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Abstract. This article provided some sufficient or necessary conditions for a class of
integral operators to be bounded on mixed norm spaces in the unit ball.

Keywords: integral operator, mixed norm space, boundedness

MSC 2000: 47B35, 30H05

1. INTRODUCTION

Let B={z € C": |z| < 1} be the open unit ball in the complex vector space C",
S ={z€C": |z| = 1} be its boundary. Let z = (21,...,2,) and w = (w1, ..., wy,)
be points in C” and
(z,w) = 211 + ... + 2, Wp.-

Let dv denote the normalized Lebesgue area measure on the unit ball B such that
v(B) = 1, and do be the normalized rotation invariant measure on the boundary S
of B such that ¢(S) = 1. The weighted Lebesgue measure dv, (o > —1) is defined by
dva (2) = ca(1—]2]?)*dv(z), where ¢, is a normalizing constant such that v, (B) = 1.
Using polar coordinates, we can easily obtain that (see [13])

I'n+a+1)
Fn+ ' (a+1)

Co =

A positive continuous function ¢ on [0,1) is normal, if there exist 0 < s < ¢,
0 <79 < 1 such that
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(1) ¢(r)/(1 —r)® is nonincreasing for ro < r < 1 and lin% o(r)/(L—r)* =
(1-r) =oco.
For 0 < p < 00, 0 < ¢ < o0, and a normal function ¢, let L, 4(¢) denote the space

(ii) ¢(r)/(1 —r)" is nondecreasing for ro < r < 1 and }LHll o(r)/

of measurable complex functions on B with

1 1/p
|f|p,w:{ / r2n—1<1—r>—1sap<r>M5<r,f>dr} < oo,

nn={[ |f<re>|qda<§>}l/q, 0 << oo

For 1 < p < o0, equipped with the norm || - ||5.q,4, Lp,q(¢) is a Banach space. When

where

0<p<1,|fllpgye is aquasinorm on Ly 4(¢), Ly () is just a Fréchet space.
If 0 < p<oo, a>—1,let LP(B,dv,) denote the space of measurable complex
functions on B with

[ 15@P dvatz) = o [ 5GP =[P dule) < o0
B B

Then from the integral formula in polar coordinates, we have

1
[ 1P =Ry due) =20 [0 =)y
B 0
From the above equality, we see that
LP(B,dva) = Lyp((1 = r%)@+D/P),

The integral operators T' = T, ; . and S = S 1 . which were introduced by Kurens
and Zhu are defined by

— lwl?)?
T(z) = (1— |?)° /B %ﬂw) do(w),

and
5760 = - [ D ) aogun,

Here a, b and c are real parameters. When a = O, ¢ =n+1+b, a sufficient and
necessary condition for the boundedness of Tp p nt+1+5 on LP (B, dv) was obtained by
Forelli and Rudin in [3]. In particular, when ¢ = n+ 1+ a+b, Ty . is holomorphic
whenever it is defined and is in some sense similar to the Bergman projection. The
boundedness of this operator and some interesting related problems on various spaces
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were investigated in [2], [4], [5], [7], [8], [9], [10], [12]. In [6], Kurens and Zhu
determined exactly when the operators T and S are bounded on L?(B, dv,).

In paper, we study this integral operators 7" and S on mixed norm spaces of the
unit ball. The techniques borrowed from [7], [8] have been modified to make it more
efficient. The following four Theorems are our main results.

Theorem 1. Let ¢ be a normal function with constants s, t as in the definition
of normal function. If 1 <p<oo,1<q¢<oo,b+1>t>s>—-a,c=n+1+a+b,
then S: Ly, 4(¢) — Ly 4(¢p) is bounded.

Theorem 2. Let ¢ be a normal function with constants s, t as in the definition
of normal function. If 1 <p<oo,1<qg<o0,b+1>t>s>—-a,n+a+s+t<
c<n+1l+a+b, then S: Ly () — Ly q(p) is bounded.

Theorem 3. Let ¢ be a normal function with constants s, t as in the definition of
normal function. If0 <p< 1,1 <g<oo,c—n—a>t>s>—-a,c<n+1+a-+b,
then S: Ly, 4(p) — Ly 4(¢p) is bounded.

Theorem 4. Let ¢ be a normal function with constants s, t as in the definition
of normal function, 1 < p < 00, 1 < ¢ < oco. If T': Ly 4(p) — Lpq(p) is bounded
and ¢ > n, thena > —t, b > s — 1.

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation A < B means that there is a
positive constant C such that C™'B < A < CB.

2. PROOFS OF MAIN RESULTS
In this section, we will prove the main results in this paper. In order to prove the

main results, we need some auxiliary results which are incorporated in the following
lemmas.

Lemma 1 ([11]). If0 < 9 < 1, 81 > s2 > 0, then

1 _ 82—1
/ A== co 1
o (I—ro)* (1 — )=

1015



Lemma 2 ([13]). Suppose c is real. Then the integral

o de(9)
Le(=) ‘/s T (o

have the following asymptotic properties.

(i) If ¢ <0, then I.(z) is bounded in B.

(ii) If ¢ = 0, then I.(z) < log(1 — |2|?)~! as 2| — 1~.
(iii) If ¢ > 0, then I.(z) < (1 —|2]?)"C as |2| — 1.

The following two lemmas can be found in [8].

Lemma 3. Let ¢ be a normal function. If my +mo >t > s > mq, then

1 p »
¢P(0)do ©P(r)
<C 0< 1, 0).
/0 (1 — Q)pm1+1(1 — rg)Pm2 (1 — T)P(m1+m2) ( "< p> )

Lemma 4. Let 1 < p < 00, 1 < q<oo—+ —1,%+$=1,gpbeanormal
function. Then (L, o(¢))* = Ly .o (¢?/?"). The pa1r1ng is given by

= 5 [ 1EEEI - 1)) du(o).

More precisely, T € (Lpq4(@))* if and only if there is a unique function g €
Ly (¢?/7") such that for any f € Lyq(), Tf = (f,9) and |T|| = l|gll o po/o'-

Lemma 5. If ¢ > n, 1 < g < oo, then

1 ,',.271—1 _ 7'2 b
(1) MQ(Q7 Tf) < C(l - 92)(1/0 #MQ(n )dTa
and

1 ,',.211—1 _ 7'2 b
) Mesp<ca-) [ TS e par

Proof. We only prove the inequality (1), since the proof of (2) is similar. By
the definition of T and the integral formula in polar coordinates, we get

Ty =1 - 2y [ et [ QT o
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Put z = €, £ € 5, it follows that

£l
s 11— (€ Q)|

1
—C(1- ) / P20 2 P, g6) dr

1
(3)  |TF(e) < C1— @) / P21 2 dr do ().

Here

PGS
s 11— (e Q)|

If ¢ = 1, the result follows from (3) and (4) directly. If 1 < ¢ < oo, by Holder’s
inequality and Lemma 2 and ¢ > n, we get

1 |f ()| 1/q
< O(l — ro)le=n)/d’ {/S 11— (0, rO)| dU(C)} .

Since ¢ > n, by using Fubini’s Theorem and Minkowski’s inequality we get

(4) fr(r,08) = do(¢)-

Mt ={ [ |Tf<gs>|Qda<£>}l/q

<O J - 1r2”‘1<1—r2>bf*<r,gg>dr "woie))
s 0

) 1 r2n— 1 F(ro)| 1/q q 1/q
set-2) {/s{ 0 1—w <c o { s|1— o€, Q)¢ "(C)} d’"] d”(f)}

1 ,2n-1(1 _ ;2)b
<C(1- 92)‘1/0 %ﬁ))c_n)Mq(r,f)dr.

Lemma 6. Ifc>n,0<p<1,1<q< oo, then

1 Tp(Qn—l)(l _ TQ)p(b—',—l)—l

(T—ropte=t

(5)  MP(o.Tf)<C(1— @) /O

1 Tp(Qn—l)(l _ TQ)p(b—',—l)—l

(T—ropte=t

6)  MP(o,Sf)<C(1— ) /O
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Proof. We only prove the inequality (5), the proof of (6) is similar. Write
p=1- 1/2’“, then 0 = s < 81 < s2 < ... < 1 forms a partition of the interval
[0,1). Tt is obvious that

S — Sg—1 — 1-— S — 2(1 — 5k+1)~
By Lemma 5, the elementary inequality
a? + b, pe(0,1),
(a+b)P < ) , a>0, b>0,
207 a? +0P), p=1

and the monotonicity of the integral means M} (r, f) with respect to r, we obtain

MZ(o,Tf) < C(1— 0% (/01 qu(r,f)dr)p

(1 —ro)e—m

rP2n=1(1 — )P P
= Mq(r,f)dr>
/s,c , (I=ro)
k

2n 1 1 — Sp_ 1)b+1

C(1— 0% (Z
co-or (3 o )

1—Sch n

o p@n-1) _ (b+1)
2\pa Sk (1 —sk-1)P
<C(—p%)P E (=D Mé’(sk,f) dr

k=1
1 .p(2n—1) 1— p(b+1)—1
_ 2\pa r ( T) D
< C(l 0 ) A (1 — ’/‘Q)p(c_") Mq (’I’, f) dr.
This completes the proof of the lemma. O

Now, we can prove our main results.

Proof of Theorem1. Letp=1,b+1>¢t>s> —a,c=n+1+4+a-+b. Then
by Lemma 3 and Lemma 5 we have

1
HanL%@::l[;92”-10-—g>-1¢uﬁﬂmxp,5f>dp

1 1,2n—1(] _ ,2)b

<o [ -0 eon- e [ S e pards
o e e [ A9 ()1 - o)
—CAT 1 )AM7ﬂdA e do

<O/ 2n— 1( )bM( f)d’r‘/l (I_Q)a 1‘5(@)d

o (I—roF ™
C/ 2n— 1 )b—0+"+a<p(T)Mq(7“, f)dr
< O/O 2 =) ro(r)My(ry f) dr = C|| f]|1.4.0-
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Then the result follows from the above inequality.
If p> 1, we write b+ 1 = by + by = b3 + by, where
(i) b; >0,i=1,2,3,4;

(ii) s+ by > bs > by;

(iii) b3+ a > by;

(iv) by >t.

Then, by Lemma 1 we obtain

1 ,,,211—1(1 _ 7,2)b

Mye.55) < 00 =) [ T par

1 ,.2n—1)p(q1 _ ,2\pba—1 1/p
2\a r (1 r ) P
< C(l -0 ) {A (1 _ ’I‘Q)pb4 Mq (ﬁf) dr
1 _2\p'bi—1 1/p
X / —(1 ! ), dr
o (1—r)p'lbsta)
C {/1 T.(Qn—l)p(l _ T.Q)pbg—l
0

< -
(1—p)bs=t (1 —rp)pha

1/p
MP(r, ) dr} .

Therefore, by Lemma 3, we have

1
1S, = / (1~ 0) P ()M (0, S ) do

N

1 1 1 T(?n—l)p(l _ ,r2)pb2—1
2n—1 _ -1, p P
O/O Y (1 Q) ¥ (Q) (1 — Q)P(bs—bl) /0 (1 — ’]"Q)pb4 Mq (T7 f) dr dg

' (2n—1)p 2\pba—1 3 rp ! @p(g)
= O/O T (1 - T ) Mq (7'7 .f) d'r"/o (1 — Q)P(bs—bl)"rl(l — ’f’g)pb4 dQ

1
c / P20l )M, f) dr < C) ]
0

N

p
p,q,p°

Hence S: L, 4(¢) — Ly (@) is a bounded operator. O

Proof of Theorem 2. When p = 1, the proof is similar to the proof of Theo-
rem 1. Now consider 1 < p < oo, we write b+ 1 = by + ba, ¢ — n = b3 + by, which
satisfies

(i) b; >0,i=1,2,3,4;
(i) s+ by > b3 > by;
(111) c—nm—a—by>s+t>b3—b —a.
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Then by Lemma 1 we get

" 1 T(?n—l)p 1 — 2 pba—1 1/p
R e e e
11 _ \p'bi—1 1/p'
X / 7(1 r? — dr
o (L—ro)r'bs
1 1 T(Zn—l)p 1—7r pba—1 1/p
<C — s _( pb)4 Mé’(r, f)dr .
(1-o0) 0 (1-ro)

Hence by Fubini’s Theorem and Lemma 3

1
IS, = / "1 — 0) NP ()M (0, S ) do

1 1 .(2n—1)p 1— pba—1
<c[ @ ta- 079 ! JE W e, p)y dr do
0 0

TEECETED (1= o)
1 ' ’
_ (2n=1)p(] _ pypba=1 =
_ C/ . P(] — p)Pb2 Mg(T,f)/O 1- Q)p(bg—bl_a)"rl(l — rg)plu do
2n— 1 by—1 ©P(r)
C/ My ) G e 4

¢ / P (L= ) T (L = P A 0 )P () dr

! 2n—1 _ —1asp
<C L (L=r)= M7 (r, )P (r) dr < Ol £117,4,4-

Therefore S: L, 4(¢) — Ly 4(¢) is a bounded operator. O

Proof of Theorem 3. For any f € L,q(p), byc—n—a >t > s > —a,
c<n+1+a+0b, Lemma 3, Lemma 6 and Fubini’s Theorem, we get

1
1SFI2.,. < /0 21(1 )P (0) M2 (0, Sf) do

C "1 gipa-lgp R e L drd
< — )P
< /0 (1= ¢ (9)/0 = (e ¢ (r, f)drde

=0 [} et ) [ e e o)

1 P
p(2n—1) 1 _  \p(b+1)—1 73 rp P (’I“)
< C/o T (1-7) M} (T,f)—(l — e dr

1
= C/ rPER=D (1 — )T — p)pOFLetnta) o (1Y ALP (p, f) dr
0

1
< C/ TP(Q"_l)(l - T)_ltpp(r)Mg’(r,f)dr.
0
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By using the change of variables r = 0'/?, we can easily get the following inequalities
(or see [7])

1/py—1 —1 1 1
1—o"P)y P < (107", MP(YP, f) < MP(o, f), ©"(0"7) < CyP (o).
Therefore we obtain

p
p,q,p

1
ISfIE,. < C / 211 - 0) 1P (0)MP (o, f) do = C| |

as desired. O

Remark. It is clear that

ITf(2)| < SUfD(2).

Hence the boundedness of S implies that of 7. Therefore the conditions of Theo-
rem 1, Theorem 2 and Theorem 3 actually are sufficient conditions for the integral
operator T' to be bounded on the mixed space Ly 4(¢) in the unit ball.

Proof of Theorem 4. Let N be a positive integral large enough such that
fn(z) = (1= [z)N € Lpq(), hence

_ Jw[2)N+D
Th(e) = (- ey [ B2

Write the integrand in terms of its Taylor series, it follows from the orthogonality

dv(w).

of {w*} (o« multiindex) in B that the above integral is a constant, that is (see [8])
Tfn(z) =C(1— 2.
Since T fn(z) belongs to L, 4(¢), we have

p
p,q,p

00 > |Tfnlp g = 1O = [21)]

p,q,p

= 0/01 P21 — ) g () ME (r, (1 — [2[2)%) dr
= 0/01 P21 — )P (r) [ Usa _p2)ag da(()} Uq]pdr

1
= C/ 21— )T P (r) (1 — r?) P dr
0
1
>C [ " A =) PP (r) dr

0
1

>C [ (1—r)® P dr (rg <e< 1),

€

from which we obtain a > —t.
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Ifl<p<ooand }%4— 1% =1, then by Lemma 5, we see that the boundedness of T’
on L, , is equivalent to the boundedness of the adjoint operator T* on Ly 4 (¢P/?").
Moreover,

(L 2P [ (1= ) P (ul) fw)
sop<|z|>/B TGy v

Since gn(z) = (1= [22)N/0P(|2]) € Ly g (oP/?") for a sufficiently large positive

T*f(2) =

number N (see [8]), we get

1
oo > HT*gNH > C/o P21 — )T lP/Pp (r)My, (r,T"gn) dr

P pr/? T
1 — 2)(b+1) 4 1/d'\p'
a-r) da(f)] } dr

= C/Ol r?r (1 - T)_lwp(r){ [/5 o (r)

1
- C/ P L =) TP () (1 = )P e (1) dr
0

1
= C/ 21— )71 - T)p/(bﬂ)(p_p/ (r)dr
C/ PO+ =1=p"s gy (ro<e<1).

From the above we see that b > s — 1.
When p = 1, with the notation of [1], write

1 1/p
T { / r2n—1<1—r>—1sap<r>M5<r,f>dr}

= HHfT”Lq(S,dU)HLP(I,dp)’

where f.(z) = f(rz), I =[0,1], dp = r?"=1(1 — r)~LP(r) dr.
Using the above notation and by [1], the norm of (L, 4(¢))

*

is given by (see [8])

H” : ||Lq’(S,dU) ||L°°(I,du)'

From Lemma 4 we see that the pairing is given by

(f.9) /Uf?f 900 do(¢ ]u——/f (1 — 2 (12 du(z).

Hence the adjoint operator T* is given by

(1—IZI2)Z’“/ (1= JwP)te(u) f(w) |
B

TIE) = =20 0 w)"

v(w).
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Since T* is bounded on (L1 4(¢))*, we can get a function T*gn by applying T™* to a
bounded function of the form

(L—[z)"

s0(|Z|) € (Ll,q(%’))*,

gn(z) =

where N is a sufficiently large positive number. It follows that
_ 7“2)b+1

, (1
(7) 00 > 1T 9wl 5,00 | 11,4 = 590, O

From (7), by the condition hni o(r)/(1—7)*=0weget b>s—1, as desired. O

Remark. In fact, we have proved that under the hypothesis of Theorem 4, if
St Ly g(¢) = Lpg(p) is bounded and ¢ > n, then a > —t,b> s — 1.
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