, {u3, u4}} is a paired-
dominating set of T1 with cardinality less than γp(T1), which is a contradiction. �

Lemma 5. If i = 2 and X = V (Pz), then v ∈ ψ(T2) if and only if v ∈ ψ(T1).
���������

. We consider the following cases.

Case 1: j = 1. By Lemma 2, let S be a γp-set of T2 that does not contain u2. Then
{w, u1} ∈ Sp and S is a paired-dominating set of T1. So, γp(T1) 6 γp(T2). Let D be
a γp-set of T1 that does not contain z1. Then w ∈ D and D is a paired-dominating
set of T2. So, γp(T2) 6 γp(T1). Hence, γp(T1) = γp(T2).
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. If w ∈ S, then S is

a γp-set of T1. Hence, v ∈ S. If w /∈ S, then {u1, u2} ∈ Dp and (Sp − {{u1, u2}}) ∪
{{w, u1}} is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1.

Then w, u1 ∈ D. If z1 ∈ D, then {w, z1} ∈ Dp and {u1, u2} ∈ Dp. So,
(Dp − {{u1, u2}, {w, z1}}) ∪ {{w, u1}} is a paired-dominating set of T1 with car-

dinality less than γp(T1), which is a contradiction. Hence, z1 /∈ D. Then D is a
γp-set of T2. Hence, v ∈ D. So, v ∈ ψ(T1).
Case 2: j = 2. Let S be a γp-set of T2. Then Sp∪{{z1, z2}} is a paired-dominating

set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain z2.
Then {w, z1} ∈ Dp and {u1, u2} ∈ Dp. Furthermore, (Dp − {{u1, u2}, {w, z1}}) ∪
{{w, u1}} is a paired-dominating set of T2. So, γp(T2) 6 γp(T1)−2. Hence, γp(T1) =
γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {z1, z2} is

a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If z2 /∈ D,

then {w, z1} ∈ Dp and {u1, u2} ∈ Dp. Then (Dp − {{u1, u2}, {w, z1}}) ∪ {{w, u1}}
is a γp-set of T2. So, v ∈ D. If z2 ∈ D, then {z1, z2} ∈ Dp and Dp − {{z1, z2}} is a
γp-set of T2. So, v ∈ D. Therefore, v ∈ ψ(T1).
Case 3: j = 3. Let S be a γp-set of T2. Then Sp∪{{z1, z2}} is a paired-dominating

set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain

z3. Then {z1, z2} ∈ Dp and Dp − {{z1, z2}} is a paired-dominating set of T2. So,
γp(T2) 6 γp(T1) − 2. Hence, γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {{z1, z2}}

is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If z3 /∈ D,

then {z1, z2} ∈ Dp and Dp − {{z1, z2}} is a γp-set of T2. So, v ∈ D.
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If z3 ∈ D, then {z2, z3} ∈ Dp. Furthermore, z1 /∈ D. Otherwise, {w, z1} ∈ Dp,

{u1, u2} ∈ Dp and (Dp − {{u1, u2}, {w, z1}}) ∪ {{w, u1}} is a γp-set of T1 with
cardinality less than γp(T1), which is a contradiction. Then Dp − {{z2, z3}} is a
γp-set of T2. So, v ∈ D. Therefore, v ∈ ψ(T1).
Case 4: j = 4. By Lemma 4, Lemma 5 holds.
Case 5: j = 5. By Lemma 2, let S be a γp-set of T2 that does not contain

u2. Then {w, u1} ∈ Sp and Sp ∪ {{z3, z4}} is a paired-dominating set of T1. So,
γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain z5. Then

{z3, z4} ∈ Dp. If z2 ∈ D, then {z1, z2} ∈ Dp. So, w /∈ D. Otherwise, Dp −{{z1, z2}}
would be a paired-dominating set of T1 with cardinality less than γp(T1), which is a
contradiction. Hence, {u1, u2} ∈ Dp. But (Dp − {{u1, u2}, {z1, z2}}) ∪ {{w, u1}} is
a γp-set of T1 with cardinality less than γp(T1), which is a contradiction.
Hence, z2 /∈ D. If z1 ∈ D, then {w, z1}, {u1, u2} ∈ Dp. So, (Dp − {{u1, u2},

{w, z1}}) ∪ {{w, u1}} is a γp-set of T1 with cardinality less than γp(T1), which is a
contradiction. Hence, z1 /∈ D. So, Dp − {{z3, z4}} is a paired-dominating set of T2

and γp(T2) 6 γp(T1) − 2. Hence, γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. If w ∈ S, then

Sp ∪ {{z3, z4}} is a γp-set of T1. Hence, v ∈ S. If w /∈ S, then {u1, u2} ∈ Sp.

Then (Sp − {{u1, u2}}) ∪ {{w, u1}, {z3, z4}} is a γp-set of T1. So, v ∈ S. Therefore,
v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If

z5 /∈ D, then {z3, z4} ∈ Dp. In a way similar to the above, Dp − {{z3, z4}} is a
γp-set of T2. Hence, v ∈ D. If z5 ∈ D, then {z4, z5} ∈ Dp. If z3 ∈ D, then
{z2, z3} ∈ Dp. If z1 /∈ D, then Dp − {{z2, z3}, {z4, z5}} is a paired-dominating set
of T2 with cardinality less than γp(T2), which is a contradiction. If z1 ∈ D, then
{w, z1} ∈ Dp and (Dp−{{z2, z3}, {z4, z5}})∪{{z3, z4}} is a paired-dominating set of
T1 with cardinality less than γp(T1), which is a contradiction. Hence, z3 /∈ D. Then
(Dp −{{z4, z5}})∪{{z3, z4}} is a γp-set of T1. In a way similar to the above, we can

prove that v ∈ D. So, v ∈ ψ(T1). �

Lemma 6. If i = 1, j = 1, 3, 5 and X = V (Pz), then v ∈ ψ(T2) if and only if
v ∈ ψ(T1).

���������
. We consider the following cases.

Case 1: j = 1. It is easy to prove that the lemma holds.
Case 2: j = 3. Let S be a γp-set of T2. Then Sp∪{{z1, z2}} is a paired-dominating

set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain

z3. Then {z1, z2} ∈ Dp and Dp − {{z1, z2}} is a paired-dominating set of T2. So,
γp(T2) 6 γp(T1) − 2. Hence, γp(T1) = γp(T2) + 2.
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Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {{z1, z2}}
is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If z3 /∈ D,

then {z1, z2} ∈ Dp and Dp − {{z1, z2}} is a γp-set of T2. So, v ∈ D. If z3 ∈ D, then
{z2, z3} ∈ Dp. If z1 /∈ D, then Dp−{{z2, z3}} is a γp-set of T2. So, v ∈ D. If z1 ∈ D,
then {w, z1} ∈ Dp and (Dp − {{w, z1}, {z2, z3}}) ∪ {{w, u1}} is a γp-set of T2. So,

v ∈ D. Therefore, v ∈ ψ(T1).
Case 3: j = 5. Let S be a γp-set of T2. Then Sp ∪ {{z3, z4}} is a paired-

dominating set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that
does not contain z5. Then {z3, z4} ∈ Dp. If z2 ∈ D, then {z1, z2} ∈ Dp and

Dp − {{z1, z2}} is a paired-dominating set of T1 with cardinality less than γp(T1),
which is a contradiction. Hence, z2 /∈ D. If z1 ∈ D, then {w, z1} ∈ Dp and

(Dp − {{z3, z4}, {w, z1}}) ∪ {{w, u1}} is a paired-dominating set of T2. If z1 /∈ D,
then Dp − {{z3, z4}} is a paired-dominating set of T2. So, γp(T2) 6 γp(T1) − 2.
Hence, γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {{z3, z4}}

is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If

z5 /∈ D, then {z3, z4} ∈ Dp. In a way similar to the above, Dp − {{z3, z4}} or
(Dp − {{z3, z4}, {w, z1}}) ∪ {{w, u1}} is a γp-set of T2. Hence, v ∈ D.
If z5 ∈ D, then {z4, z5} ∈ Dp. If z3 ∈ D, then {z2, z3} ∈ Dp. If z1 ∈ D, then

Dp − {{z2, z3}} is a paired-dominating set of T1 with cardinality less than γp(T1),
which is a contradiction. If z1 /∈ D, then Dp − {{z2, z3}, {z4, z5}} is a paired-
dominating set of T2 with cardinality less than γp(T2), which is a contradiction.
Hence, z3 /∈ D. Then (Dp−{{z4, z5}})∪{{z3, z4}} is a γp-set of T1. In a way similar
to the above, we can prove that v ∈ D. So, v ∈ ψ(T1).

Lemma 7. If i = 3, j = 3 and X = V (Pz), then v ∈ ψ(T2) if and only if
v ∈ ψ(T1).
���������

. Let S be a γp-set of T2. Then Sp ∪ {{z1, z2}} is a paired-dominating
set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain z3.

Then {z1, z2} ∈ Dp. If w ∈ D, then Dp−{{z1, z2}} is a paired-dominating set of T2.
If w /∈ D, then |D∩V (Pu)| = 2. Without loss of generality, say {u1, u2} ∈ Dp. Then

Dp − {{z1, z2}} is a paired-dominating set of T2. So, γp(T2) 6 γp(T1) − 2. Hence,
γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {{z1, z2}}

is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If z3 /∈ D,

then {z1, z2} ∈ Dp. In a way similar to the above, Dp − {{z1, z2}} is a γp-set of T2.
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So, v ∈ D. If z3 ∈ D, then {z2, z3} ∈ Dp. If z1 /∈ D, then Dp −{{z2, z3}} is a γp-set

of T2. If z1 ∈ D, then {w, z1} ∈ Dp and |D∩V (Pu)| = 3. Without loss of generality,
say {u1, u2} ∈ Dp. Then (Dp − {{w, z1}, {z2, z3}, {u1, u2}}) ∪ {{w, u1}, {u2, u3}} is
a γp-set of T2. So, v ∈ D. Therefore, v ∈ ψ(T1). �

Lemma 8. If i = 5, j = 3, 5 and X = V (Pz), then v ∈ ψ(T2) if and only if
v ∈ ψ(T1).

���������
. We consider the following cases.

Case 1: j = 3. Let S be a γp-set of T2. Then Sp ∪ {{z1, z2}} is a paired-
dominating set of T1. So, γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does

not contain z3. Then {z1, z2} ∈ Dp. If w ∈ D, then Dp − {{z1, z2}} is a paired-
dominating set of T2. If w /∈ D, then |D ∩ V (Pu)| = 4. Without loss of generality,
say {u1, u2}, {u3, u4} ∈ Dp. Then Dp − {{z1, z2}} is a paired-dominating set of T2.
So, γp(T2) 6 γp(T1) − 2. Hence, γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. Then Sp ∪ {{z1, z2}}

is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If z3 /∈ D,

then {z1, z2} ∈ Dp. In a way similar to the above, Dp − {{z1, z2}} is a γp-set of T2.

So, v ∈ D. If z3 ∈ D, then {z2, z3} ∈ Dp. If z1 /∈ D, then Dp −{{z1, z2}} is a γp-set
of T2. If z1 ∈ D, then {w, z1} ∈ Dp. If u1 ∈ D, then |D∩V (Pu)| = 4. Without loss of
generality, say {u1, u2}, {u3, u4} ∈ Dp. Then Dp−{{u1, u2}} is a paired-dominating
set of T1 with cardinality less than γp(T1), which is a contradiction. Hence, u1 /∈ D.
Then (Dp − {{w, z1}, {z2, z3}}) ∪ {{w, u1}} is a γp-set of T2. So, v ∈ D. Therefore,
v ∈ ψ(T1).
Case 2: j = 5. By Lemma 2, let S be a γp-set of T2 that does not contain

u5. If w ∈ S, then Sp ∪ {{z3, z4}} is a paired-dominating set of T1. If w /∈ S,

without loss of generality let us assume that {u1, u2}, {u3, u4} ∈ Dp. It follows
that (Sp − {{u1, u2}}) ∪ {{w, u1}, {z3, z4}} is a paired-dominating set of T1. So,

γp(T1) 6 γp(T2) + 2. Let D be a γp-set of T1 that does not contain z5. Then
{z3, z4} ∈ Dp. If z2 ∈ D, then {z1, z2} ∈ Dp. Furthermore, w /∈ D, otherwise

Dp − {{z1, z2}} would be a paired-dominating set of T1 with cardinality less than
γp(T1), which is a contradiction. Hence, |D ∩ V (Pu)| = 4. Without loss of gener-
ality, say {u1, u2}, {u3, u4} ∈ Dp. Then (Dp − {{z1, z2}, {u1, u2}}) ∪ {{w, u1}} is a
paired-dominating set of T1 with cardinality less than γp(T1), which is a contradic-
tion. Hence, z2 /∈ D. If z1 ∈ D, then {w, z1} ∈ Dp. If u1 ∈ D, then |D∩V (Pu)| = 4.
Without loss of generality, say {u1, u2}, {u3, u4} ∈ Dp. Then Dp − {{u1, u2}} is a
paired-dominating set of T1 with cardinality less than γp(T1), which is a contradic-
tion. If u1 /∈ D, then (Dp − {{z3, z4}, {w, z1}}) ∪ {{w, u1}} is a paired-dominating
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set of T2. If z1 /∈ D, then Dp − {{z3, z4}} is a paired-dominating set of T2. So,

γp(T2) 6 γp(T1) − 2. Hence, γp(T1) = γp(T2) + 2.
Suppose that v ∈ ψ(T1). Let S be an arbitrary γp-set of T2. If w ∈ S, then

Sp ∪ {{z3, z4}} is a γp-set of T1. Hence, v ∈ S. If w /∈ S, then |S ∩ V (Pu)| = 4.
Without loss of generality, say {u1, u2}, {u3, u4} ∈ Sp. So, (Sp − {{u1, u2}}) ∪
{{w, u1}, {z3, z4}} is a γp-set of T1. Hence, v ∈ S. So, v ∈ ψ(T2).
Conversely, suppose that v ∈ ψ(T2). Let D be an arbitrary γp-set of T1. If

z5 /∈ D, then {z3, z4} ∈ Dp. In a way similar to the above, Dp − {{z3, z4}} or
(Dp − {{z3, z4}, {w, z1}}) ∪ {{w, u1}} is a γp-set of T2. Hence, v ∈ D. If z5 ∈ D,
then {z4, z5} ∈ Dp. If z3 ∈ D, then {z2, z3} ∈ Dp. Suppose that z1 ∈ D. Then Dp −
{{z2, z3}} is a paired-dominating set of T1 with cardinality less than γp(T1), which
is a contradiction. Suppose that z1 /∈ D. Then Dp − {{z2, z3}, {z4, z5}} is a paired-
dominating set of T2 with cardinality less than γp(T2), which is a contradiction.
Hence, z3 /∈ D. Then (Dp−{{z4, z5}})∪{{z3, z4}} is a γp-set of T1. In a way similar

to the above, we can prove that v ∈ D. So, v ∈ ψ(T1). �

By Theorem 1 and Lemmas 3–8, Theorem 2 holds.
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