
Czechoslovak Mathematical Journal

Ladislav Nebeský
A new approach to chordal graphs

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 1, 465–471

Persistent URL: http://dml.cz/dmlcz/128184

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128184
http://dml.cz


Czechoslovak Mathematical Journal, 57 (132) (2007), 465–471

A NEW APPROACH TO CHORDAL GRAPHS

Ladislav Nebeský, Praha

(Received May 16, 2005)

Abstract. By a chordal graph is meant a graph with no induced cycle of length > 4. By
a ternary system is meant an ordered pair (W,T ), where W is a finite nonempty set, and
T ⊆ W ×W × W . Ternary systems satisfying certain axioms (A1)–(A5) are studied in
this paper; note that these axioms can be formulated in a language of the first-order logic.
For every finite nonempty set W , a bijective mapping from the set of all connected chordal
graphs G with V (G) = W onto the set of all ternary systems (W,T ) satisfying the axioms
(A1)–(A5) is found in this paper.
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1. Introduction

By a graph we mean here a finite undirected graph with no multiple edge (and

no loop). Let G be a graph, and let P (or C) be a path in G (or a cycle in G

respectively). We say that P (or C) is an induced path in G (or an induced cycle

in G) if no edge of G joins two nonconsecutive vertices of P (or of C respectively).

As usual (cf. [1] and [2]), by a chordal (or triangulated) graph we mean a graph
with no induced cycle of length > 4. Note that chordal graphs are called rigid circuit
graphs in [3].

Following [4], by a ternary system we mean an ordered pair (W, T ), where W is a

finite nonempty set, and T ⊆ W ×W ×W . If S = (W, T ) is a ternary system, then
we write V (S) = W .

Let S = (W, T ) be a ternary system, and let x, y, z ∈ V (S). Similarly as in [4],
the following convention will be used: we will write xySz if and only if (x, y, z) ∈ T ;
otherwise, we will write ¬(xySz).
Let S be a ternary system satisfying the following axioms (A1) and (A2):
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(A1) if uvSw, then vuSu, for all u, v, w ∈ V (S);
(A2) if uvSw, then w 6= u 6= v, for all u, v, w ∈ V (S).

Obviously, the axiom (A1) implies that

(1) xySy if and only if yxSx, for all x, y ∈ V (S).

By the underlying graph of S we mean the graph G defined as follows: V (G) = V (S)
and

(2) xy ∈ E(G) if and only if xySy for all x, y ∈ V (S).

Let W be an arbitrary finite nonempty set. In the present paper, we will find a

bijective mapping from the set of all connected chordal graphsG such that V (G) = W

onto the set of all ternary systems S such that V (S) = W and S satisfies the axioms

(A1), (A2) and the following axioms (A3), (A4), and (A5):

(A3) if uvSv, vwSx, u 6= w, and ¬(uwSw), then uvSx, for all u, v, w, x ∈ V (S);
(A4) if uvSw and v 6= w, then there exists y ∈ V (S) such that vySw, y 6= u,

and ¬(uySy), for all u, v, w ∈ V (G);
(A5) if u 6= v, then there exists z ∈ V (S) such that uzSv, for all u, v ∈ V (G).

Note that the axioms (A1)–(A5) can be formulated in a language of the first-order

logic.

2. Propositions

In this paper, the letters h− n will be used for denoting integers only.

Let G be a graph, and let u0, u1, . . . , un ∈ V (G), n > 1. Assume that
(u0, u1, . . . , un) is a path in G. If we put u = u0, v = u1, and w = un, then

we say that (u0, u1, . . . , un) is a uv − w path in G.
By the ip-system of G we mean the ternary system S defined as follows: V (S) =

V (G) and

uvSw if and only if there exists an induced uv − w path in G,

for all u, v, w ∈ V (G).
Let S be a ternary system satisfying the axioms (A1) and (A2), and let G denote

the underlying graph of S. In the next section of this paper, we will prove the
following result: G is a connected chordal graph and S is the ip-system of G if and

only if S satisfies the axioms (A3), (A4), and (A5).
Propositions 1–4 will be used in the proof of the mentioned result.
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Proposition 1. Let G be a graph, and let S denote the ip-system of G. Then

(a) S satisfies the axioms (A1), (A2) and (A4), and G is the underlying graph of S;

(b) if G is connected, then S satisfies the axiom (A5);
(c) if G is chordal, then S satisfies the axiom (A3).
���������

. To prove (a) and (b) is easy. We will prove (c) only.

Consider arbitrary u, v, w, x ∈ V (G) such that uvSv, vwSx, u 6= w, and ¬(uwSw).
Then uv, vw ∈ E(G), uw 6∈ E(G), and there exists an induced vw − x path in G.

This means that there exist v0, v1, . . . , vn ∈ V (G), n > 1, such that v0 = v, v1 = w,
vn = x, and (v0, v1, . . . , vn) is an induced path in G. Obviously, u 6∈ {v2, . . . , vn}.
Assume that there exists i, 2 6 i 6 n, such that uvi ∈ E(G). Then there exists a
cycle C of length i + 2 in G such that

V (C) = {u, v0, v1, . . . vi} and E(C) = {uv0, v0v1, . . . , vi−1vi, viu}.

Since G is a chordal graph and (v0, v1, . . . , vi) is an induced path in G, we get
uv1 ∈ E(G). Hence uw ∈ E(G), which is a contradiction. This implies that
(u, v0, v1, . . . , vn) is an induced path in G and therefore uvSx. Thus S satisfies

the axiom (A3). �

Lemma 1. Let S be a ternary system satisfying the axioms (A1), (A2) and (A3),

and let u0, . . . , um ∈ V (G), m > 1. Assume that

(3) ui+1uiSui for each i, 0 6 i 6 m− 1,

and

(4) uj+2 6= uj and ¬(uj+2ujSuj) for each j, 0 6 j 6 m− 2.

Then

(5) ukuk−1Su0 for each k, m > k > 1.

���������
. We proceed by induction on m. If m = 1, then u1u0Su0. Let now

m > 2. By the induction hypothesis,

(6) ulul−1Su0 for each l, m− 1 > l > 1.

Hence um−1um−2Su0. By (3), umum−1Sum−1. As follows from (4), um 6= um−2 and
¬(umum−2Sum−2). By the axiom (A3), umum−1Su0. Combining this result with

(6), we get (5), which completes the proof. �
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Corollary 1. Let S be a ternary system satisfying the axioms (A1), (A2) and

(A3), and let u0, . . . , um ∈ V (G), m > 1. Assume that (3) and (4) hold. Consider
arbitrary h and l, 0 6 h < l 6 m. Then

(7) ukuk−1Suh for each k, l > k > h + 1,

and

(8) ukuk+1Sul for each k, h 6 k 6 l − 1.

���������
. The statement (7) immediatelly follows from Lemma 1. Combining

Lemma 1 with (1), we get the statement (8). �

Proposition 2. Let S be a ternary system satisfying the axioms (A1), (A2) and
(A3), and let G denote the underlying graph of S. Then G is chordal.
���������

. Suppose to the contrary, that G contains an induced cycle C of
length m > 4. There exist pairwise distinct u0, u1, . . . , um ∈ V (G) such that
V (C) = {u0, u1. . . . , um} and E(C) = {u0u1, u1u2, . . . , um−1um, umu0}. Since C

is an induced cycle of G, we have u0u2, u1u3, . . . , um−2um 6∈ E(G). Since G is
the underlying graph of S, (3) and (4) hold. By Lemma 1, umum−1Su0. Since

umu0 ∈ E(G) and um−1u0 6∈ E(G), we have u0umSum and ¬(u0um−1Sum−1). Re-
call that u0 6= um−1. The axiom (A3) implies that u0umSu0, which contradicts the

axiom (A2). Thus G is chordal. �

Lemma 2. Let S be a ternary system satisfying the axioms (A1), (A2) and (A3),
let G denote the underlying graph of S, and let u0, u1, . . . , um ∈ V (S), m > 1.
Assume that (3) and (4) hold. Then (u0, u1, . . . , um) is an induced path in G.
���������

. By Proposition 2, G is chordal. As follows from (3), (u0, u1, . . . , um) is a
walk in G. Consider arbitrary h and i, 0 6 h < i 6 m. By Corollary 1, uhuh+1Sui.
As follows from the axiom (A2), uh 6= ui. Hence the vertices u0, u1, . . . , um are

pairwise distinct and therefore (u0, u1, . . . um) is a path in G. Suppose, to the con-
trary, that (u0, u1, . . . , um) is not an induced path in G. Then there exist k and l,
0 6 k < l 6 m, such that l− k > 2, ukul ∈ E(G), and

both (uk+1, . . . , ul) and (uk, . . . , ul−1) are induced paths in G.

By virtue of (4), ukuk+2, ul−2ul 6∈ E(G). Hence l − k > 3. Let C denote the cycle

in G obtained from the path (uk, uk+1, . . . ul) by adding the edge ukul. Since G is
chordal and (uk+1, . . . , ul) is an induced path in G, we have ukul−1 ∈ E(G). This
implies that (uk, . . . , ul−1) is not an induced path in G, which is a contradiction.
Thus the lemma is proved. �
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Recall that if S is a ternary system, then V (S) is finite. This fact will be used in
the proof of the following lemma.

Lemma 3. Let S be a ternary system satisfying the axioms (A1)–(A4), let G

denote the underlying graph of S, and let u, v, w ∈ V (S). Assume that uvSw. Then

there exist u0, u1, . . . , un ∈ V (S), n > 1, such that u0 = u, u1 = v, un = w, (4)
holds,

uiui+1Sun for each i, 0 6 i 6 n− 1,

and (u0, . . . , un) is an induced path in G.

���������
. We will construct an infinite sequence

σ = (u0, u1, u2, . . .)

of elements in V (S) with the following properties:
u0 = u and u1 = v;

if k > 2 and uk−1 = w, then uk = w;

if k > 2 and uk−1 6= w, then uk−1ukSw, uk 6= uk−2, and ¬(uk−2ukSuk).
As follows from the axiom (A4), σ is well-defined.

Consider an arbitrary m > 1 such that um−1 6= w. We have

u0u1Sw, . . . , um−1umSw

and thus, by the axiom (A1), (3) holds. Combining the definition of σ with (1), we
see that (4) holds, too. By Lemma 2, (u0, u1, . . . um) is an induced path in G.

Since V (S) is finite, it is clear that there exists n > 1 such that un−1 6= w and
un = w, which completes the proof. �

Proposition 3. Let S be a ternary system satisfying the axioms (A1)–(A4), let
G denote the underlying graph of S, and let S∗ denote the ip-system of G. Then

uvSw implies uvS∗w

for all u, v, w ∈ V (S).
���������

. Consider arbirary u, v, w ∈ V (S) such that uvSw. By Lemma 3,

there exist u0, u1, . . . , un ∈ V (S), n > 1, such that u0 = u, u1 = v, un = w and
(u0, u1, . . . , un) is an induced path in G. Thus u0u1S

∗un; we have uvS∗w. �
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Proposition 4. Let S be a ternary system satisfying the axioms (A1)–(A5), and

let G denote the underlying graph of S. Then G is connected.
���������

. Consider arbitrary u, v ∈ V (G), u 6= v. By the axiom (A5), there exists
z ∈ V (G) such that uzSv. By Lemma 3, there exist u0, u1, . . . , un ∈ V (G), n > 1,
such that u0 = u, u1 = z, un = v, and (u0, u1, . . . , un) is an induced path in G. This

implies that G is connected. �

3. The main result

Let G be a graph. Consider x, y, z ∈ V (G). If there exists at least one induced
xy − z path in G, then we denote by dG(xy − z) the minimum length of an induced
xy − z path in G.

The following theorem is the main result of this paper.

Theorem 1. Let S be a ternary system satisfying the axioms (A1) and (A2), and
let G denote the underlying graph of S. Then G is a connected chordal graph and

S is the ip-system of G if and only if S satisfies the axioms (A3), (A4), and (A5).
���������

. Assume that G is a connected chordal graph and S is the ip-system of

G. By Proposition 1, S satisfies the axioms (A3), (A4), and (A5).
Conversely, assume that S satisfies the axioms (A3), (A4), and (A5). By Proposi-

tion 2, G is chordal; by Proposition 4, G is connected. Let S∗ denote the ip-system
of G. According to Proposition 1, G is the underlying graph of S∗. We wish to prove

that
uvSw if and only if uvS∗w for all u, v, w ∈ V (S).

The “if” part of this statement immediately follows from Proposition 3. It remains

to prove the “only if” part.
Consider arbitrary u, v, w ∈ V (S) such that uvS∗w. Put n = dG(uv − w). Ob-

viously, n > 1. We want to prove that uvSw. We proceed by induction on n.
Let first n = 1; then w = v and uvS∗v; hence uvSw. Let now n > 2. Clearly,
there exist u0, u1, . . . , un ∈ V (G) such that (u0, u1, . . . , un) is an induced path in
G, u0 = u, u1 = v, and un = w. Obviously, (u1, u2, . . . , un) is also an induced
path in G. Since dG(u1u2 − un) 6 n − 1, the induction hypothesis implies that
u1u2Sun. Since (u0, u1, u2) is an induced path in G, we have u0u1 ∈ E(G), u0 6= u2,

and u0u2 6∈ E(G). Hence u0u1Su1 and ¬(u0u2Su2). The axiom (A3) implies that
u0u1Sun; we have uvSw, which completes the proof. �

The next corollary is an immediate consequence of Theorem 1.
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Corollary 2. A graph G is a connected chordal graph if and only if there exists

a ternary system S satisfying the axioms (A1)–(A5) such that G is the underlying

graph of S.

For every finite nonempty setW , we denote by GW the set of all connected chordal
graphs G such that V (G) = W and by TW the set of all ternary systems S satisfying

the axioms (A1)–(A5) such that V (S) = W .
If W is a finite nonempty set, then for every G ∈ GW , we denote by σW (G) the

ip-system of G.
The next theorem is a reformulation of Theorem 1:

Theorem 2. For every finite nonempty set W , σW is a bijective mapping from

GW onto TW .

Thus, roughly speaking, connected chordal graphs can be considered as ternary
systems satisfying the axioms (A1)–(A5) and vice versa.
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