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Abstract. A mistake concerning the ultra LI-ideal of a lattice implication algebra is
pointed out, and some new sufficient and necessary conditions for an LI-ideal to be an
ultra LI-ideal are given. Moreover, the notion of an LI-ideal is extended to MTL-algebras,
the notions of a (prime, ultra, obstinate, Boolean) LI-ideal and an ILI-ideal of an MTL-
algebra are introduced, some important examples are given, and the following notions are
proved to be equivalent in MTL-algebra: (1) prime proper LI-ideal and Boolean LI-ideal,
(2) prime proper LI-ideal and ILI-ideal, (3) proper obstinate LI-ideal, (4) ultra LI-ideal.
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1. Introduction

In order to research a logical system whose propositional value is given in a lattice,
Y. Xu proposed the concept of lattice implication algebras, and some researchers have

studied their properties and the corresponding logic systems (see [15], [17]). In [7],
Y. B. Jun et al. proposed the concept of an LI-ideal of a lattice implication algebra,

discussed the relationship between filters and LI-ideals, and studied how to generate
an LI-ideal by a set. In [11], K.Y. Qin et al. introduced the notion of ultra LI-ideals

in lattice implication algebras, and gave some sufficient and necessary conditions for
an LI-ideal to be ultra LI-ideal.

The interest in the foundations of fuzzy logic has been rapidly growing recently
and several new algebras playing the role of the structures of truth-values have been

This work was supported by the Zhejiang Provincial Natural Science Foundation of China
(Grant No. Y605389) and K. C. Wong Magna Fund in Ningbo University.
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introduced. P. Hájek introduced the system of basic logic (BL) axioms for the

fuzzy propositional logic and defined the class of BL-algebras (see [4]). G. J. Wang
proposed a formal deductive system L∗ for fuzzy propositional calculus, and a kind
of new algebraic structures, called R0-algebras (see [13], [14]). F. Esteva and L. Godo

proposed a new formal deductive system MTL, called the monoidal t-norm-based
logic, intended to cope with left-continuous t-norms and their residual. The algebraic

semantics for MTL is based on MTL-algebras (see [3], [5]). It is easy to verify that
a lattice implication algebra is an MTL-algebra. Varieties of MTL-algebras are

described in [10], and some other results concerning MTL-algebras are presented
in [19] and [20].

This paper is devoted to a discussion of the ultra LI-ideals, we correct a mistake
in [11] and give some new equivalent conditions for an LI-ideal to be ultra. We also

generalize the notion of an LI-ideal to MTL-algebras, introduce the notions of a
(prime, ultra, obstinate, Boolean) LI-ideal and an ILI-ideal of MTL- algebra, give

some important examples, and prove that the following notions are equivalent in an
MTL-algebra: (1) prime proper LI-ideal and Boolean LI-ideal, (2) prime proper

LI-ideal and ILI-ideal, (3) proper obstinate LI-ideal, (4) ultra LI-ideal.

2. Preliminaries

Definition 2.1 ([17]). By a lattice implication algebra L we mean a bounded

lattice (L,∨,∧, 0, 1) with an order-reversing involution ′ and a binary operation →
satisfying the following axioms:

(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) x → y = y′ → x′,
(I4) x → y = y → x = 1 =⇒ x = y,

(I5) (x → y) → y = (y → x) → x,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z) for all x, y, z ∈ L.

We can define a partial ordering 6 on a lattice implication algebra L by

x 6 y if and only if x → y = 1.

For any lattice implication algebra L, (L,∨,∧) is a distributive lattice and the De
Morgan law holds, that is
(L3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(L4) (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′ for all x, y, z ∈ L.
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Theorem 2.2 ([17]). In a lattice implication algebra L, the following relations

hold:

(1) 0 → x = 1, 1 → x = x and x → 1 = 1,

(2) x′ = x → 0,

(3) x → y 6 (y → z) → (x → z),

(4) x ∨ y = (x → y) → y,

(5) x 6 y implies y → z 6 x → z and z → x 6 z → y,

(6) x → (y ∨ z) = (x → y) ∨ (x → z),

(7) x → (y ∧ z) = (x → y) ∧ (y → z),

(8) (x → y) ∨ (y → x) = 1,

(9) x → (y ∧ z) = (x → y) ∧ (x → z),

(10) x → (y → z) = y → (x → z),

(11) ((x → y) → y) → y = x → y.

From the above theorem it follows that lattice implication algebras are strictly

connected with BCC-algebras and BCK-algebras of the form (L,→, 1) [2, 21].

For shortness, in the sequel the formula (x → y′)′ will be denoted by x ⊗ y, the

formula x′ → y by x⊕ y.

Theorem 2.3 ([17]). In a lattice implication algebra L, the relations

(12) x⊗ y = y ⊗ x, x⊕ y = y ⊕ x,

(13) x⊗ (y ⊗ z) = (x⊗ y)⊗ z, x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(14) x⊗ x′ = 0, x⊕ x′ = 1,

(15) x⊗ (x → y) = x ∧ y,

(16) x → (y → z) = (x⊗ y) → z,

(17) x 6 y → z ⇐⇒ x⊗ y 6 z,

(18) x 6 a and y 6 b imply x⊗ y 6 a⊗ b and x⊕ y 6 a⊕ b

hold for all x, y, z ∈ L.

Definition 2.4 ([7]). A subset A of a lattice implication algebra L is called an

LI-ideal of L if

(LI1) 0 ∈ A,

(LI2) (x → y)′ ∈ A and y ∈ A imply x ∈ A for all x, y ∈ L.

An LI-ideal A of a lattice implication algebra L is said to be proper if A 6= L.
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Theorem 2.5 ([7], [17]). Let A be an LI-ideal of a lattice implication algebra L,

then

(LI3) x ∈ A, y 6 x imply y ∈ A,

(LI4) x, y ∈ A imply x ∨ y ∈ A.

The least LI-ideal containing a subset A is called the LI-ideal generated by A and

is denoted by 〈A〉.

Theorem 2.6 ([7], [17]). If A is a non-empty subset of a lattice implication

algebra L, then

〈A〉 = {x ∈ L : a′n → (. . . → (a′1 → x′) . . .) = 1 for some a1, . . . , an ∈ A}.

Theorem 2.7 ([11]). Let A be a subset of a lattice implication algebra L. Then

A is an LI-ideal of L if and only if it satisfies (LI3) and

(LI5) x ∈ A and y ∈ A imply x⊕ y ∈ A.

Theorem 2.8 ([11]). IfA is a non-empty subset of a lattice implication algebraL,

then

〈A〉 = {x ∈ L : x 6 a1 ⊕ a2 ⊕ . . .⊕ an for some a1, . . . , an ∈ A}.

Definition 2.9 ([9]). An LI-ideal A of a lattice implication algebra L is said to

be ultra if for every x ∈ L, the following equivalence holds:
(LI6) x ∈ A ⇐⇒ x′ /∈ A.

Definition 2.10 ([9]). A non-empty subset A of a lattice implication algebra L

is said to be an ILI-ideal of L if it satisfies (LI1) and

(LI7) (((x → y)′ → y)′ → z)′ ∈ A and z ∈ A imply (x → y)′ ∈ A for all
x, y, z ∈ L.

Theorem 2.11 ([9]). If A is an LI-ideal of a lattice implication algebra L, then

the following assertions are equivalent:

(i) A is an ILI-ideal of L,

(ii) ((x → y)′ → y)′ ∈ A implies (x → y)′ ∈ A for all x, y, z ∈ L,

(iii) ((x → y)′ → z)′ ∈ A implies ((x → z)′ → (y → z)′)′ ∈ A for all x, y, z ∈ L,

(iv) (x → (y → x)′)′ ∈ A implies x ∈ A for all x, y, z ∈ L.

Definition 2.12 ([6]). A proper LI-ideal A of a lattice implication algebra L is

said to be a prime LI-ideal of L if x∧y ∈ A implies x ∈ A or y ∈ A for any x, y ∈ L.
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Theorem 2.13 ([9]). Let A be a proper LI-ideal of a lattice implication alge-

bra L. The following assertions are equivalent:

(i) A is a prime LI-ideals of L,

(ii) x ∧ y = 0 implies x ∈ A or y ∈ A for any x, y ∈ L.

An LI-ideal of a lattice implication algebra L is called maximal, if it is proper and

not a proper subset of any proper LI-ideal of L.

Theorem 2.14 ([9]). In a lattice implication algebra L, any maximal LI-ideal

must be prime.

Theorem 2.15 ([9]). Let L be a lattice implication algebra and A a proper

LI-ideal of L. Then A is both a prime LI-ideal and an ILI-ideal of L if and only if

x ∈ A or x′ ∈ A for any x ∈ L.

Theorem 2.16 ([9]). Let L be a lattice implication algebra and A a proper

LI-ideal. Then A is both a maximal LI-ideal and an ILI-ideal if and only if for any

x, y ∈ L, x /∈ A and y /∈ A imply (x → y)′ ∈ A and (y → x)′ ∈ A.

Definition 2.17 ([1], [3]). A residuated lattice is an algebra (L,∧,∨,⊗,→, 0, 1)
with four binary operations and two constants such that

(i) (L,∧,∨, 0, 1) is a lattice with the largest element 1 and the least element 0 (with
respect to the lattice ordering 6),

(ii) (L,⊗, 1) is a commutative semigroup with the unit element 1, i.e., ⊗ is commu-
tative, associative, 1⊗ x = x for all x,

(iii) ⊗ and → form an adjoint pair, i.e., z 6 x → y if and only if z ⊗ x 6 y for all
x, y, z ∈ L.

Definition 2.18 ([3]). A residuated lattice L is called an MTL-algebra, if it

satisfies the pre-linearity equation: (x → y) ∨ (y → x) = 1 for all x, y ∈ L. An
MTL-algebra L is called an IMTL-algebra, if (a → 0) → 0 = a for any a ∈ L.

In the sequel x′ will be reserved for x → 0, L for (L,∧,∨,⊗,→, 0, 1).

Proposition 2.19 ([3], [12]). Let L be a residuated lattice. Then for all

x, y, z ∈ L,

(R1) x 6 y ⇐⇒ x → y = 1,
(R2) x = 1 → x, x → (y → x) = 1, y 6 (y → x) → x,

(R3) x 6 y → z ⇐⇒ y 6 x → z,

(R4) x → (y → z) = (x⊗ y) → z = y → (x → z),
(R5) x 6 y implies z → x 6 z → y and y → z 6 x → z,
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(R6) z → y 6 (x → z) → (x → y), z → y 6 (y → x) → (z → x),
(R7) (x → y)⊗ (y → z) 6 x → z,

(R8) x′ = x′′′, x 6 x′′,

(R9) x′ ∧ y′ = (x ∨ y)′,
(R10) x ∨ x′ = 1 implies x ∧ x′ = 0,
(R11)

( ∨
i∈Γ

yi

)
→ x =

∧
i∈Γ

(yi → x),

(R12) x⊗
( ∨
i∈Γ

yi

)
=

∨
i∈Γ

(x⊗ yi),

(R13) x →
( ∧
i∈Γ

yi

)
=

∧
i∈Γ

(x → yi),

(R14)
∨

i∈Γ

(yi → x) 6
( ∧
i∈Γ

yi

)
→ x,

where Γ is a finite or infinite index set and we assume that the corresponding infinite
meets and joints exist in L.

Proposition 2.20 ([3], [18]). Let L be anMTL-algebra. Then for all x, y, z ∈ L,

(M1) x⊗ y 6 x ∧ y,

(M2) x 6 y implies x⊗ z 6 y ⊗ z,

(M3) y → z 6 x ∨ y → x ∨ z,

(M4) x′ ∨ y′ = (x ∧ y)′,
(M5) (x ∧ y) → z = (x → z) ∨ (y → z),
(M6) x ∨ y = ((x → y) → y) ∧ ((y → x) → x),
(M7) x → (y ∨ z) = (x → y) ∨ (x → z),
(M8) x∧ (y ∨ z) = (x∧ y)∨ (x∧ z), x∨ (y ∧ z) = (x∨ y)∧ (x∨ z), i.e., the lattice

structure of L is distributive.

Definition 2.21 ([3]). Let L be an MTL-algebra. A filter is a nonempty sub-

set F of L such that

(F1) x⊗ y ∈ F for any x, y ∈ F ,

(F2) for any x ∈ F , x 6 y implies y ∈ F .

Proposition 2.22 ([3]). A subset F of an MTL-algebra L is a filter of L if and

only if

(F3) 1 ∈ F ,

(F4) x ∈ F and x → y ∈ F imply y ∈ F .
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3. Ultra LI-ideals of lattice implication algebras

In [11], the following result is presented: Let A be a subset of a lattice implication

algebra L, then A is an ultra LI-ideal of L if and only if A is a maximal proper

LI-ideal of L. The following example shows that this result is not true.

Example 3.1. Let L = {0, a, b, 1} be a set with the Cayley table

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

For any x ∈ L, we have x′ = x → 0. The operations ∧ and ∨ on L are defined as
follows:

x ∨ y = (x → y) → y, x ∧ y = ((x′ → y′) → y′)′.

Then (L,∨,∧, 0, 1) is a lattice implication algebra. It is easy to check that {0} is a
maximal proper LI-ideal of L, but not an ultra LI-ideal of L, because a′ = b /∈ {0},
but a /∈ {0}.
Below, we give some new sufficient and necessary conditions for an LI-ideal to be

an ultra LI-ideal.

Theorem 3.2. Let L be a lattice implication algebra and A an LI-ideal of L.

Then the following assertions are equivalent:

(i) A is an ultra LI-ideal,

(ii) A is a prime proper LI-ideal and an ILI-ideal,

(iii) A is a proper LI-ideal and x ∈ A or x′ ∈ A for any x ∈ L,

(iv) A is a maximal ILI-ideal,

(v) A is a proper LI-ideal and for any x, y ∈ L, x /∈ A and y /∈ A imply (x → y)′ ∈ A

and (y → x)′ ∈ A.

���������
. (i) =⇒ (ii): A is a proper LI-ideal, because 0 ∈ A, and so 1 = 0′ /∈ A.

We show that A is a prime LI-ideal. Assume x ∧ y = 0 for some x, y ∈ L. We
prove that x ∈ A or y ∈ A. If x /∈ A and y /∈ A, then x′ ∈ A and y′ ∈ A, by the

definition of an ultra LI-ideal. So, by Theorem 2.5 (LI4), we have x′ ∨ y′ ∈ A, thus
1 = 0′ = (x ∧ y)′ = x′ ∨ y′ ∈ A. This means that A = L, a contradiction. Therefore

x∧y = 0 implies x ∈ A or y ∈ A. So, by Theorem 2.13, A is a prime proper LI-ideal.

Now we show that A is an ILI-ideal. Let ((x → y)′ → y)′ ∈ A. If (x → y)′ /∈ A,
then x → y ∈ A by the definition of an ultra LI-ideal. Since y 6 x → y, we have
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y ∈ A. From ((x → y)′ → y)′ ∈ A and y ∈ A, we conclude (x → y)′ ∈ A, by Defini-

tion 2.4 (LI2). This is a contradiction. Thus, (x → y)′ ∈ A. By Theorem 2.11 (ii),
A is an ILI-ideal. This means that (ii) holds.

(ii) ⇐⇒ (iii): See Theorem 2.15.
(iii) =⇒ (i): For any x ∈ L, if x′ /∈ A then x ∈ A by (iii). If x ∈ A, we prove

that x′ /∈ A. Indeed, if x′ ∈ A, then x ⊕ x′ = 1 ∈ A by Theorem 2.3 (14) and

Theorem 2.7 (LI5). This is a contradiction with the fact that A is a proper LI-ideal.
This means that A is an ultra LI-ideal.

(iv) ⇐⇒ (v): See Theorem 2.16.
(i) =⇒ (v): A is a proper LI-ideal, because 0 ∈ A, and so 1 = 0′ /∈ A.

If x /∈ A, from x 6 y → x and Theorem 2.7 (LI3), we have y → x /∈ A. Thus, by
the definition of an ultra LI-ideal, (y → x)′ ∈ A. Similarly, from y /∈ A we obtain

(x → y)′ ∈ A. That is, (v) holds.

(v) =⇒ (i): By (v), 1 /∈ A. If x′ /∈ A, by (v) we have (1 → x′)′ ∈ A, that is x ∈ A.

If x ∈ A, then x′ /∈ A (see (iii) =⇒ (i)). This means that A is an ultra LI-ideal. The
proof is complete. �

Remind [11] that a subset A of a lattice implication algebraL has the finite additive

property if a1 ⊕ a2 ⊕ . . . ⊕ an 6= 1 for any finite members a1, . . . , an ∈ A. 〈A〉 is a
proper LI-ideal of L if and only if A has the finite additive property.

Our theorem proves that the part results formulated in Theorem 3.7 and Corol-

lary 3.8 in [11] is correct. Namely we have

Theorem 3.3. If a subset A of a lattice implication algebra L has the finite

additive property, then there exists a maximal LI-ideal of L containing A. Every

proper LI-ideal of a lattice implication algebra can be extended to a maximal LI-

ideal.

4. LI-ideals of MTL-algebras

Definition 4.1. A subset A of an MTL-algebra L is called an LI-ideal of L if

0 ∈ A and

(LI8) (x′ → y′)′ ∈ A and x ∈ A imply y ∈ A for all x, y ∈ L.

Obviously, for a lattice implication algebra L, (LI8) coincides with (LI2). For a

MTL-algebra it is not true because x = x′′ is not true.

An LI-ideal A of an MTL-algebra L is said to be proper if A 6= L.
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Lemma 4.2 ([17], Theorem 4.1.3). A non-empty subset A of a lattice implication
algebra L is a filter of L if and only if A′ = {a′ : a ∈ A} is an LI-ideal of L.

For MTL-algebras the above lemma is not true.

Example 4.3. Consider the set L = {0, a, b, c, d, 1}, where 0 < a < b < c < d < 1,
and two operations ⊗, → defined by the following two tables:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 a a

b 0 0 0 b b b

c 0 0 b c c c

d 0 a b c d d

1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 1 1 1 1
b b b 1 1 1 1
c a a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

If we define on L the operations ∧ and ∨ as min and max, respectively, then
(L,∧,∨,⊗,→, 0, 1) will be an MTL-algebra. Obviously, A = {0, a, b, c, d, 1} is a
filter of L, but A′ = {0, a, b, c, 1} is not an LI-ideal of L, since

(0′ → d′)′ = 1 ∈ A and 0 ∈ A, but d /∈ A.

Moreover, B = {1, c} is not a filter of L, because c → d = 1 ∈ B and c ∈ B, d /∈ B.

By the following MATHEMATICA program, we can verify that B ′ = {0, a} is an
LI-ideal of L:

M1={{6,6,6,6,6,6},{4,6,6,6,6,6},{3,3,6,6,6,6},{2,2,3,6,6,6},

{1,2,3,4,6,6},{1,2,3,4,5,6}};

a1=0;

For[i=1, i<7, i++, For[j=1, j<7, j++,

If[(i==1||i==2) &&(M1[[M1[[M1[[i,1]],M1[[j,1]]]],1]]==1||

M1[[M1[[M1[[i,1]],M1[[j,1]]]],1]]==2)&&(j!=1&&j!=2), a1++]]];

If[a1==0, Print[‘‘true’’], Print[‘‘false’’]]

From Example 4.3 we see that LI-ideals have a proper meaning inMTL-algebras.

Theorem 4.4. Let A be an LI-ideal of an MTL-algebra L, then

(LI3) if x ∈ A, y 6 x, then y ∈ A,

(LI9) if x ∈ A, then x′′ ∈ A,

(LI4) if x, y ∈ A, then x ∨ y ∈ A.

599



���������
. Assume x ∈ A, y 6 x. From y 6 x, by Proposition 2.19 (R5), we

have x → 0 6 y → 0, i.e., x′ 6 y′. By Proposition 2.19 (R1), x′ → y′ = 1. Then
(x′ → y′)′ = 1′ = 0 ∈ A and x ∈ A, and by (LI8) we get y ∈ A. This means that
(LI3) holds.

Suppose x ∈ A. By Proposition 2.19 (R8) we have (x′ → (x′′)′)′ = (x′ → x′)′ =
1′ = 0 ∈ A. Applying (LI8) we get x′′ ∈ A, i.e., (LI9) holds.

Assume x, y ∈ A. By Proposition 2.19 (R2) we have y′ 6 x′ → y′. So, (x′ →
y′)′ 6 y′′ by (R5). Whence, by y ∈ A and (LI9), we obtain y′′ ∈ A. From this and

(x′ → y′)′ 6 y′′, using (LI3) we get (x′ → y′)′ ∈ A. Thus

(x′ → (x ∨ y)′)′ = (x′ → (x′ ∧ y′))′ (by (R9))

= ((x′ → x′) ∧ (x′ → y′))′ (by (R13))

= (1 ∧ (x′ → y′))′ (by (R1))

= (x′ → y′)′ ∈ A.

From this and x ∈ A, using (LI8), we deduce x ∨ y ∈ A, i.e., (LI4) holds.

The proof is complete. �

Definition 4.5. An LI-ideal A of an MTL-algebra L is said to be an ILI-ideal

of L if it satisfies

(LI10) (x → (y → x)′)′ ∈ A implies x ∈ A for all x, y, z ∈ L.

Example 4.6. Let L = {0, a, b, 1}, where 0 < a < b < 1, be a set with the Cayley
tables:

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a

b 0 a a b

1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

Defining the operations ∧ and ∨ on L as min and max, respectively, we obtain an
MTL-algebra (L,∧,∨,⊗,→, 0, 1) in which A = {0} is an ILI-ideal of L.

In Example 4.3, {0, a} is an LI-ideal, but it is not an ILI-ideal of L, because

(b → (1 → b)′)′ = 0 ∈ {0, a}, but b /∈ {0, a}.

Theorem 4.7. For each ILI-ideal A of an MTL-algebra L we have

(LI11) x ∧ x′ ∈ A for each x ∈ L.
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���������
. Indeed, for all x ∈ L we get

((x ∧ x′) → (1 → (x ∧ x′))′)′

= ((x ∧ x′) → (x ∧ x′)′)′

= ((x ∧ x′) → (x′ ∨ x′′))′ (by Proposition 2.20 (M4))

= (((x ∧ x′) → x′) ∨ ((x ∧ x′) → x′′))′ (by Proposition 2.20 (M7))

= (1 ∨ ((x ∧ x′) → x′′))′ (by Proposition 2.19 (R1))

= 1′ = 0 ∈ A.

From this, applying (LI10), we deduce (LI11). �

Definition 4.8. An LI-ideal A satisfying (LI11) is called Boolean.

Theorem 4.9. If A is a Boolean LI-ideal of an MTL-algebra L, then

(LI12) (x → x′)′ ∈ A implies x ∈ A.
���������

. According to the assumption x∧x′ ∈ A for all x ∈ L. Let (x → x′)′ ∈ A.
Then

((x ∧ x′)′ → x′)′

= (x → (x ∧ x′)′′)′ (by Proposition 2.19 (R4))

= (x → (x′′ ∧ x′′′))′ (by Propositions 2.19 (R9) and 2.20 (M4))

= ((x → x′′) ∧ (x → x′′′))′ (by Proposition 2.19 (R13))

= (1 ∧ (x → x′))′ (by Proposition 2.19 (R8), (R1))

= (x → x′)′ ∈ A.

Now, applying (LI8) we get x ∈ A, which completes the proof. �

Theorem 4.10. For LI-ideals ofMTL-algebras the conditions (LI10) are equiv-
alent (LI11).
���������

. (LI10) =⇒ (LI11): See Theorem 4.7.
(LI11) =⇒ (LI10): Let (x → (y → x)′)′ ∈ A. Then

((x → (y → x)′)′′ → (x → x′)′′)′

= ((x → x′)′ → (x → (y → x)′)′)′ (by Proposition 2.19 (R4), (R8))

6 ((x → (y → x)′) → (x → x′))′ (by Proposition 2.19 (R6))

6 ((y → x)′ → x′)′ (by Proposition 2.19 (R6))

6 (x → (y → x))′ (by Proposition 2.19 (R6))

= 1′ = 0 ∈ A (by Proposition 2.19 (R2)).
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This, by (LI8), implies (x → x′)′ ∈ A, whence, using (LI12), we obtain x ∈ A. So,

(LI11) implies (LI10). �

Definition 4.11. A proper LI-ideal A of an MTL-algebra L is said to be a
prime if x ∧ y ∈ A implies x ∈ A or y ∈ A for any x, y ∈ L.

Theorem 4.12. A proper LI-ideal A of a MTL-algebra L is prime if and only

if for all x, y ∈ L we have (x → y)′ ∈ A or (y → x)′ ∈ A.
���������

. Assume that an LI-ideal A of L is prime. Since

(x → y)′ ∧ (y → x)′ = ((x → y) ∨ (y → x))′ = 1′ = 0 ∈ A

for all x, y ∈ L, the assumption on A implies (x → y)′ ∈ A or (y → x)′ ∈ A.

Conversely, let A be a proper LI-ideal of L and let x ∧ y ∈ A. Assume that
(x → y)′ ∈ A or (y → x)′ ∈ A for x, y ∈ L. If (x → y)′ ∈ A, then

((x ∧ y)′ → x′)′ = ((x′ ∨ y′) → x′)′ (by Proposition 2.20 (M4))

= ((x′ → x′) ∧ (y′ → x′))′ (by Proposition 2.19 (R11))

= (1 ∧ (y′ → x′))′ (by Proposition 2.19 (R1))

= (y′ → x′)′ 6 (x → y)′ ∈ A (by Proposition 2.19 (R6)).

So, ((x∧ y)′ → x′)′ ∈ A (Theorem 4.4 (LI3)), which together with x∧ y ∈ A and the

definition of an LI-ideal, gives x ∈ A.

Similarly, from (y → x)′ ∈ A we can obtain y ∈ A.

This means that A is a prime LI-ideal of L. The proof is complete. �

Theorem 4.13. Let A be an LI-ideal of an MTL-algebra L. Then A is both a

prime LI-ideal and a Boolean LI-ideal of L if and only if x ∈ A or x′ ∈ A for any

x ∈ L.
���������

. Assume that for all x ∈ L we have x ∈ A or x′ ∈ A. At first we show
that an LI-ideal A is prime. For this let x ∧ y ∈ A. If x /∈ A, then x′ ∈ A. Hence

((x ∧ y)′ → y′)′ = ((x′ ∨ y′) → y′)′ (by Proposition 2.20 (M4))

= ((x′ → y′) ∧ (y′ → y′))′ (by Proposition 2.19 (R11))

= ((x′ → y′) ∧ 1)′ (by Proposition 2.19 (R1))

= (x′ → y′)′ 6 (y → x)′ (by Proposition P2.19 (R6))

6 x′ ∈ A (by Proposition 2.19 (R2)).
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So, ((x∧y)′ → y′)′ ∈ A, by Theorem 4.4 (LI3). From this, x∧y ∈ A and Definition 4.1

we get y ∈ A. This proves that an LI-ideal A is prime. To prove that it is Boolean
observe that x∧x′ 6 x′ implies x∧x′ 6 x, whence, by Theorem 4.4 (LI3), we obtain
x ∧ x′ ∈ A. Thus A is Boolean.

Conversely, if an LI-ideal A is both prime and Boolean, then by Definition 4.8,
for all x ∈ L we have x ∧ x′ ∈ A. Hence x ∈ A or x′ ∈ A, by Definition 4.11. This

completes the proof. �

Definition 4.14. An LI-ideal A of an MTL-algebra L is said to be ultra if for
every x ∈ L

(LI6) x ∈ A ⇐⇒ x′ /∈ A.

It is easy to verify the following proposition is true.

Proposition 4.15. Each ultra LI-ideal of anMTL-algebra is a proper LI-ideal.

Definition 4.16. An LI-ideal A of an MTL-algebra L is said to be obstinate if

for all x, y ∈ L

(LI13) x /∈ A and y /∈ A imply (x → y)′ ∈ A and (y → x)′ ∈ A.

Theorem 4.17. For an LI-ideal A of anMTL-algebraL the following conditions

are equivalent:

(i) A is an ultra LI-ideal,

(ii) A is a proper LI-ideal and for any x ∈ L, x ∈ A or x′ ∈ A,

(iii) A is a prime proper LI-ideal and a Boolean LI-ideal,

(iv) A is a prime proper LI-ideal and an ILI-ideal,

(v) A is a proper obstinate LI-ideal.
���������

. (i) =⇒ (ii): Obvious.
(ii) =⇒ (i): If x′ /∈ A, then x ∈ A, by (ii). Similarly, if x ∈ A, that must be

x′ /∈ A. If not, i.e., if x′ ∈ A, then, by Proposition 2.19 (R8), we have

(x′ → 1′)′ = (x′ → 0)′ = x′′′ = x′ ∈ A,

which together with x ∈ A and (LI8) implies 1 ∈ A. This, by Theorem 4.4 (LI3),
gives A = L. This is a contradiction, because an LI-ideal A is proper. Obtained

contradiction proves that x ∈ A implies x′ /∈ A. So, A is an ultra LI-ideal.
(ii) ⇐⇒ (iii): See Theorem 4.13.
(iv) =⇒ (iii): See Theorem 4.7.
(iii) =⇒ (iv): See Theorem 4.10.
(v) =⇒ (ii): Since A is a proper LI-ideal, 1 /∈ A. If x /∈ A, then (1 → x)′ = x′ ∈ A,

by Definition 4.16. This means that (ii) holds.
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(ii) =⇒ (v): It suffices to show that A is obstinate. Let x /∈ A and y /∈ A. Then,

according to (ii), we have x′ ∈ A and y′ ∈ A. Thus

(y′′ → (x → y)′′)′ = ((x → y)′ → y′′′)′ (by Proposition 2.19 (R4))

= ((x → y)′ → y′)′ (by Proposition 2.19 (R8))

= (y → (x → y)′′)′ (by Proposition 2.19 (R4))

6 (y → (x → y))′ (by (R8), x → y 6 (x → y)′′ and (R5))

= 1′ = 0 ∈ A (by Proposition 2.19 (R2)).

This together with y′ ∈ A and Definition 4.1 implies (x → y)′ ∈ A.

Similarly, we obtain (y → x)′ ∈ A. So, A is obstinate.

The proof is complete. �
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