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Abstract. We characterize exchange rings having stable range one. An exchange ring R
has stable range one if and only if for any regular a ∈ R, there exist an e ∈ E(R) and a
u ∈ U(R) such that a = e + u and aR ∩ eR = 0 if and only if for any regular a ∈ R, there
exist e ∈ r.ann(a+) and u ∈ U(R) such that a = e + u if and only if for any a, b ∈ R,
R/aR ∼= R/bR =⇒ aR ∼= bR.

Keywords: exchange ring, stable range one, idempotent, unit

MSC 2000 : 16E50, 16U99

1. Introduction

A right R-module A has the finite exchange property if for every right R-module

Q and two decompositions Q = M ⊕N =
⊕
i∈I

Ai, where MR
∼= A and the index set

I is finite, there exist submodules A′i ⊆ Ai such that Q = M ⊕
(⊕
i∈I

A′i

)
. We say

that R is an exchange ring provided that R has the finite exchange property as a
right R-module. By [14, Theorem 2.1], a ring R is an exchange ring if and only if for
any x ∈ R there exists an idempotent e ∈ Rx such that 1− e ∈ R(1− x). It is well
known in the literature that regular rings, π-regular rings, semi-perfect rings, left
or right continuous rings, clean rings and unit C∗-algebras of real rank zero (cf. [3,

Theorem 7.2]) are all exchange rings. In [1, Theorem 1.1], Ara proved that every
purely infinite simple ring is an exchange ring.

Recall that a ring R has stable range one provided aR + bR = R with a, b ∈ R

implies that there exists y ∈ R such that a+ by ∈ U(R). This definition is right-left
symmetric. Moreover, we know that a rightR-moduleM can be cancelled from direct

sums if and only if EndRM has stable range one. In this paper, we will characterize
exchange rings having stable range one by various equivalent conditions.
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An element a ∈ R is regular if there exists an x ∈ R such that a = axa. We

say that a ∈ R is unit-regular if it is the product of an idempotent and a unit. In
[5, Theorem 3], Camillo and Yu proved that an exchange ring has stable range one
if and only if every regular element in R is unit-regular. Further, Yu proved that

every exchange ring with artinian primitive factors has stable range one (cf. [17,
Theorem 1]). In [2, Theorem 4], Ara proved that every strongly π-regular ring is an

exchange ring having stable range one.

In parallel, a ∈ R is clean if it is the sum of an idempotent and a unit. Camillo
and Khurana (cf. [4, Theorem 1]) gave a characterization of unit regular rings. They

showed that a ring R is unit-regular if and only if for any a ∈ R there exist an
idempotent e ∈ E(R) and a u ∈ U(R) such that a = e+ u and aR ∩ eR = 0.
Let

�
be the ring of all integers. In [12, Example 4.5], Khurana and Lam showed

that
(
12 5
0 0

)
∈M2(

�
) is not clean although it is unit-regular. In other words, a single

unit-regular element in a ring may be not clean. This has inspired us to investigate
clean property of unit-regular elements in an exchange ring having stable range one.

In this paper, we prove that an exchange ring R has stable range one if and only if for
any regular a ∈ R, there exist an e ∈ E(R) and a u ∈ U(R) such that a = e+ u and

aR ∩ eR = 0. This gives an affirmative answer to the problem in [8]. Furthermore,
we prove that an exchange ring R has stable range one if and only if for any regular

a ∈ R, there exist e ∈ r.ann(a+) and u ∈ U(R) such that a = e + u. Additionally,
we prove that an exchange ring R has stable range one if and only if for any a, b ∈ R,
R/aR ∼= R/bR =⇒ aR ∼= bR.

Throughout the paper, every ring is associative with an identity. A ring R is (unit)
regular provided every element inR is (unit) regular. Let r.ann(a) = {r ∈ R; ar = 0}
and l.ann(a) = {r ∈ R; ra = 0}. We use E(R) to denote the set of all idempotents
in R and U(R) to denote the set of all units in R.

2. Clean property

Theorem 2.1. Let R be an exchange ring. Then the following assertions are
equivalent:

(1) R has stable range one.

(2) For any regular a ∈ R, there exist an e ∈ E(R) and a u ∈ U(R) such that
a = e+ u and aR ∩ eR = 0.

(3) For any regular a ∈ R, there exist an e ∈ E(R) and a u ∈ U(R) such that
a = e+ u and Ra ∩ Re = 0.

���������
. (1) ⇒ (2) Let a ∈ R be regular. Then we have x ∈ R such that

a = axa, and so R = aR ⊕ (1 − ax)R = xR ⊕ r.ann(a). Clearly, aR ∼= axR
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has the finite exchange property. So there exist right R-modules X1, Y1 such that

R = aR ⊕ X1 ⊕ Y1 with X1 ⊆ r.ann(a) and Y1 ⊆ xR. It is easy to verify that
r.ann(a) = r.ann(a)∩ (X1⊕aR⊕Y1) = X1⊕X2, where X2 = r.ann(a)∩ (aR⊕Y1).
Likewise, we have a right R-module Y2 such that xR = Y1 ⊕ Y2. Obviously, a ∈ R is
unit-regular; hence, r.ann(a) ∼= R/aR. ThusX1⊕X2 = r.ann(a) ∼= R/aR ∼= X1⊕Y1,
and so we have an isomorphism k : X1 ⊕ X2 → X1 ⊕ Y1. Furthermore, X1 can

be cancelled from direct sums, and hence we get a right R-module isomorphism
ψ : X2 → Y1.

Let h : R = X1 ⊕ X2 ⊕ Y1 ⊕ Y2 → X1 ⊕ Y1 ⊕ X2 ⊕ Y2 = R be given by h(x1 +
x2 + y1 + y2) = k(x1 + x2) + y1 for any x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2. Let
v : R = X1 ⊕ Y1 ⊕X2 ⊕ Y2 → X1 ⊕X2 ⊕ Y1 ⊕ Y2 = R be given by v(x1 + y1 + x2 +
y2) = k−1(x1 + y1) + ψ(x2) for any x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2. For any
x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2, we have

hvh(x1 + x2 + y1 + y2) = hv
(
k(x1 + x2) + y1

)

= h
(
x1 + x2 + k−1(y1)

)
= k(x1 + x2) + y1

= h(x1 + x2 + y1 + y2);

hence h = hvh. Set e = hv. Then e ∈ EndR(R) is an idempotent.
Assume that (a−hv)(x1+y1+x2+y2) = 0 for any x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈

Y2. Then

a(y1 + y2) = x1 + y1 + ψ(x2) ∈ aR ∩ (X1 ⊕ Y1) = 0,

and consequently x1 = −y1 − ψ(x2) ∈ X1 ∩ Y1 = 0. It follows from a(y1 + y2) = 0
that y1 + y2 ∈ (X1 ⊕ X2) ∩ (Y1 ⊕ Y2) = 0; hence y1 + y2 = 0. This infers that
y1 = −y2 ∈ Y1 ∩ Y2 = 0, and so y1 = y2 = 0. Furthermore, we get ψ(x2) = −y1 = 0.
As ψ is an isomorphism, we have x2 = 0. Thus x1 + y1 + x2 + y2 = 0. This means
that a− e ∈ R is a monomorphism.
Given any t ∈ aR, x1 ∈ X1, y1 ∈ Y1, we have t ∈ aR = a(Y1 ⊕ Y2). So we

can find y′1 ∈ Y1 and y′2 ∈ Y2 such that t = a(y′1 + y′2). Choose x
′
1 = −x1 and

x′2 = −ψ−1(y1 + y′1). It is easy to verify that

(a− hv)(x′1 + x′2 + y′1 + y′2) = a(y′1 + y′2)−
(
x′1 + y′1 + ψ(x′2)

)

= t− (−x1 + y′1 − y1 − y′1) = t+ x1 + y1.

This means that a − hv : R → R is an epimorphism, and then a − hv is an iso-

morphism. Let e = hv and u = a − e. Then a = e + u. In addition, we have
aR ∩ eR ⊆ aR ∩ (X1 ⊕ Y1) = 0. Hence aR ∩ eR = 0.
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(2)⇒ (1) Given any regular a ∈ R, there exist an e ∈ E(R) and a u ∈ U(R) such
that a = e+ u and aR ∩ eR = 0. As a result, (au−1 − 1)a = eu−1a ∈ aR ∩ eR = 0;
hence, a = au−1a. According to [5, Theorem 3], we complete the proof.

(1) ⇔ (3) As stable range one condition is symmetric, we obtain the result by
applying (1)⇔ (2) to the opposite ring Rop. �

A ring R is said to have bounded index if there exists an integer n such that
xn = 0 for every nilpotent x ∈ R. Let R be an exchange ring of bounded index. We
claim that for any regular a ∈ R, there exist an e ∈ E(R) and a u ∈ U(R) such that
a = e+u and aR∩ eR = 0. In view of [17, Theorem Corollary 4], R has stable range
one, and we are done by Theorem 2.1.
Recall that a ring R is clean provided that every element in R is clean. It is well

known that every clean ring is an exchange ring. Now we give a new proof of [14,
Proposition 1.8] as follows.

Corollary 2.2. Every exchange ring with all idempotents central is a clean ring.
���������

. Let R be an exchange ring with all idempotents central, and let a ∈ R.
By [14, Theorem 2.1], there exists an idempotent e ∈ R such that e = as and 1−e =
(1−a)t for some s, t ∈ R. Clearly, ea = (ea)s(ea) and (1−e)a =

(
(1−e)a

)
t
(
(1−e)a

)
.

In view of Theorem 2.1, we can find idempotents f1, f2 ∈ R and units u1, u2 ∈ R

such that ea = f1 + u1 and (1− e)(1− a) = f2 + u2. It follows that

a = ea+ (1− e)a
= (ef1 + eu1) + ((1− e)− (1− e)f2 − (1− e)u2)

= (ef1 + (1− e)(1− f2)) + (eu1 − (1− e)u2).

Let f = ef1 + (1 − e)(1 − f2) and u = eu1 − (1 − e)u2. Then f = f2 and u−1 =
eu−1

1 − (1− e)u−1
2 , and therefore R is a clean ring. �

We note that an exchange ring plus stable range one is a Morita invariant. Using
this fact, we derive

Corollary 2.3. Let R be an exchange ring and 1
2 ∈ R. If R has stable range one,

then every regular square matrix over R is the sum of three invertible matrices.
���������

. Since R is an exchange ring having stable range one, so is Mn(R).
Let A ∈ Mn(R) be regular. In view of Theorem 2.1, there exist an idempotent
E ∈Mn(R) and an invertible U ∈Mn(R) such that A = E+U . As 1

2 ∈ R, it follows
that E = diag( 1

2 , . . . ,
1
2 )n×n+

(
E−diag( 1

2 , . . . ,
1
2 )n×n

)
. One easily checks that

(
E−

diag( 1
2 , . . . ,

1
2 )n×n

)(
4E − diag(2, . . . , 2)n×n

)
= In =

(
4E − diag(2, . . . , 2)n×n

)(
E −

diag( 1
2 , . . . ,

1
2 )n×n

)
. That is, E−diag( 1

2 , . . . ,
1
2 )n×n ∈Mn(R) is invertible. Therefore

A is the sum of three invertible matrices, as asserted. �
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Example 2.4. Let R be a 2× 2 matrix over 	 /(x2 ), where 	 is a field. Clearly,
R is a strongly π-regular ring; hence, it is an exchange ring having stable range one.
Take a =

(
0 1
0 x

)
. Then a ∈ R is regular, while a2 ∈ R is not regular. In view of

Theorem 2.1, there exist an e ∈ E(R) and a u ∈ U(R) such that a = e + u with

aR ∩ eR = 0, while a2 can not be written in this form.

Theorem 2.5. If R is an exchange ring having stable range one, then every square
matrix over R is an algebraic sum of idempotent matrices and invertible matrices.

���������
. Let R be an exchange ring having stable range one, and let S = Mn(R).

Then S is an exchange ring having stable range one. LetA ∈ S. By [14, Theorem 2.1],
there exists an idempotent E ∈ S such that E = AS and In − E = (In − A)T for
some S, T ∈ S. Analogously to Corollary 2.3, we see that both EA and (In−E)A are
regular. In view of Theorem 2.1, we can find idempotents F1, F2 ∈ S and invertible
U1, U2 ∈ S such that EA = F1 +U1 and (In −E)(In −A) = F2 +U2. So we deduce

that A = EA + (In − E)A = F1 + U1 + (In − E) − F2 − U2. This means that A is
an algebraic sum of idempotent matrices and invertible matrices. �

Let I be an ideal of a ring R. We say that I has stable range one provided

(1R + a)R + bR = R with a ∈ I, b ∈ R implies that there exists a y ∈ R such that
1R + a+ by ∈ U(R).

Corollary 2.6. Let R be a regular ring, and let A = (aij) ∈ Mn(R). If each
RaijR has stable range one, then A is an algebraic sum of idempotent matrices and

invertible matrices.

���������
. Let I =

∑
16i,j6n

RaijR. Given (1 +
∑

16i,j6n
rij)x + b = 1 with x, b ∈ R

and each rij ∈ RaijR, then (1 + r11)x +
( ∑

16i,j6n,i6=1

rij

)
x + b = 1. As Ra11R has

stable range one, we can find y11 ∈ R such that x + y11

( ∑
16i,j6n,i6=1

rij

)
x + y11b =

u1 ∈ U(R). Let r′ij = y11rij . Then r′ij ∈ RaijR and
(
1 +

∑
16i,j6n,i6=1

r′ij

)
(xu1) +

bu1 = 1. Likewise, we prove that (1 + r′nn)xu1u2 . . . unn + bu1u2 . . . unn = 1 for
some u2, . . . , un ∈ U(R). As RannR has stable range, we have z ∈ R such that

xu1u2 . . . unn + zbu1u2 . . . unn ∈ U(R). Thus x + zb ∈ U(R), and so I has stable
range one. Clearly, each aij ∈ I . Furthermore, there exists an idempotent e ∈ I

such that each aij ∈ eRe; hence A ∈ Mn(eRe). Clearly, eRe is unit-regular. It
follows by Theorem 2.5 that A is an algebraic sum of idempotent matrices and

invertible matrices over eRe. Let U ∈ Mn(eRe) be invertible. Then we have V ∈
Mn(eRe) such that UV = diag(e, e, . . . , e)n×n. Hence

(
U + diag(1 − e, 1 − e, . . . ,
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1− e)n×n
)(
V + diag(1− e, 1− e, . . . , 1− e)n×n

)
= In. In other words, U + diag(1−

e, 1 − e, . . . , 1− e)n×n ∈ Mn(R) is invertible, and so U is an algebraic sum of an
idempotent matrix and an invertible matrix over R. Therefore A is an algebraic sum
of idempotent matrices and invertible matrices over R, as asserted. �

Recall that an ideal I of a ring R is of bounded index if there is a positive integer

n such that xn = 0 for any nilpotent x ∈ I .

Corollary 2.7. Let R be a regular ring, and let A = (aij) ∈ Mn(R). If each
RaijR is of bounded index, then A is an algebraic sum of idempotent matrices and

invertible matrices.
���������

. For any idempotent e ∈ RaijR we have eRe ⊆ RaijR. Hence eRe is
a regular ring of bounded index. In view of [9, Corollary 7.11], eRe is unit-regular.

This shows that RaijR has stable range one, and therefore we complete the proof by
Corollary 2.6. �

3. Extensions

Let I be a right ideal of a ring R. We say that a ∈ R is a right unit modulo I
provided ab ≡ 1(mod I). Now we extend this result as follows.

Lemma 3.1. Let R be an exchange ring. Then the following conditions are
equivalent:

(1) R has stable range one.
(2) Every right unit lifts modulo I any right ideal of R.
(3) Every left unit lifts modulo I any left ideal of R.

���������
. (1) ⇒ (2) Let I be a right ideal of R, and let a ∈ R be a right unit

modulo I . Then there exists b ∈ R such that ab ≡ 1(mod I). Hence we can find an
r ∈ I such that ab + r = 1. Since R has stable range one, we can find c ∈ R such

that a+ rc ∈ U(R). Set u = a+ rc. Then a−u = r(−c) ∈ I . That is, a ≡ u(mod I),
as desired.

(2)⇒ (1)Given ab+c = 1 in R, then ab−1 ∈ cR. This means that ab ≡ 1(mod cR).
By hypothesis, there exists a right unit u ∈ R such that a− u ∈ cR. So we can find
an r ∈ R such that a + cr = u ∈ R. As u ∈ R is a right unit, there is v ∈ R such
that uv = 1. Since vu+(1− vu) = 1, by the above consideration we have s ∈ R such
that v + (1 − vu)s = t ∈ U(R) is a right unit. Clearly, ut = u

(
v + (1 − vu)s

)
= 1;

hence, t ∈ R is a left unit. Thus t ∈ U(R). This implies that u ∈ U(R). That is,
a+ cr ∈ U(R). Therefore R has stable range one.

(1)⇔ (3) is symmetric. �
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We say that b ∈ R is a reflexive inverse of a ∈ R if a = aba and b = bab,

and denote b by a+. Clearly, every regular element has a reflexive element. Using
such elements, we give a new characterization of exchange rings having stable range
one.

Theorem 3.2. Let R be an exchange ring. Then the following conditions are
equivalent:

(1) R has stable range one.

(2) For any regular a ∈ R, there exist e ∈ r.ann(a+) and u ∈ U(R) such that
a = e+ u.

(3) For any regular a ∈ R, there exist e ∈ l.ann(a+) and u ∈ U(R) such that
a = e+ u.

���������
. (1) ⇒ (2) Given any regular a ∈ R, there exists a+ such that a = aa+a

and a+ = a+aa+. Hence a+(aa+ − 1) = 0. That is, aa+ ≡ 1(mod r.ann(a+)). By
virtue of Lemma 3.1, we can find a right unit u ∈ R such that a − u ∈ r.ann(a+).
Thus there exists e ∈ r.ann(a+) such that a = e+ u. As R has stable range one, it
is directly finite. This infers that u ∈ U(R), as required.

(2)⇒ (1) Let a ∈ R be regular. Then a = aa+a and a+ = a+aa+. By assumption,
there exist e ∈ r.ann(a) and u ∈ U(R) such that a+ = e+u; hence, a+−u ∈ r.ann(a).
As a result, a(a+ − u) = 0. This implies that a = aa+a = aua. That is, a ∈ R is
unit-regular. Consequently, R has stable range one by [5, Theorem 3].

(1) ⇔ (3) Since R is an exchange ring having stable range one if and only if so is
the opposite ring Rop, the result follows by symmetry. �

Corollary 3.3. Let R be an exchange ring of bounded index. Then the following
assertions hold:

(1) For any regular a ∈ R, there exist e ∈ r.ann(a+) and u ∈ U(R) such that
a = e+ u.

(2) For any regular a ∈ R, there exist e ∈ l.ann(a+) and u ∈ U(R) such that
a = e+ u.

���������
. In view of [17, Corollary 4], R has stable range one. So the proof follows

by Theorem 3.2. �

Recall that a ring R is strongly π-regular provided that for any a ∈ R there exists
a positive integer n(a) such that an(a) ∈ an(a)+1R.
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Corollary 3.4. Let R be a strongly π-regular ring. Then the following assertions
hold:

(1) For any regular a ∈ R, there exist e ∈ r.ann(a+) and u ∈ U(R) such that
a = e+ u.

(2) For any regular a ∈ R, there exist e ∈ l.ann(a+) and u ∈ U(R) such that
a = e+ u.

���������
. In view of [2, Theorem 4], R is an exchange ring having stable range

one. Therefore we complete the proof by Theorem 3.2. �

A regular ring R is abelian provided that every idempotent in R is central.

Corollary 3.5. Let R be a ring. Then the following assertions are equivalent:
(1) R is an abelian regular ring.

(2) For any a ∈ R, there exist e ∈ r.ann(a) and u ∈ U(R) such that a = e+ u.

(3) For any a ∈ R, there exist e ∈ l.ann(a) and u ∈ U(R) such that a = e+ u.

���������
. (1)⇒ (2) Let R be an abelian regular ring. Then it is an exchange ring

having stable range one by [17, Theorem 6]. For any a ∈ R, there exists a+ ∈ R such
that a = aa+a and a+ = a+aa+. As every idempotent in R is central, one checks
that r.ann(a+) = r.ann(a). In view of Theorem 3.2, we can find e ∈ r.ann(a) and
u ∈ U(R) such that a = e+ u, as desired.

(2) ⇒ (1) Given any a ∈ R, there exist e ∈ r.ann(a) and u ∈ U(R) such that
a = e + u. Hence a − u ∈ r.ann(a), and then a(a − u) = 0. This implies that
a = a2u−1. According to [9, Theorem 3.5], R is an abelian regular ring.

(1)⇔ (3) is obtained by symmetry. �

4. Cokernels

In [7, Theorem 14], the author proved that a regular ring R is unit-regular if and
only if whenever aR ∼= bR, then there exist u, v ∈ R such that a = ubv. In this

section, we characterize exchange rings having stable range one by cokernels of their
elements, which is also a generalization of [10, Theorem 2.1].

Theorem 4.1. Let R be an exchange ring. Then the following conditions are
equivalent:

(1) R has stable range one.

(2) For any a, b ∈ R, R/aR ∼= R/bR implies that there exist u, v ∈ U(R) such that
a = ubv.
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(3) For any a, b ∈ R, R/Ra ∼= R/Rb implies that there exist u, v ∈ U(R) such that
a = ubv.

���������
. (1) ⇒ (2) Since ϕ : R/aR ∼= R/bR, there exists a c ∈ R such that

ϕ(1 + aR) = c + bR. So R + bR = cR + bR; hence, R = cR + bR. Since R

has stable range one, there exists a d ∈ R such that c + bd = u ∈ U(R). Clearly,
bR = ϕ(aR) = ϕ(aR+aR) = caR+bR, and then caR ⊆ bR. Furthermore, uaR ⊆ bR.

On the other hand, we have ϕ(1 + aR) = (c + bd) + bR = u + bR. It follows that
ϕ−1(1+bR) = u−1+aR. This implies that u−1b+aR = (u−1+aR)b = ϕ−1(1+bR)b =
ϕ−1(bR) = aR. Hence u−1bR ⊆ aR, and then bR ⊆ uaR. Thus we can find x, y ∈ R
such that ua = bx and b = uay. Since R has stable range one, it follows from

xy + (1 − xy) = 1 that there exists a z ∈ R such that x + (1 − xy)z = v ∈ U(R).
Thus we deduce that bx = b(x + (1 − xy)z) = bv. As a result, we prove that

a = u−1bx = u−1bv, as desired.

(2) ⇒ (1) Given eR ∼= fR with idempotents e, f ∈ R, we have R/(1 − e)R ∼=
R/(1− f)R. By assumption, there exist u, v ∈ R such that 1− e = u(1− f)v. Let
y = u(1 − f)u−1. Then y(1 − e) = u(1 − f)u−1(1 − e) = u(1 − f)v = 1 − e and
y = u(1 − f)u−1 = u(1 − f)v(v−1u−1) = (1 − e)v−1u−1. Hence (1 − e)y = y. As

a result, we prove that (e + y)−1 = 2 − e − y. Set w = (e + y)u. Then w ∈ U(R).
Furthermore, one easily checks that

w(1− f)w−1 = (e+ y)u(1− f)u−1(2− e− y) = (e+ y)y(2− e− y)
= y(2− e− y) = y − ye = 1− e.

This implies that e = wfw−1. In view of [17, Theorem 10], we prove that R has
stable range one.

(1)⇔ (3) is obtained by symmetry. �

In the proof of Theorem 4.1, we prove that an exchange ring R has stable range
one if and only if for any regular a, b ∈ R, R/aR ∼= R/bR implies that there exist

u, v ∈ U(R) such that a = ubv if and only if for any regular a, b ∈ R, R/Ra ∼= R/Rb

implies that there exist u, v ∈ U(R) such that a = ubv. We note that the condition

(1) and (2) above are not equivalent for some non-exchange rings. In [6, Example 6.7],
Canfell supplied a principal ideal domain R which has elements a and b for which

R/aR ∼= R/bR but a 6= ubv for any u, v ∈ U(R).

Corollary 4.2. Let R be an exchange ring. Then the following assertions are
equivalent:

(1) R has stable range one.
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(2) For any regular a, b ∈ R, r.ann(a) ∼= r.ann(b) implies that there exist u, v ∈
U(R) such that a = ubv.

(3) For any regular a, b ∈ R, l.ann(a) ∼= l.ann(b) implies that there exist u, v ∈
U(R) such that a = ubv.

���������
. (1) ⇒ (2) Suppose that r.ann(a) ∼= r.ann(b) with regular a, b ∈ R.

Then there exist x, y ∈ R such that a = axa and b = byb. Hence (1 − xa)R =
r.ann(a) ∼= r.ann(b) = (1− yb)R. As 1− xa, 1− ya ∈ R are idempotents, it follows
that R(1− xa) ∼= R(1− yb). Clearly, R(1− xa) ∼= R/Rxa and R(1− yb) ∼= R/ybR.
As a result, R/Ra ∼= R/Rb. In view of Theorem 4.1, we can find u, v ∈ U(R) such
that a = ubv.

(2) ⇒ (1) Given eR ∼= fR with idempotents e, f ∈ R, we have r.ann(1 − e) ∼=
r.ann(1− f). By assumption, we can find u, v ∈ U(R) such that 1− e = u(1− f)v.
Analogously to Theorem 4.1, we have a w ∈ U(R) such that 1 − e = w(1 − f)w−1.
Thus 1− e = ab and 1− f = ba, where a = (1− e)w(1 − f) ∈ (1− e)R(1− f) and
b = (1 − f)w−1(1 − e) ∈ (1 − f)R(1 − e). This implies that (1 − e)R ∼= (1 − f)R.
Using [17, Theorem 10], we prove that R is unit-regular.

(1)⇔ (3) is symmetric. �

A regular ring is unit-regular if and only if it has stable range one (cf. [9, Proposi-
tion 4.12]). It follows by Corollary 4.2 that a regular ring is unit-regular if and only

if r.ann(a) ∼= r.ann(b) implies that there exist u, v ∈ U(R) such that a = ubv if and
only if l.ann(a) ∼= l.ann(b) implies that there exist u, v ∈ U(R) such that a = ubv.

Example 4.3. Let V be an infinite-dimensional vector space over a division ring
D, and let R = EndD(V ). Then R is an exchange ring but it has stable range ∞.
Using Corollary 4.1, the condition (2) above doesn’t hold. Let {x1, x2, . . .} be a
basis of V . Define σ : V → V by σ(xi) = xi+1 for i = 1, 2, 3, . . .. Let τ : V → V

be the identity map. Define % : V → V given by τ(x1) = 0 and %(xi) = xi−1(i =
2, 3, . . . , n, . . .). Then %σ = 1V and σ% 6= 1V . Thus σ and τ are both regular and
r.ann(σ) ∼= r.ann(τ), while σ 6= uτv for any automorphisms u and v.

Corollary 4.4. Let R be an exchange ring having stable range one, and let
a, b ∈ R. Then the following conditions are equivalent:
(1) ϕ : aR ∼= bR and ϕ(a) = ua for a u ∈ U(R).
(2) There exist v, w ∈ U(R) such that a = vbw.

���������
. (1) ⇒ (2) Suppose that ϕ : aR ∼= bR and ϕ(a) = ua for a u ∈ U(R).

Let ψ : R → R be given by ψ(r) = ur for any r ∈ R. Then ψ is an automorphism.
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So we have ϕ : R/aR→ R/aR such that the following diagram commutates.

0 // aR

ϕ

��

� � // R

ψ

��

// R/aR

ϕ

��

// 0

0 // bR
� � // R // R/bR // 0.

Since both ϕ and ψ are isomorphic, so is ϕ. That is, R/aR ∼= R/bR. According to

Theorem 4.1, we prove that a = vbw for some v, w ∈ U(R).
(2)⇒ (1) Suppose that a = vbw with v, w ∈ U(R). Construct a map ϕ : aR→ bR

given by ϕ(ar) = v−1(ar) for any r ∈ R. It is easy to verify that ϕ : aR ∼= bR. In
addition, ϕ(a) = v−1a, and thus we complete the proof. �

It is easy to check that a regular ring R is unit-regular if and only if for any

a, b ∈ R, aR ∼= bR =⇒ R/aR ∼= R/bR. In contrast to this fact, we derive

Theorem 4.5. Let R be an exchange ring. Then the following conditions are
equivalent:

(1) R has stable range one.
(2) For any a, b ∈ R, R/aR ∼= R/bR =⇒ aR ∼= bR.

(3) For any a, b ∈ R, R/Ra ∼= R/Rb =⇒ Ra ∼= Rb.

���������
. (1) ⇒ (2) Given R/aR ∼= R/bR, it follows by Theorem 4.1 that there

exist u, v ∈ U(R) such that a = ubv. Construct a map ϕ : aR → bR given by

ϕ(ar) = u−1(ar) for any r ∈ R. Then ϕ : aR ∼= bR, as asserted.
(2) ⇒ (1) Given eR ∼= fR with idempotents e, f ∈ R, then R/(1− e)R ∼= R/(1−

f)R. By hypothesis, we get (1− e)R ∼= (1− f)R. Using [17, Theorem 10], we prove
that R is unit-regular.

(1)⇔ (3) is symmetric. �

As an immediate consequence of Theorem 4.5, we deduce that an exchange ring
R has stable range one if and only if for any regular a, b ∈ R, R/aR ∼= R/bR =⇒
aR ∼= bR if and only if for any regular a, b ∈ R, R/Ra ∼= R/Rb =⇒ Ra ∼= Rb.

Corollary 4.6. Let R be a regular ring. Then the following conditions are
equivalent:

(1) R is unit-regular.

(2) For any a, b ∈ R, R/aR ∼= R/bR⇐⇒ aR ∼= bR.

(3) For any a, b ∈ R, R/Ra ∼= R/Rb⇐⇒ Ra ∼= Rb.

���������
. (1) ⇒ (2) For any a, b ∈ R, R/aR ∼= R/bR =⇒ aR ∼= bR by

Theorem 4.5. Conversely, assume that aR ∼= bR. Then we can find idempotents
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e, f ∈ R such that aR = eR and bR = fR. In view of [9, Theorem 4.14], we have

(1−e)R ∼= (1−f)R; hence, R/eR ∼= R/fR. As a result, we prove that R/aR ∼= R/bR.
(2)⇒ (1) is clear by Theorem 4.5.
(1)⇔ (3) is symmetric. �
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