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Abstract. We prove that a finite unary algebra with at least two operation symbols is a
homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection
of all its subalgebras which have at least two elements is nonempty.
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We are concerned with the following natural question: Which algebras are homo-

morphic images of subdirectly irreducible algebras?

A necessary condition, discovered in [3]–[5], for an algebra A with at least one at

least binary operation to be a homomorphic image of some subdirectly algebra, is
that the intersection of all ideals of A is nonempty. (By an ideal of A we mean a

nonempty subset I such that f(a1, . . . , an) ∈ I whenever f is a fundamental operation
and a1, . . . , an are elements of A with ai ∈ I for at least one i.) It was proved in [2]

and independently in [8] that the condition is also sufficient. In fact, it was proved in
those two papers that any algebra A with at least one at least binary operation and

with a smallest ideal is isomorphic to a factor of a subdirectly irreducible algebra B

through its monolith, and the construction is such that if A is finite then also B is

finite. The case that remains is that of algebras with only unary operations. (Note
that nullary operations play no role in investigation of congruences.)

If there is just one unary operation, the characterization is simple; see e.g. [9] or [2].
For two or more unary operations, the situation is more complicated. In the present

While working on this paper the first and the third authors were partially supported by
the Grant Agency of the Czech Republic, grant #201/02/0594, and by the institutional
grant MSM0021620839; the second author was supported by the Ministry of Science,
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paper we are going to characterize finite algebras with at least two unary operations

that are homomorphic images of a subdirectly irreducible algebra. We leave it as an
open problem to do the same for infinite algebras. An example found in [2] suggests
that it will be probably much harder to characterize such unary algebras that are

isomorphic to a subdirectly irreducible algebra through its monolith.

One can ask similar questions in particular varieties of algebras. For instance, the

construction from [8] yields for an idempotent algebra an idempotent subdirectly
irreducible one. (In fact, it preserves any identity of the form t(x) ≈ x, where t is

a unary term. And if the algebra contains no proper ideal, then the construction
preserves any identity in one variable.) However, it seems that no other interesting

identities are kept.

Indeed, in many varieties almost no algebras can be represented as homomorphic

images of subdirectly irreducibles—for instance in distributive lattices, for an obvi-
ous reason. On the other hand, in several familiar varieties the answer is known to

be similar to the general case. It is proved in [1] that a semigroup is a homomor-
phic image of some subdirectly irreducible semigroup if and only if the intersection

of all its ideals is nonempty. However, there are finite semigroups (e.g. any right
zero band) which are not isomorphic to the factor of a finite subdirectly irreducible

semigroup over its monolith. Every quasigroup, group and every lattice (indeed, all
of them have no non-trivial ideals, in our sense) is also a homomorphic image of a

subdirectly irreducible one (quasigroup, group, lattice) and for a finite one the sub-
directly irreducibles can be constructed finite. For lattices, an easy construction was

found by Ralph Freese (unpublished). For quasigroups and groups, a solution was
found by R. McKenzie and D. Stanovský [7].

Throughout this paper let σ be a finite set of unary operation symbols, |σ| > 2.
By a unary algebra we mean a σ-algebra. By a word we mean a word over the

alphabet σ.

For a word w = f1 . . . fn and any i = 0, . . . , n − 1 we define a word w[i] =
fi+1 . . . fnf1 . . . fi. This is a word of the same length as w. We put wi = ww . . . w

where w is repeated i times.

Let A be a unary algebra; let a ∈ A and let w = f1 . . . fn be a word. For

i = 0, . . . , n we put w〈i〉(a) = fi . . . f2f1(a) (so that w〈0〉(a) = a). By an e-pair for A

we mean a pair a, w where a ∈ A, w is a word of a positive length n, w〈n〉(a) = a and

A = {w〈0〉(a), . . . , w〈n−1〉(a)}. (Informally, an e-pair is a path through all elements
of A using the operations.) An e-pair a, w is said to start at a; w is called the

e-pair’s path; the e-pair’s length is the length of its path (clearly, the length is at
least |A|).
It is easy to see that a finite unary algebra A has an e-pair if and only if it has no

proper subalgebra; and if a, w is an e-pair for A then w〈i〉(a), w[i] is an e-pair for A
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for any i = 0, . . . , n−1, where n is the length of w. Consequently, if A has no proper

subalgebra then it has an e-pair starting at any of its elements.

An e-pair a, w for A is said to be an h-pair if |A| equals the length of w.

Lemma 1. Let a, w be an e-pair for a finite unary algebra A. Then there exist a

finite unary algebra B and an element b ∈ B such that A is a homomorphic image

of B and b, w is an h-pair for B.

���������
. Put w = f1 . . . fn. For i = 0, . . . , n − 1 put ai = w〈i〉(a). For every

c ∈ A denote by pc the number of occurrences of c in w〈0〉(a), . . . , w〈n−1〉(a). Put B =
{(ai, j) : 0 6 i < n, 0 6 j < pai}. For (ai, j) ∈ B and f ∈ σ put f(ai, j) = (f(ai), k)
where k = |{m : 0 6 m < i, f(ai) = am}|. Then (ai, j) 7→ ai is a homomorphism

of B onto A and (a, 0), w is an h-pair for B. �

A word w = f1 . . . fn is said to be irreducible if w 6= w[i] for all 1 6 i < n. It
is easy to see that a word is irreducible if and only if it cannot be expressed as uj

for a word u and an integer j > 2. An e-pair is said to be irreducible if its path is
irreducible.

Lemma 2. Let a, w be an e-pair for a finite unary algebra A. Then there exists

a finite unary algebra B such that A is a homomorphic image of B and B has an

irreducible h-pair.

���������
. Let w = f1 . . . fn for some fi ∈ σ. Take a symbol g ∈ σ dif-

ferent from f1 and put b = f1g
2n(a). Let i be such that b = w〈i〉(a) and put

h1 = fi+1, h2 = fi+2, . . . , hn = fi, . . . , hm = fn, so that a = hm . . . h1(b), A =
{b, h1(b), . . . , hm . . . h1(b)} and m < 2n. Thus a, g2nf1h1 . . . hm is an irreducible e-

pair for A. Now use Lemma 1. �

Lemma 3. Let a, w be an irreducible h-pair for a finite unary algebraA. Then A is

a homomorphic image of a finite subdirectly irreducible unary algebra. Moreover,

A is isomorphic to a factor of a finite subdirectly irreducible unary algebra through

its monolith.

���������
. Put n = |A| and w = f1 . . . fn. For every c ∈ A there is a unique

number i ∈ {0, . . . , n − 1} with c = w〈i〉(a); denote this i by I(c). Let p be a

prime number greater than 2n(n + 1). Denote by +′ the addition modulo p. Put
B = A× {0, . . . , p− 1}. Define σ-operations on B by

f(c, i) =

{
(f(c), i) if f = fI(c)+1

(f(c), i +′ 1) otherwise.
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Evidently, A is a homomorphic image of B under (c, i) 7→ c. We are going to

show that the kernel R of this homomorphism is the monolith of B. We have
((c, i), (d, j)) ∈ R if and only if c = d. Let ∼ be a nontrivial congruence of B.
We need to show that R is contained in ∼.
Let c, d be two elements of A. By a path from c to d we mean a word g1 . . . gk

such that d = gk . . . g1(c). Such a path is said to be canonical if gi = fI(gi−1...g1(c))+1

for every i = 1, . . . , k. Now for every c, d there exists a canonical path from c to d

of length at most n, and also a non-canonical path from c to d of length at most n.

For i = 0, . . . , p − 1 we have gk . . . g1(c, i) = (d, i +′ j) where j = 0 if the path is
canonical and 1 6 j 6 k otherwise.

Let us first prove that if (c, i) ∼ (c, j) for some c and some i 6= j then R is
contained in ∼. By taking a canonical path from c to a we get (a, i) ∼ (a, j). Let
g ∈ σ be different from f1. We have g(a, i) ∼ g(a, j), i.e., (g(a), i+′1) ∼ (g(a), j+′1).
Applying a canonical path from g(a) to a we get (a, i +′ 1) ∼ (a, j +′ 1). Since p is a

prime number, it follows that (a, k) ∼ (a, l) for all k and l. If d is any element of A
then applying a canonical path from a to d we get (d, k) ∼ (d, l).
Now let (c, i) ∼ (d, j) where c 6= d. Without loss of generality, j = i +′ l where

0 6 l < 1
2p. The canonical path from c to c of length n is a non-canonical path from d

to some element e1, because w is an irreducible word. Applying this path we get
(c, i) ∼ (e1, i+′ l+′ k1) for some e1, k1 with 1 6 k1 6 n. If e1 = c then (c, i) ∼ (c, i+′

l+′k1) where i 6= i+′ l+′k1 and we are done by the above. Otherwise, apply the same
path to obtain (c, i) ∼ (e2, i+′ l+′k1+′k2) for some e2, k2 with 1 6 k2 6 n. Continue

in this way n + 1 times. If it did not happen that em = c for some m, in which case
we would be finished by the above, we get (c, i) ∼ (em, i+′ (l + k1 + . . .+ km)) for all
m = 1, . . . , n+1. Since p was so large, we have m 6 l+k1 + . . .+km < 1

2p+mn < p

and since all km 6= 0, the numbers i +′ (l + k1 + . . . + km) are pairwise distinct.
However, the elements e1, . . . , en+1 cannot be pairwise distinct. So, we get into the
previous case. �

Lemma 4. Let a, w be an irreducible h-pair for a finite unary algebra A. Then

there exist a finite subdirectly irreducible unary algebra C and a homomorphism H

of C onto A such that for every element c ∈ A there exists an element c′ ∈ C with

H(c′) = c and c′ 6= f(d) for all f ∈ σ and all d ∈ C.
���������

. Define B in the same way as in Lemma 3. Put C = A × {0, . . . , p}
and define operations on C in such a way that B is a subalgebra of C and f(c, p) =
(f(c), I(c)) (we have I(c) < n < p). Clearly, A is a homomorphic image of C under
(c, i) 7→ c. Define a congruence S of C by ((c, i), (d, j)) ∈ S if and only if either

(c, i) = (d, j) or c = d and i, j < p. In order to prove that S is the monolith
of C, it is sufficient (by the proof of Lemma 3) to show that if (c, i) ∼ (d, p) where
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(c, i) 6= (d, p) then (c′, j) ∼ (d′, k) for some (c′, j) 6= (d′, k) with j, k < p. If i = p

then c 6= d, I(c) 6= I(d) and so it is sufficient to apply any operation to (c, p) ∼ (d, p).
Let i 6= p. If i 6= I(d), apply fI(c)+1; and if i = I(d), apply any operation different
from fI(c)+1. �

Lemma 5. Let a, w be an irreducible h-pair for a finite unary algebra A and

let N be a positive integer. Then there exist a finite subdirectly irreducible unary

algebra C and a homomorphism H of C onto A such that for every element c ∈ A

there exist at least N distinct elements c′ ∈ C with H(c′) = c and c′ 6= f(d) for all
f ∈ σ and all d ∈ C.

���������
. a, wN is an e-pair for A. With respect to this e-pair, apply Lemma 1 and

Lemma 2 to obtain an algebra A′ without proper subalgebras and a homomorphism

of A′ onto A such that for every element c ∈ A there are N elements of A′ mapped
onto c. Then apply Lemma 4 to this algebra A′. �

Lemma 6. Let A be a finite unary algebra such that one of the following two

cases takes place:

(1) A has a smallest subalgebra U ;

(2) A has two disjoint subalgebras U , {a} such that the partial algebra A−{a} has
a smallest subalgebra U .

Then A is a homomorphic image of a finite subdirectly irreducible algebra.

���������
. In both cases put A0 = U , so that A0 has no proper subalgebras. By

Lemma 5 there exist, for every positive integerN , a subdirectly irreducible algebraB0

and a homomorphism H0 of B0 onto A0 such that for every element c ∈ A0 there

are at least N distinct elements c′ ∈ B0 with H0(c′) = c and c′ 6= f(d) for all f ∈ σ

and all d ∈ B0.

Define subsets A0, A1, . . . of A by induction as follows: Ai+1 is the set of all

elements b ∈ A not belonging to A0 ∪ . . . ∪ Ai such that f(b) ∈ Ai for some f ∈ σ.
Let K be the largest integer with AK nonempty. We have A = A0 ∪ . . . ∪ AK in

case (1) and A = A0 ∪ . . . ∪ AK ∪ {a} in case (2). If K = 0, we can use Lemma 3;
assume K > 0.
Put BK = AK and let HK be the identity on BK . For every i = K−1, . . . , 1 define

a set Bi and a mapping Hi of Bi into Ai as follows: Bi is the disjoint union of Ai

with the set of ordered pairs (b, f) such that b ∈ Bi+1, f ∈ σ and f(Hi+1(b)) ∈ Ai;

put Hi(b, f) = f(Hi+1(b)), and let the restriction of Hi to Ai be the identity. TakeN

so large that for every f ∈ σ there exists an injective mapping Gf of B1 into B0

with the following property: if b ∈ B1 and f(H1(b)) ∈ A0 then H0Gf (b) = f(H1(b))
and Gf (b) is not in the range of any fundamental operation of B0. Put B∗ =
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BK ∪ . . . ∪ B1 ∪ B0 and H∗ = HK ∪ . . . ∪ H1 ∪ H0; in case (1) put B = B∗ and

H = H∗, while in case (2) put B = B∗ ∪ {a} and let H be the extension of H∗ by
H(a) = a. We are going to define operations on B. In case (2) put f(a) = a for all
f ∈ σ. Let f ∈ σ and b ∈ Bi. If i = 0, define f(b) in B in the same way as in B0 (so

that B0 is a subalgebra of B). If i > 2 and f(H(b)) ∈ Ai−1, put f(b) = (b, f) (this is
an element of Bi−1). If i > 2 and f(H(b)) /∈ Ai−1 (so that either f(H(b)) ∈ Aj for

some j > i or (2) takes place and f(H(b)) = a), put f(b) = f(H(b)). If i = 1 and
f(H(b)) ∈ A0, put f(b) = Gf (b). If i = 1 and f(H(b)) /∈ A0, put f(b) = f(H(b)).
One can easily check that H is a homomorphism of B onto A. We are going to

prove that the union R of the monolith of B0 with idB is the monolith of B. Let b,

c be two distinct elements of B and let ∼ be a congruence with b ∼ c. It is sufficient
to prove that there exist two distinct ∼-related elements in B0.

Consider first the case c = a. We have b ∼ a, so that f(b) ∼ f(a) = a for all
f ∈ σ. Since gk . . . g1(b) ∈ B0 for some g1, . . . , gk ∈ σ, we get d ∼ a for some d ∈ B0.

Then also f(d) ∼ a for all f ∈ σ, so that d ∼ f(d) where both d and f(d) belong
to B0; for at least one f , d 6= f(d).
It remains to consider the case when b ∈ Bi and c ∈ Bj for some i, j. Without

loss of generality, i 6 j. If i = j = 0, we are done.
If i = 0 and j = 1 then there exists an f ∈ σ with f(c) ∈ B0; we have f(b) ∼ f(c)

and these two elements are distinct, since f(c) is not in the range of f restricted

to B0.

If i = 0 and j > 2 then there exists an f ∈ σ with f(c) ∈ Bj−1, so j can be

reduced by 1 and (after several such steps) this takes us in the previous case.

If i = j = 1 then there are f, g ∈ σ with f(b) ∈ B0 and g(c) ∈ B0; if f(c) ∈ B0,

take g = f . If f = g then applying f to b ∼ c yields a pair of ∼-related elements
in B0; these two elements are distinct, since Gf is injective. If f 6= g then applying f

to b ∼ c yields a pair of ∼-related elements, one of which belongs to B0 while the
other does not and the previous case applies.

If i = 1 and j > 2, then an application of a suitable f to b ∼ c yields a pair of
∼-related elements, one of which belongs to B0 while the other does not.

Finally, if i, j > 2 then take an f ∈ σ with f(b) ∈ Bi−1. We have f(b) ∼ f(c)
where f(b) ∈ Bi−1, f(c) ∈ Bk for some k > 1 (or f(c) = a) and f(b) 6= f(c). �

Theorem 7. The following assertions are equivalent for a finite unary algebra A:

(1) A is a homomorphic image of a subdirectly irreducible algebra;

(2) A is a homomorphic image of a finite subdirectly irreducible algebra;

(3) Either A has a smallest subalgebra or A has two disjoint subalgebras U , {a}
such that the partial algebra A− {a} has a smallest subalgebra U .
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(4) A has a nonempty intersection of the set of all subalgebras B of A such that

|B| > 2.
���������

. (3) implies (2) by Lemma 6, (2) implies (1) clearly. Next we prove that

(1) implies (4). Let h be a homomorphism of a subdirectly irreducible algebra B

onto A. Suppose that A has a subalgebra U , |U | > 2. Then U ′ = h−1(U) is a subal-
gebra of B, |U ′| > 2 and U ′2 ∪ idB is a nontrivial congruence of B, denoted by ΘU ′ .
If all such subalgebras U of A with at least two elements had empty intersection,

then the corresponding inverse images U ′ would have empty intersection. However,
their corresponding congruences ΘU ′ would all be nontrivial, and would have trivial

intersection, which contradicts the assumption that B is subdirectly irreducible.
Assume now (4) and denote by V the intersection of all subalgebras of A with at

least two elements. Assume that the intersection of all subalgebras of A is empty.
It means that the intersection of V and all one-element subalgebras of A is empty.

Since A cannot have three pairwise disjoint subalgebras (by (4)), it has at most two
one-element subalgebras, at most one in V and exactly one outside of V—denote

it by {a}. Hence the intersection of all subalgebras of V is non-empty (it is either
V itself or the one-element subalgebra of V ) and so is that of A− {a}. �
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