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Abstract. Let T ∈ L (X) be a bounded operator on a complex Banach space X. If V

is an open subset of the complex plane such that λ − T is of Kato-type for each λ ∈ V ,
then the induced mapping f(z) 7→ (z − T )f(z) has closed range in the Fréchet space of
analytic X-valued functions on V . Since semi-Fredholm operators are of Kato-type, this
generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of
Nagy’s spectral residuum of T . Our proof is elementary; in particular, we avoid the sheaf
model of Eschmeier and Putinar and the theory of coherent analytic sheaves.

Keywords: decomposable operator, semi-Fredholm operator, semi-regular operator, Kato
decomposition, Bishop’s property (β), property (δ)
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1. Introduction and motivation

For a complex Banach space X , let L (X) denote the space of all bounded linear

operators on X. For T ∈ L (X), let, as usual, σ(T ), σe(T ), and σap(T ) denote,

respectively, the spectrum, essential spectrum, and approximate point spectrum of

T , and let σsu(T ) := {λ ∈ C : λ − T is not surjective}. The complements of these

sets in C are denoted, respectively, by ̺(T ), ̺e(T ), ̺ap(T ), and ̺su(T ).

The present article centers around certain localized versions of some basic concepts

of local spectral theory, with emphasis on decomposability in the sense of Foiaş and

on Bishop’s property (β); see [3], [5], [9], [11], [12], and [14]. An operator T ∈ L (X)

is said to be decomposable on an open subset U of C provided that, for every finite
open cover {V1, . . . , Vn} of C with C \ U ⊆ V1, there exist T -invariant closed linear

subspaces X1, . . . , Xn of T for which

X = X1 + . . . + Xn and σ(T |Xk
) ⊆ Vk for k = 1, . . . , n.
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Classical decomposability occurs when U = C . Moreover, T is said to possess Bishop’s

property (β) on the open set U if, for every open subset V of U and every sequence

of analytic functions fn : V → X for which (λ − T )fn(λ) → 0 as n → ∞ locally

uniformly on V , it follows that fn(λ) → 0 as n → ∞, again locally uniformly on V.

Albrecht and Eschmeier proved the remarkable fact that an operator has property

(β) on U precisely when it is the restriction to a closed invariant subspace of an

operator that is decomposable on U , [3, Theorem 10]. Moreover, by Theorems 8 and

21 of [3], T is decomposable on U if and only if T and its adjoint T ∗ share property

(β) on U. Evidently, there exists a largest open set on which T has property (β);

its complement, denoted by Sβ(T ), is a closed, possibly empty, subset of σ(T ). It

follows that Sr(T ) := Sβ(T )∪Sβ(T ∗) is the complement of the largest open set on

which T is decomposable. The existence of the spectral residuum Sr(T ) was first

discovered by Nagy, [12].

These results make it of interest to identify large open sets on which property

(β) holds. For this it is convenient to reformulate this condition as follows. For an

open subset V of C , denote by H(V, X) the space of all analytic X-valued func-

tions on V. Then H(V, X) is a Fréchet space with generating semi-norms given by

pK(f) := sup {‖f(λ)‖ : λ ∈ K}, where K runs through the compact subsets of V.

Every operator T ∈ L (X) induces a continuous linear mapping TV on H(V, X),

defined by TV f(λ) := (λ − T )f(λ) for all f ∈ H(V, X) and λ ∈ V. It is not difficult

to see that T has property (β) on U precisely when, for each open subset V of U ,

the operator TV is injective and has closed range in H(V, X); see [9, Prop. 1.2.6].

The injectivity issue is addressed by the classical single-valued extension property

(SVEP), [1] and [11]. An operator T ∈ L (X) is said to have SVEP at a point λ ∈ C
provided that, for every open disc V centered at λ, the mapping TV is injective on

H(V, X). If U ⊆ C is open, then T is said to have SVEP on U if T has SVEP at every

λ ∈ U , equivalently, if TV is injective for each open set V ⊆ U. The set S(T ) of all

λ ∈ C at which T fails to have SVEP is an open subset of the point spectrum σp(T ).

Note that, if TV has closed range for every open set V ⊆ C , then, by [9, Prop. 3.3.5],
T has SVEP and thus property (β) on C .

Clearly, T has property (β) on ̺ap(T ), since it is well known and easily seen that,

for each compact subset K of ̺ap(T ), there exists a constant c > 0 with the property

that ‖(λ − T )x‖ > c ‖x‖ for all x ∈ X and λ ∈ K; see also Lemma 3.1.10 of [9] for a

more general result. Moreover, if V is an open subset of ̺su(T ), then TV is surjective

as a consequence of a result due to Allan and Leiterer; see Theorem 3.2.1 of [9] for

an elementary proof. On the other hand, using sheaf-theoretic tools, Eschmeier

established in [5] that TV has closed range for every open subset V of the Fredholm

region ̺e(T ) and then derived interesting new proofs of results on Fredholm operators

originally due to Herrero, [6], Putinar, [13], and the first two authors, [10].
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In this article, we extend Eschmeier’s result to a more general setting that includes,

for instance, the case of open subsets of the semi-Fredholm region. Our approach

avoids the explicit use of sheaf theory. In fact, our main strategy is to combine the

above-mentioned results on ̺ap(T ) and ̺su(T ) with some basic facts on semi-regular

operators and operators of Kato-type. In the main result of the next section, it

is established that TV has closed range for every open subset V of the Kato-type

resolvent set ̺kt(T ), while Section 3 is devoted to a more sophisticated weak-∗ version

of this result for the adjoint. As a consequence, we obtain duality formulas for certain

spectral subspaces of T , and we are able to identify the components of ̺kt(T ) on

which T enjoys property (β) or is even decomposable.

2. Semi-regular and Kato-type operators

Given an operator T ∈ L (X), we denote by ker(T ) and ran(T ) the kernel and

range of T , respectively, and define the hyper-kernel and hyper-range of T to be the

sets N ∞(T ) :=
∞
⋃

n=1
ker(T n) and T∞X :=

∞
⋂

n=1
ran(T n). An operator T ∈ L (X) is

said to be semi-regular provided that ran(T ) is closed and N ∞(T ) ⊆ T∞X . This

containment is equivalent to the condition thatN ∞(T ) ⊆ ran(T ) or ker(T ) ⊆ T∞X ,

[1, Cor. 1.6], and the latter condition implies that ran(T n) is closed for all n, [9,

Prop. 3.1.5]. The equivalence of these conditions also implies that T is semi-regular

if and only if the adjoint T ∗ ∈ L (X∗) is semi-regular, [9, Prop. 3.1.6]. Semi-regular

operators were introduced by Kato, [7], and accordingly we define the Kato resolvent

set of T to be the set of complex numbers

̺K(T ) := {λ ∈ C : λ − T is semi-regular}.

̺K(T ) is an open subset of the complex plane and evidently contains both ̺ap(T ) and

̺su(T ). Moreover, if G is a component of ̺K(T ) and µ, λ ∈ G, then (µ − T )∞X =

(λ−T )∞X , and G ⊆ ̺su(T |(λ−T )∞X); see Propositions 3.1.5, 3.1.9, and 3.1.11 of [9].

A generalized Kato decomposition of an operator T ∈ L (X) is a pair of closed,

T -invariant subspaces (M, N) such that X = M ⊕N , T |M is semi-regular and T |N is

quasinilpotent. If T |N is nilpotent, then T is said to be of Kato-type. As pointed out

by the referee, such operators were introduced and studied by Labrousse, [8], in the

setting of Hilbert spaces under the name quasi-Fredholm operators. However, since

the name quasi-Fredholm is also used for a different class of Banach space operators,

we prefer to avoid this terminology here. A thorough discussion of operators of

Kato-type may be found in the recent monograph by Aiena, [1]. Define the Kato-

type resolvent set of T to be the set

̺kt(T ) := {λ ∈ C : λ − T is of Kato-type}.
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Clearly ̺K(T ) ⊆ ̺kt(T ). Moreover, by Theorems 1.43, 1.44 and Corollary 1.45 of [1],

̺kt(T ) is open, ̺kt(T ) ⊆ ̺kt(T
∗), and ̺kt(T ) \ ̺K(T ) is a discrete subset of ̺kt(T ),

in the sense that F \ ̺K(T ) is finite whenever F is a compact subset of ̺kt(T ). We

denote the complements of ̺K(T ) and ̺kt(T ) by σK(T ) and σkt(T ), respectively. By

[2, Theorem 2.4], σkt(T ) = ∅ if and only if T is algebraic.

We begin with a version of the three-space lemma for property (β), [9, Lem-

ma 2.2.1].

Proposition 2.1. Consider Banach space operators R ∈ L (X), S ∈ L (Y ), and

T ∈ L (Z) for which there exist J ∈ L (X, Y ) and Q ∈ L (Y, Z) such that the

diagram

0 // X
J

//

R

��

Y
Q

//

S

��

Z //

T

��

0

0 // X
J

// Y
Q

// Z // 0

is commutative with exact rows. If V is an open subset of C such that RV has closed

range in H(V, X) and for which TV is injective and with closed range in H(V, Z),

then SV has closed range in H(V, Y ).

P r o o f. If j : H(V, X) → H(V, Y ) and q : H(V, Y ) → H(V, Z) are the compo-

sition mappings jf := J ◦ f and qf := Q ◦ f , then jRV = SV j and qSV = TV q, and

Gleason’s theorem, [9, Prop. 2.1.5], implies that the diagram

0 // H(V, X)
j

//

RV

��

H(V, Y )
q

//

SV

��

H(V, Z) //

TV

��

0

0 // H(V, X)
j

// H(V, Y )
q

// H(V, Z) // 0

is commutative with exact rows. Suppose now that SV fn → 0 in H(V, Y ) as n → ∞.

Then TV qfn = qSV fn → 0 in H(V, Z), and, since TV is injective with closed range,

qfn → 0 in H(V, Z). Thus, by exactness, there exists a sequence (gn)n ⊂ H(V, X)

so that fn − jgn → 0 in H(V, Y ). Therefore SV jgn = SV (jgn − fn) + SV fn → 0

and so jRV gn = SV jgn → 0 in H(V, Y ). The fact that j is injective and with closed

range implies that RV gn → 0, and, because RV has closed range, it follows that

there exists (hn)n ⊂ ker(RV ) so that gn − hn → 0. Then (jhn)n ⊂ ker(SV ) and

fn − jhn = fn − jgn + j(gn − hn) → 0 in H(V, Y ). Thus SV fn → 0 if and only if

[fn] → 0 in H(V, Y )/ ker(SV ); equivalently, ran(SV ) is closed. �

As a corollary, we obtain the following.
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Proposition 2.2. Suppose that T ∈ L (X) and V ⊆ C is open. If there exists a
closed, T -invariant subspace M of X for which V ⊆ ̺su(T |M ) and a discrete subset

E of V such that V \ E ⊆ ̺ap([T ]X/M ), then ran(TV ) is closed in H(V, X).

P r o o f. Since U := V \ E ⊆ ̺ap([T ]X/M ) ⊆ ̺K([T ]X/M ), for each compact

K ⊆ U , there exists a c > 0 so that ‖[x]‖ 6 c inf
λ∈K

‖(λ− [T ])[x]‖ for every [x] ∈ X/M ,

by [9, Lemma 3.1.10]. It follows that [T ]U is injective and with closed range in

H(U, X/M). Now suppose that (fn)n ⊂ H(V, X/M) is such that [T ]V fn → 0, and

let K be a compact subset of V . Since E is discrete, we may choose a contour γ in U

surrounding K, and since [T ]U is injective with closed range, it follows that fn → 0

uniformly on γ and therefore on K as well, by Cauchy’s formula. The surjectivity of

(T |M )V is a consequence of the Allan-Leiterer theorem [9, Theorem 3.2.1], and since

the canonical sequence

0 // M // X // X/M // 0

is exact, the statement now follows from Proposition 2.1. �

An “all or nothing” relation between SVEP and components of ̺K(T ) was ob-

served in [11, Theorem 13]. The following proposition provides a simple proof of this

and a slight extension of Theorem 19, [11], as well. The second statement is, in fact,

a special case of Theorem 2.5, our main result of this section.

Proposition 2.3. Let T ∈ L (X), and let V be an open subset of ̺K(T ). Then:

(1) ̺K(T ) \
(

σp(T ) ∪ σp(T
∗)

)

= ̺(T ).

(2) TV has closed range in H(V, X).

(3) If in addition V is connected, then ker(λ− T ) = {f(λ) : f ∈ ker(TV )} for every

λ ∈ V .

(4) If V is connected, then V ⊆ S(T ) ⇔ V ⊆ σp(T ) ⇔ V ∩σp(T ) 6= ∅ ⇔ V ∩S(T ) 6=

∅.

(5) T has property (β) on V ⇔ T has SVEP on V ⇔ V ∩σp(T ) = ∅ ⇔ V ⊆ ̺ap(T ).

P r o o f. (1) If λ ∈ ̺K(T ) \
(

σp(T ) ∪ σp(T
∗)

)

, then λ − T has closed range, is

injective and has dense range. Thus λ ∈ ̺(T ), and the converse is clear.

For the proofs of (2)–(5), let V be an open subset of ̺K(T ) with components

{Vn}n. Then TV is injective if and only if TVn
is injective for every n, and TV has

closed range if and only if each TVn
has closed range in H(Vn, X). Thus, without

loss of generality, we may assume that V is connected.

(2) Let λ ∈ V and set M = (λ − T )∞X . Then M is independent of λ, and

V ⊆ ̺su(T |M ), by Propositions 3.1.5 and 3.1.11 of [9]. Moreover, V ⊆ ̺ap([T ]X/M ).
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Indeed, let λ ∈ V , and suppose that (xn)n ⊂ X is such that (λ− [T ])[xn] → 0. Then

there exists (yn)n ⊂ M such that (λ − T )xn − yn → 0 in X . Since (λ − T )M = M ,

we may write yn = (λ − T )wn for some wn ∈ M , and thus (λ − T )(xn − wn) → 0.

But ran(λ − T ) is closed in X and therefore xn −wn → 0; i.e., [xn] → 0 in X/M . It

follows from Proposition 2.2 that ran(TV ) is closed.

(3) Clearly, {f(λ) : f ∈ ker(TV )} ⊆ ker(λ − T ) for every λ ∈ V . On the other

hand, for fixed λ ∈ V , ker(λ − T ) ⊆ M , and so x ∈ ker(λ − T ) implies, by the

Allan-Leiterer theorem, that x = TV g for some g ∈ H(V, M). If f ∈ H(V, M) is

defined by f(µ) = (λ − T )g(µ), then f ∈ ker(TV ) and f(λ) = x. Thus (3) holds.

(4) It is also clear that V ⊆ S(T ) implies that V ⊆ σp(T ), which in turn implies

that V ∩ σp(T ) 6= ∅. If V ∩ σp(T ) 6= ∅, then it follows from (3) that ker(TV ) 6= {0}.

If λ ∈ V \ σp(T ), then there is a neighborhood U of λ contained in ̺ap(T ) ∩ V . But

in this case, every f ∈ ker(TV ) must vanish identically on U and therefore on V as

well. Thus V ∩σp(T ) 6= ∅ implies that V ⊆ σp(T ) and, by (3) again, that V ⊆ S(T ).

Thus (4) is established.

(5) is an immediate consequence of (2) and (4). �

Now, suppose that V is an open, connected subset of ̺kt(T ). For each λ ∈ V , let

(Mλ(T ), Nλ(T )) be a generalized Kato decomposition for λ−T such that λ−T |Nλ(T )

is nilpotent. If λ ∈ V ∩ ̺K(T ), then the only possible decomposition is Mλ(T ) = X

and Nλ(T ) = {0}. Set M(T, V ) :=
⋂

λ∈V

Mλ(T ), M∞
λ (T ) := (λ − T )∞Mλ(T ), and

M∞(T, V ) :=
⋂

λ∈V

M∞
λ (T ). When the operator T and domain V are understood and

there is no possible ambiguity, we write Mλ = Mλ(T ), M = M(T, V ), etc.

Of central importance for us will be the space M∞. Clearly, this space is closed

and invariant under T . Moreover, the following argument will show that ker(TV ) ⊆

H(V, M∞). If µ ∈ V , then, by Proposition 2.1.6 of [9], the spaceH(V, X) decomposes

naturally as

H(V, X) = H(V, Mµ) ⊕ H(V, Nµ),

so that TV = (T |Mµ
)V ⊕ (T |Nµ

)V and ker(TV ) = ker
(

(T |Mµ
)V

)

⊕ ker
(

(T |Nµ
)V

)

.

Since µ−T |Nµ
is nilpotent, T |Nµ

has SVEP, and therefore ker(TV ) = ker
(

(T |Mµ
)V

)

.

Also, since the Kato resolvent set is open, there exists an open disc U for which

µ ∈ U ⊆ V and λ − T |Mµ
is semi-regular for all λ ∈ U . By [9, Prop. 3.1.11], for

every λ ∈ U , we obtain that ker(λ − T |Mµ
) ⊆ (λ − T )∞Mµ = M∞

µ . Thus, given

an arbitrary f ∈ ker(TV ), we conclude that f(λ) ∈ M∞
µ for all λ ∈ U . Since V is

connected, it then follows from Theorem A.3.2 of [9] that f(λ) ∈ M∞
µ actually for

all λ ∈ V . This shows that f(λ) ∈ M∞ and therefore that ker(TV ) ⊆ H(V, M∞).

836



Lemma 2.4. Suppose that µ, λ ∈ V , an open, connected subset of ̺kt(T ).

(1) If µ 6= λ, then N
∞(µ − T ) ⊆ Mλ.

(2) If µ 6= λ, then Mλ = (Mλ ∩ Mµ) ⊕ Nµ.

(3) (µ − T )(Mλ ∩ Mµ) is closed.

(4) N ∞(µ − T ) ∩ Mµ ⊆ (µ − T )(Mλ ∩ Mµ).

(5) {λ, µ} ∪
(

V ∩ ̺K(T )
)

⊆ ̺K(T |Mλ∩Mµ
).

(6) M∞
λ ∩ Mµ = (λ − T )∞(Mλ ∩ Mµ) = (µ − T )∞(Mλ ∩ Mµ) = M∞

µ ∩ Mλ.

(7) M∞
λ ∩ M = M∞.

(8) V ⊆ ̺su(T |M∞).

(9) V ∩ ̺K(T ) ⊆ ̺ap([T ]X/M∞).

P r o o f. If λ, µ ∈ V , then, for every n, (µ − T )n = (µ − T |Mλ
)n ⊕ (µ − T |Nλ

)n

on Mλ ⊕Nλ. If µ 6= λ, then µ−T |Nλ
is invertible since λ−T |Nλ

is nilpotent. Thus,

if x1 ∈ Mλ and x2 ∈ Nλ are such that x1 + x2 ∈ ker(µ − T )n, then x2 = 0, and so

(1) holds. Moreover, since Nµ ⊆ ker(µ − T )n for all n sufficiently large, Nµ ⊆ Mλ

whenever λ 6= µ. If x ∈ Mλ, write x = x1 + x2 where x1 ∈ Mµ and x2 ∈ Nµ. Then

x1 = x − x2 ∈ Mλ ∩ Mµ, and (2) is established.

To prove (3) and (4), we may assume, without loss of generality, that λ 6= µ. Then

ran(µ−T |Mµ
) is closed, since µ−T |Mµ

is semi-regular, and ker(µ−T |Mµ
) = ker(µ−

T )∩Mµ ⊆ Mµ ∩Mλ by (1). Thus (3), (µ−T )(Mµ ∩Mλ) = (µ−T |Mµ
)(Mµ ∩Mλ) is

closed, by [9, Lemma 3.1.3]. It also follows from (1) that ker(µ−T )n∩Mµ ⊆ Mµ∩Mλ

for every n, and, by (2),

ker(µ − T )n ∩ Mµ ⊆ (µ − T )Mµ = (µ − T )
(

(Mµ ∩ Mλ) ⊕ Nλ

)

= (µ − T )(Mµ ∩ Mλ) ⊕ Nλ.

Therefore, ker(µ−T )n∩Mµ ⊆ (µ−T )(Mµ∩Mλ) for every n. This establishes (4), and

the fact that λ, µ ∈ ̺K(T |Mλ∩Mµ
) follows immediately from (3) and (4). Suppose

now that ω ∈ V ∩̺K(T )\{λ, µ}. Then ran(ω−T ) closed, and ker(ω−T ) ⊆ Mλ∩Mµ

implies that (ω − T )(Mλ ∩Mµ) is closed, again by [9, Lemma 3.1.3]. It follows from

(4) and (2) that

ker(ω−T )n ⊆ (ω−T )Mµ = (ω−T )
(

(Mλ ∩Mµ)⊕Nλ

)

=
(

(ω−T )(Mλ∩Mµ)
)

⊕Nλ,

since ω − T |Nλ
is invertible. If x ∈ ker(ω − T )n write x = x1 + x2 with x1 ∈

(ω−T )(Mλ∩Mµ) and x2 ∈ Nλ. Then 0 = (ω−T )nx = (ω−T )nx1+(ω−T )nx2 implies

that (ω−T )nx2 = 0 and thus x2 = 0. Consequently, ker(ω−T )n ⊆ (ω−T )(Mλ∩Mµ)

for every n; i.e., ω − T |Mλ∩Mµ
is semi-regular. This establishes (5).

Since (6) is vacuous otherwise, suppose that λ 6= µ. Then

M∞
λ = (λ − T )∞

(

(Mµ ∩ Mλ) ⊕ Nµ

)

= (λ − T )∞(Mλ ∩ Mµ) ⊕ Nµ.
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Thus M∞
λ ∩ Mµ = (λ − T )∞(Mλ ∩ Mµ). Since

(

V ∩ ̺K(T )
)

∪ {λ, µ} is open and

connected, (5) and [9, Prop. 3.1.11] imply that, for all µ, λ ∈ V , (λ−T )∞(Mµ∩Mλ) =

(µ − T )∞(Mµ ∩ Mλ); thus (6), and so

M∞
λ ∩ M =

⋂

µ∈V

(M∞
λ ∩ Mµ) =

⋂

µ∈V

(

(λ − T )∞(Mλ ∩ Mµ)
)

=
⋂

µ∈V

(

(µ − T )∞(Mλ ∩ Mµ)
)

⊆
⋂

µ∈V

(µ − T )∞Mµ = M∞.

Since the other containment is obvious, (7) is obtained.

To prove (8), fix λ ∈ V and suppose that x ∈ M∞. Then there exists y ∈ M∞
λ

so that (λ − T )y = x. Let µ ∈ V \ {λ}, and write y = y1 + y2 where y1 ∈ Mµ and

y2 ∈ Nµ. Then (λ − T )y2 = x − (λ − T )y1 ∈ Mµ ∩ Nµ = {0} and, since λ − T |Nµ
is

invertible, y2 = 0. Thus y ∈ M∞
λ ∩ Mµ for all µ ∈ V ; i.e., y ∈ M∞ by (7).

Finally, suppose that µ ∈ V ∩ ̺K(T ). Then a sequence ([xn])n ⊂ X/M∞ satisfies

(µ − [T ])[xn] → 0 as n → ∞ if and only if there exists (yn)n ⊂ M∞ such that

(µ − T )xn − yn → 0 in X . Since, by (8), µ − T |M∞ is surjective, we may write

yn = (µ − T )zn for some (zn)n ⊂ M∞. Thus (µ − T )(xn − zn) → 0, and, because

ran(µ − T ) is closed, there exists (wn)n ⊂ ker(µ − T ) such that xn − zn − wn → 0

in X . But, by (1), ker(µ − T ) ⊆ Mλ for every λ ∈ V \ {µ}, while Mµ = X since

µ ∈ ̺K(T ), and therefore ker(µ − T ) ⊆ M∞, by (7) and the definition of ̺K(T ).

Thus [xn] → 0 in X/M∞; µ − [T ]X/M∞ is bounded below. �

Our first main result is an immediate consequence of the preceding lemma.

Theorem 2.5. If V is an open subset of ̺kt(T ), then ran(TV ) is closed inH(V, X).

P r o o f. Again, we may assume without loss of generality that V is connected.

Then, by Lemma 2.4 (8) and (9), V ⊆ ̺su(T |M∞) and E := V \ ̺K(T ) ⊇ V \

̺ap([T ]X/M∞). Since E is discrete, the theorem now follows from Proposition 2.2.

�

3. Duality and weak-∗ closed ranges

To establish the weak-∗ counterpart of Theorem 2.5, we need the duality theory

for property (β). An operator T ∈ L (X) is said to have property (δ) on an open

subset U of C if, for all open sets V, W ⊆ C for which C \U ⊆ V ⊆ V ⊆ W , it follows

that

X = XT (C \ V ) + XT (W ),
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whereXT (F ) := X∩ran(TC\F ) denotes the glocal spectral subspace of T for a closed

set F ⊆ C .

Albrecht and Eschmeier, [3, Theorem 15], established that property (δ) on U

characterizes the quotients by closed invariant subspaces of operators that are de-

composable on U . By Theorem 8 of [3], T is decomposable on U precisely when T

has both of the properties (β) and (δ) on U. Also, by Theorems 19 and 21 of [3],

these two properties are completely dual to each other, in the sense that T has one

of the properties (β) or (δ) exactly when T ∗ has the other one.

Moreover, property (δ) admits a characterization that is dual to the definition of

property (β). To provide the details, let C∞ := C ∪{∞} denote the Riemann sphere,

and, for a closed subset F of C∞ with ∞ ∈ F , let P (F, X) denote the (LF )-space

consisting of the germs of X-valued functions analytic in some open neighborhood

of F with f(∞) = 0. Any operator T ∈ L (X) induces a linear mapping on P (F, X)

through (T F f)(λ) := (λ−T )f(λ)− lim
µ→∞

µf(µ). As noted in the proof of Theorem 5

of [3], T has property (δ) on the open set U precisely when T F is surjective for each

closed set F ⊆ C∞ with C∞\U ⊆ F ; see also [9, Theorem 2.2.2]. Moreover, if F =C∞ \U , then, by the Grothendieck-Köthe duality principle, H(U, X∗) is canonically

isomorphic to the strong dual of P (F, X), and, in the sense of this identification,

T ∗
U = (T F )∗; see Theorem 2.5.12 and Lemma 2.5.13 of [9]. Consequently, if T ∗ has

property (β) on U , then T F is surjective on P (F, X) and hence, by a theorem of

Köthe, [9, Theorem 2.5.9], T ∗
U has weak-∗ closed range in H(U, X∗).

Proposition 3.1. Let T ∈ L (X), and let M be a weak-∗ closed, T ∗-invariant

subspace of X∗. Suppose that V is an open subset of ̺su(T ∗|M ) for which there

exists a discrete set E ⊆ V such that V \ E ⊆ ̺ap([T
∗]X∗/M ). Then ran(T ∗

V ) is

weak-∗ closed in H(V, X∗).

P r o o f. For M , V , and E as in the hypotheses, set S := T |⊥M , so that

S∗ = [T ∗]X∗/M . Then, arguing as in Proposition 2.2, we obtain that, for every

open subset W of V , S∗
W is injective with range closed in the Fréchet topology of

H(W, X∗/M). Indeed, suppose that W ⊆ V is open, and let U := W \ E. Then

U ⊆ ̺ap(S
∗), and thus S∗

U is injective and has closed range in H(U, X∗/M). Since E

is discrete, any compact subset of W may be surrounded by a contour in U , and so

Cauchy’s formula implies that S∗
W is injective and has closed range in H(W, X∗/M).

Thus S∗ has property (β) on V , and therefore ran(S∗
V ) is, in fact, weak-∗ closed

in H(V, X∗/M), by the remarks preceding this proposition. Again, the assumption

that V ⊆ ̺su(T ∗|M ) together with the Allan-Leiterer theorem implies that (T ∗|M )V

is surjective on H(V, M). Moreover, in the exact commutative diagram of Frèchet
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spaces

0 // H(V, M)
j

//

(T∗|M )V

��

H(V, X∗)
q

//

T∗

V

��

H(V, X∗/M) //

S∗

V

��

0

0 // H(V, M)
j

// H(V, X∗)
q

// H(V, X∗/M) // 0

the inclusion j and quotient q are adjoints of the quotient P (F, X) → P (F, X/⊥M),

f 7→ [f ]X/⊥M and inclusion P (F,⊥M) → P (F, X), f 7→ f , respectively, and are

therefore each weak-∗ continuous.

Now, if T ∗
V fα → f weak-∗ in H(V, X∗), then S∗

V qfα → qf in H(V, X∗/M), and it

follows that qf = S∗
V qg for some g ∈ H(V, X∗). Thus f − T ∗

V g ∈ ker q = H(V, M) =

ran(T ∗|M )V , as noted above. Therefore f ∈ ran(T ∗
V ), and so ran(T ∗

V ) is weak-∗

closed, as required. �

Theorem 3.2. If V is an open subset of ̺kt(T ), then ran(T ∗
V ) is weak-∗ closed

in H(V, X∗).

P r o o f. Again, we may assume that V is connected. If
(

Mλ(T ), Nλ(T )
)

is the

generalized Kato decomposition for λ − T as in Lemma 2.4, then λ − T ∗ has cor-

responding decomposition
(

Mλ(T ∗), Nλ(T ∗)
)

, where Mλ(T ∗) := Mλ(T )∗ = Nλ(T )⊥

and Nλ(T ∗) := Nλ(T )∗ = Mλ(T )⊥, [1, Theorem 1.43]. In particular, Mλ(T ∗) is

weak-∗ closed in X∗, and the closed range theorem implies that (λ−T ∗)nMλ(T ∗) is

weak-∗ closed in Mλ(T ∗) and therefore in X∗ for all n. Thus M∞(T ∗, V ) is weak-∗

closed in X∗ as well. By Lemma 2.4 (8) and (9),M∞(T ∗, V ) satisfies the hypotheses

of Proposition 3.1, from which the desired conclusion now follows. �

Since every semi-Fredholm operator is of Kato-type, [1, Theorem 1.62 and page 24],

Theorems 2.5 and 3.2 generalize the aforementioned theorem of Eschmeier, [5]. More-

over, Theorems 2.5 and 3.2 may also be used to characterize the annihilators and

pre-annihilators of certain glocal spectral subspaces. If U ⊆ C is open, define
XT (U) :=

⋃

{XT (F ) : F ⊆ U compact}.

Corollary 3.3. Let F be a closed subset of C for which σkt(T ) ⊆ F . Then

XT (F ) = ⊥X ∗
T∗(C \ F ) and X ∗

T∗(F ) = XT (C \ F )⊥.

P r o o f. If V := C \ F , then V ⊆ ̺kt(T ), and so TV and T ∗
V have, respectively,

closed and weak-∗ closed ranges. The result now follows from [4, Lemma 2.5 (c),

(d)]; alternatively, one can argue as in the proof [9, Prop. 2.5.14]. �
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Finally, the notion of operators of Kato-type provides a unification of Corollaries 20

and 21 of [11]. The “all or nothing” relation between SVEP and components of ̺K(T )

in Proposition 2.3 extends trivially to components of ̺kt(T ), a fact first established

by different methods in [2, Theorems 2.2 and 2.3].

Proposition 3.4. Let V be a component of ̺kt(T ), and let U := V ∩ ̺K(T ).

Then

V ⊆ S(T ) ⇔ V ∩ S(T ) 6= ∅ ⇔ U ∩ S(T ) 6= ∅ ⇔ U ∩ σp(T ) 6= ∅ ⇔ U ⊆ S(T ).

Thus, if T has SVEP on U , then T has property (β) on V , while T has property (δ)

on V provided T ∗ has SVEP on U . In particular, if both T and T ∗ have SVEP on

̺kt(T ), then Sr(T ) ⊆ σkt(T ).

P r o o f. Since U inherits connectedness from V , the list of equivalences follows

from that in Proposition 2.3 (3). If T has SVEP on U , then Theorem 2.5 implies that

T has property (β) on V . The last statement follows from the facts that ̺kt(T ) ⊆

̺kt(T
∗) and that T ∈ L (X) is decomposable on an open set G if and only if both

T and T ∗ have Bishop’s property (β) on G, equivalently, that T has both property

(β) and (δ) on G, [3]. �
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